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Je pourrais illustrer la ... approche, en gardant l’image de la noix qu’il s’agit d’ouvrir.
La première parabole qui m’est venue à l’esprit tantôt, c’est qu’on plonge la noix dans
un liquide émollient, de l’eau simplement pourquoi pas, de temps en temps on frotte pour
qu’elle pénètre mieux, pour le reste on laisse faire le temps. La coque s’assouplit au fil des
semaines et des mois — quand le temps est mûr, une pression de la main suffit, la coque
s’ouvre comme celle d’un avocat mûr à point! . . .

L’image qui m’était venue il y a quelques semaines était différente encore, la chose
inconnue qu’il s’agit de connaı̂tre m’apparaissait comme quelque étendue de terre ou de
marnes compactes, réticente à se laisser pénétrer. ... La mer s’avance insensiblement et
sans bruit, rien ne semble se casser rien ne bouge l’eau est si loin on l’entend à peine...
Pourtant elle finit par entourer la substance rétive...

I can illustrate the ... approach with the ... image of a nut to be opened. The first
analogy that came to my mind is of immersing the nut in some softening liquid, and why
not simply water? From time to time you rub so the liquid penetrates better, and otherwise
you let time pass. The shell becomes more flexible through weeks and months — when the
time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado! . . .

A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it ... yet finally it surrounds the resistant substance.

— A. Grothendieck [Gr6, p. 552-3], translation by C. McLarty [Mc, p. 1]





Preface

This book is intended to give a serious and reasonably complete introduction
to algebraic geometry, not just for (future) experts in the field. The exposition
serves a narrow set of goals (see §0.4), and necessarily takes a particular point of
view on the subject.

It has now been four decades since David Mumford wrote that algebraic ge-
ometry “seems to have acquired the reputation of being esoteric, exclusive, and
very abstract, with adherents who are secretly plotting to take over all the rest of
mathematics! In one respect this last point is accurate ...” ([Mu4, preface] and
[Mu7, p. 227]). The revolution has now fully come to pass, and has fundamentally
changed how we think about many fields of pure mathematics. A remarkable
number of celebrated advances rely in some way on the insights and ideas force-
fully articulated by Alexander Grothendieck, Jean-Pierre Serre, and others.

For a number of reasons, algebraic geometry has earned a reputation of being
inaccessible. The power of the subject comes from rather abstract heavy machin-
ery, and it is easy to lose sight of the intuitive nature of the objects and methods.
Many in nearby fields have only a vague sense of the fundamental ideas of the
subject. Algebraic geometry itself has fractured into many parts, and even within
algebraic geometry, new researchers are often unaware of the basic ideas in sub-
fields removed from their own.

But there is another more optimistic perspective to be taken. The ideas that al-
low algebraic geometry to connect several parts of mathematics are fundamental,
and well-motivated. Many people in nearby fields would find it useful to develop
a working knowledge of the foundations of the subject, and not just at a super-
ficial level. Within algebraic geometry itself, there is a canon (at least for those
approaching the subject from this particular direction), that everyone in the field
can and should be familiar with. The rough edges of scheme theory have been
sanded down over the past half century, although there remains an inescapable
need to understand the subject on its own terms.

0.0.1. The importance of exercises. This book has a lot of exercises. I have found
that unless I have some problems I can think through, ideas don’t get fixed in my
mind. Some exercises are trivial — some experts find this offensive, but I find
this desirable. A very few necessary ones may be hard, but the reader should have
been given the background to deal with them — they are not just an excuse to push
hard material out of the text. The exercises are interspersed with the exposition,
not left to the end. Most have been extensively field-tested. The point of view here
is one I explored with Kedlaya and Poonen in [KPV], a book that was ostensibly
about problems, but secretly a case for how one should learn and do and think
about mathematics. Most people learn by doing, rather than just passively reading.

11



12 The Rising Sea: Foundations of Algebraic Geometry

Judiciously chosen problems can be the best way of guiding the learner toward
enlightenment.

0.0.2. Structure. You will quickly notice that everything is numbered by chapter
and section, and everything is numbered the same way after that (for ease of refer-
ence), except exercises are indicated by letters (and are sprinkled throughout the
text, rather than at the end of sections). Individual paragraphs often get numbers
for ease of reference, or to indicate a new topic. Definitions are in bold, and are
sometimes given in passing.

0.0.3. Acknowledgments.
This one is going to be really hard, so I’ll write this later. (Mike Stay is the au-

thor of Jokes 1.3.11 and 21.5.2.) The phrase “The Rising Sea” is due to Grothendieck
[Gr6, p. 552-3], with this particular translation by McLarty [Mc, p. 1], and popu-
larized as the title of Daniel Murfet’s excellent blog [Mur].

0.1 For the reader

This is your last chance. After this, there is no turning back. You take the blue pill,
the story ends, you wake up in your bed and believe whatever you want to believe. You
take the red pill, you stay in Wonderland and I show you how deep the rabbit-hole goes.

— Morpheus

The contents of this book are intended to be a collection of communal wisdom,
necessarily distilled through an imperfect filter. I wish to say a few words on how
you might use it, although it is not clear to me if you should or will follow this
advice.

Before discussing details, I want to say clearly at the outset: the wonderful
machine of modern algebraic geometry was created to understand basic and naive
questions about geometry (broadly construed). The purpose of this book is to
give you a thorough foundation in these powerful ideas. Do not be seduced by the
lotus-eaters into infatuation with untethered abstraction. Hold tight to your geometric
motivation as you learn the formal structures which have proved to be so effective
in studying fundamental questions. When introduced to a new idea, always ask
why you should care. Do not expect an answer right away, but demand an answer
eventually. Try at least to apply any new abstraction to some concrete example
you can understand well.

Understanding algebraic geometry is often thought to be hard because it con-
sists of large complicated pieces of machinery. In fact the opposite is true; to switch
metaphors, rather than being narrow and deep, algebraic geometry is shallow but
extremely broad. It is built out of a large number of very small parts, in keeping
with Grothendieck’s vision of mathematics. It is a challenge to hold the entire
organic structure, with its messy interconnections, in your head.

A reasonable place to start is with the idea of “affine complex varieties”: sub-
sets of Cn cut out by some polynomial equations. Your geometric intuition can im-
mediately come into play — you may already have some ideas or questions about
dimension, or smoothness, or solutions over subfields such as R or Q. Wiser heads
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would counsel spending time understanding complex varieties in some detail be-
fore learning about schemes. Instead, I encourage you to learn about schemes
immediately, learning about affine complex varieties as the central (but not exclu-
sive) example. This is not ideal, but can save time, and is surprisingly workable.
An alternative is to learn about varieties elsewhere, and then come back later.

The intuition for schemes can be built on the intuition for affine complex vari-
eties. Allen Knutson and Terry Tao have pointed out that this involves three differ-
ent simultaneous generalizations, which can be interpreted as three large themes
in mathematics. (i) We allow nilpotents in the ring of functions, which is basically
analysis (looking at near-solutions of equations instead of exact solutions). (ii) We
glue these affine schemes together, which is what we do in differential geometry
(looking at manifolds instead of coordinate patches). (iii) Instead of working over
C (or another algebraically closed field), we work more generally over a ring that
isn’t an algebraically closed field, or even a field at all, which is basically number
theory (solving equations over number fields, rings of integers, etc.).

Because our goal is to be comprehensive, and to understand everything one
should know after a first course, it will necessarily take longer to get to interesting
sample applications. You may be misled into thinking that one has to work this
hard to get to these applications — it is not true! You should deliberately keep an
eye out for examples you would have cared about before. This will take some time
and patience.

As you learn algebraic geometry, you should pay attention to crucial stepping
stones. Of course, the steps get bigger the farther you go.

Chapter 1. Category theory is only language, but it is language with an em-
bedded logic. Category theory is much easier once you realize that it is designed
to formalize and abstract things you already know. The initial chapter on cate-
gory theory prepares you to think cleanly. For example, when someone names
something a “cokernel” or a “product”, you should want to know why it deserves
that name, and what the name really should mean. The conceptual advantages of
thinking this way will gradually become apparent over time. Yoneda’s Lemma —
and more generally, the idea of understanding an object through the maps to it —
will play an important role.

Chapter 2. The theory of sheaves again abstracts something you already un-
derstand well (see the motivating example of §2.1), and what is difficult is under-
standing how one best packages and works with the information of a sheaf (stalks,
sheafification, sheaves on a base, etc.).

Chapters 1 and 2 are a risky gamble, and they attempt a delicate balance. Attempts
to explain algebraic geometry often leave such background to the reader, refer to
other sources the reader won’t read, or punt it to a telegraphic appendix. Instead,
this book attempts to explain everything necessary, but as little as possible, and
tries to get across how you should think about (and work with) these fundamental
ideas, and why they are more grounded than you might fear.

Chapters 3–5. Armed with this background, you will be able to think cleanly
about various sorts of “spaces” studied in different parts of geometry (includ-
ing differentiable real manifolds, topological spaces, and complex manifolds), as
ringed spaces that locally are of a certain form. A scheme is just another kind
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of “geometric space”, and we are then ready to transport lots of intuition from
“classical geometry” to this new setting. (This also will set you up to later think
about other geometric kinds of spaces in algebraic geometry, such as complex an-
alytic spaces, algebraic spaces, orbifolds, stacks, rigid analytic spaces, and formal
schemes.) The ways in which schemes differ from your geometric intuition can be
internalized, and your intuition can be expanded to accomodate them. There are
many properties you will realize you will want, as well as other properties that
will later prove important. These all deserve names. Take your time becoming
familiar with them.

Chapters 6–10. Thinking categorically will lead you to ask about morphisms
of schemes (and other spaces in geometry). One of Grothendieck’s fundamental
lessons is that the morphisms are central. Important geometric properties should
really be understood as properties of morphisms. There are many classes of mor-
phisms with special names, and in each case you should think through why that
class deserves a name.

Chapters 11–12. You will then be in a good position to think about fundamen-
tal geometric properties of schemes: dimension and smoothness. You may be sur-
prised that these are subtle ideas, but you should keep in mind that they are subtle
everywhere in mathematics.

Chapters 13–21. Vector bundles are ubiquitous tools in geometry, and algebraic
geometry is no exception. They lead us to the more general notion of quasicoher-
ent sheaves, much as free modules over a ring lead us to modules more generally.
We study their properties next, including cohomology. Chapter 19, applying these
ideas to study curves, may help make clear how useful they are.

Chapters 23–30. With this in hand, you are ready to learn more advanced tools
widely used in the subject. Many examples of what you can do are given, and
the classical story of the 27 lines on a smooth cubic surface (Chapter 27) is a good
opportunity to see many ideas come together.

The rough logical dependencies among the chapters are shown in Figure 0.1.
(Caution: this should be taken with a grain of salt. For example, you can avoid
using much of Chapter 19 on curves in later chapters, but it is a crucial source of
examples, and a great way to consolidate your understanding. And Chapter 29 on
completions uses Chapters 19, 20 and 22 only in the discussion of Castelnuovo’s
Criterion 29.7.1.)

In general, I like having as few hypotheses as possible. Certainly a hypothesis
that isn’t necessary to the proof is a red herring. But if a reasonable hypothesis can
make the proof cleaner and more memorable, I am willing to include it.

In particular, Noetherian hypotheses are handy when necessary, but are oth-
erwise misleading. Even Noetherian-minded readers (normal human beings) are
better off having the right hypotheses, as they will make clearer why things are
true.

We often state results particular to varieties, especially when there are tech-
niques unique to this situation that one should know. But restricting to alge-
braically closed fields is useful surprisingly rarely. Geometers needn’t be afraid
of arithmetic examples or of algebraic examples; a central insight of algebraic ge-
ometry is that the same formalism applies without change.
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FIGURE 0.1. Important logical dependences among chapters (or
more precisely, a directed graph showing which chapter should
be read before which other chapter)

Pathological examples are useful to know. On mountain highways, there are
tall sticks on the sides of the road designed for bad weather. In winter, you cannot
see the road clearly, and the sticks serve as warning signs: if you cross this line,
you will die! Pathologies and (counter)examples serve a similar goal. They also
serve as a reality check, when confronting a new statement, theorem, or conjecture,
whose veracity you may doubt.

When working through a book in algebraic geometry, it is particularly helpful
to have other algebraic geometry books at hand, to see different approaches and
to have alternate expositions when things become difficult. This book may serve
as a good secondary book. If it is your primary source, then two other excellent
books with what I consider a similar philosophy are [Liu] and [GW]. De Jong’s
encyclopedic online reference [Stacks] is peerless. There are many other outstand-
ing sources out there, perhaps one for each approach to the subject; you should
browse around and find one you find sympathetic.

If you are looking for a correct or complete history of the subject, you have
come to the wrong place. This book is not intended to be a complete guide to
the literature, and many important sources are ignored or left out, due to my own
ignorance and laziness.
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Finally, if you attempt to read this without working through a significant num-
ber of exercises (see §0.0.1), I will come to your house and pummel you with
[Gr-EGA] until you beg for mercy. It is important to not just have a vague sense of
what is true, but to be able to actually get your hands dirty. To quote Mark Kisin:
“You can wave your hands all you want, but it still won’t make you fly.” Note: The
hints may help you, but sometimes they may not.

0.2 For the expert

If you use this book for a course, you should of course adapt it to your own
point of view and your own interests. In particular, you should think about an
application or theorem you want to reach at the end of the course (which may
well not be in this book), and then work toward it. You should feel no compulsion
to sprint to the end; I advise instead taking more time, and ending at the right
place for your students. (Figure 0.1, showing large-scale dependencies among the
chapters, may help you map out a course.) I have found that the theory of curves
(Chapter 19) and the 27 lines on the cubic surface (Chapter 27) have served this
purpose well at the end of winter and spring quarters. This was true even if some
of the needed background was not covered, and had to be taken by students as
some sort of black box.

Faithfulness to the goals of §0.4 required a brutal triage, and I have made a
number of decisions you may wish to reverse. I will briefly describe some choices
made that may be controversial.

Decisions on how to describe things were made for the sake of the learners.
If there were two approaches, and one was “correct” from an advanced point of
view, and one was direct and natural from a naive point of view, I went with the
latter.

On the other hand, the theory of varieties (over an algebraically closed field,
say) was not done first and separately. This choice brought me close to tears, but
in the end I am convinced that it can work well, if done in the right spirit.

Instead of spending the first part of the course on varieties, I spent the time
in a different way. It is tempting to assume that students will either arrive with
great comfort and experience with category theory and sheaf theory, or that they
should pick up these ideas on their own time. I would love to live in that world.
I encourage you to not skimp on these foundational issues. I have found that
although these first lectures felt painfully slow to me, they were revelatory to a
number of the students, and those with more experience were not bored and did
not waste their time. This investment paid off in spades when I was able to rely
on their ability to think cleanly and to use these tools in practice. Furthermore, if
they left the course with nothing more than hands-on experience with these ideas,
the world was still better off for it.

For the most part, we will state results in the maximal generality that the proof
justifies, but we will not give a much harder proof if the generality of the stronger
result will not be used. There are a few cases where we work harder to prove
a somewhat more general result that many readers may not appreciate. For ex-
ample, we prove a number of theorems for proper morphisms, not just projective
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morphisms. But in such cases, readers are invited or encouraged to ignore the
subtleties required for the greater generality.

I consider line bundles (and maps to projective space) more fundamental than
divisors. General Cartier divisors are not discussed (although effective Cartier divi-
sors play an essential role).

Cohomology is done first using the Čech approach (as Serre first did), and de-
rived functor cohomology is introduced only later. I am well aware that Grothendieck
thinks of the fact that the agreement of Čech cohomology with derived functor co-
homology “should be considered as an accidental phenomenon”, and that “it is
important for technical reasons not to take as definition of cohomology the Čech
cohomology”, [Gr4, p. 108]. But I am convinced that this is the right way for most
people to see this kind of cohomology for the first time. (It is certainly true that
many topics in algebraic geometry are best understood in the language of derived
functors. But this is a view from the mountaintop, looking down, and not the best
way to explore the forests. In order to appreciate derived functors appropriately,
one must understand the homological algebra behind it, and not just take it as a
black box.)

We restrict to the Noetherian case only when it is necessary, or (rarely) when it
really saves effort. In this way, non-Noetherian people will clearly see where they
should be careful, and Noetherian people will realize that non-Noetherian things
are not so terrible. Moreover, even if you are interested primarily in Noetherian
schemes, it helps to see “Noetherian” in the hypotheses of theorems only when
necessary, as it will help you remember how and when this property gets used.

There are some cases where Noetherian readers will suffer a little more than
they would otherwise. As an inflammatory example, instead of using Noetherian
hypotheses, the notion of quasiseparatedness comes up early and often. The cost
is that one extra word has to be remembered, on top of an overwhelming number
of other words. But once that is done, it is not hard to remember that essentially
every scheme anyone cares about is quasiseparated. Furthermore, whenever the
hypotheses “quasicompact and quasiseparated” turn up, the reader will immedi-
ately guess a key idea of the proof. As another example, coherent sheaves and
finite type (quasicoherent) sheaves are the same in the Noetherian situation, but
are still worth distinguishing in statements of the theorems and exercises, for the
same reason: to be clearer on what is used in the proof.

Many important topics are not discussed. Valuative criteria are not proved
(see §12.7), and their statement is relegated to an optional section. Completely
omitted: dévissage, formal schemes, and cohomology with supports. Sorry!

0.3 Background and conventions

“Should you just be an algebraist or a geometer?” is like saying “Would you rather
be deaf or blind?”

— M. Atiyah, [At2, p. 659]

All rings are assumed to be commutative unless explicitly stated otherwise.
All rings are assumed to contain a unit, denoted 1. Maps of rings must send 1 to
1. We don’t require that 0 ̸= 1; in other words, the “0-ring” (with one element)
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is a ring. (There is a ring map from any ring to the 0-ring; the 0-ring only maps
to itself. The 0-ring is the final object in the category of rings.) The definition of
“integral domain” includes 1 ̸= 0, so the 0-ring is not an integral domain. We
accept the Axiom of Choice. In particular, any proper ideal in a ring is contained
in a maximal ideal. (The Axiom of Choice also arises in the argument that the
category of A-modules has enough injectives, see Exercise 23.2.G.)

The reader should be familiar with some basic notions in commutative ring
theory, in particular the notion of ideals (including prime and maximal ideals) and
localization. Tensor products and exact sequences ofA-modules will be important.
We will use the notation (A,m) or (A,m, k) for local rings (rings with a unique
maximal ideal) — A is the ring, m its maximal ideal, and k = A/m its residue field.
We will use the structure theorem for finitely generated modules over a principal
ideal domain A: any such module can be written as the direct sum of principal
modules A/(a). Some experience with field theory will be helpful from time to
time.

0.3.1. Caution about foundational issues. We will not concern ourselves with subtle
foundational issues (set-theoretic issues, universes, etc.). It is true that some peo-
ple should be careful about these issues. But is that really how you want to live
your life? (If you are one of these rare people, a good start is [KS2, §1.1].)

0.3.2. Further background. It may be helpful to have books on other subjects at
hand that you can dip into for specific facts, rather than reading them in advance.
In commutative algebra, [E] is good for this. Other popular choices are [AtM] and
[Mat2]. The book [Al] takes a point of view useful to algebraic geometry. For
homological algebra, [Weib] is simultaneously detailed and readable.

Background from other parts of mathematics (topology, geometry, complex
analysis, number theory, ...) will of course be helpful for intuition and grounding.
Some previous exposure to topology is certainly essential.

0.3.3. Nonmathematical conventions. “Unimportant” means “unimportant for the
current exposition”, not necessarily unimportant in the larger scheme of things.
Other words may be used idiosyncratically as well.

There are optional starred sections of topics worth knowing on a second or
third (but not first) reading. They are marked with a star: ⋆. Starred sections are
not necessarily harder, merely unimportant. You should not read double-starred
sections (⋆⋆) unless you really really want to, but you should be aware of their
existence. (It may be strange to have parts of a book that should not be read!)

Let’s now find out if you are taking my advice about double-starred sections.

0.4 ⋆⋆ The goals of this book

There are a number of possible introductions to the field of algebraic geome-
try: Riemann surfaces; complex geometry; the theory of varieties; a nonrigorous
examples-based introduction; algebraic geometry for number theorists; an abstract
functorial approach; and more. All have their place. Different approaches suit dif-
ferent students (and different advisors). This book takes only one route.
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Our intent is to cover a canon completely and rigorously, with enough exam-
ples and calculations to help develop intuition for the machinery. This is often
the content of a second course in algebraic geometry, and in an ideal world, peo-
ple would learn this material over many years, after having background courses
in commutative algebra, algebraic topology, differential geometry, complex analy-
sis, homological algebra, number theory, and French literature. We do not live in
an ideal world. For this reason, the book is written as a first introduction, but a
challenging one.

This book seeks to do a very few things, but to try to do them well. Our goals
and premises are as follows.

The core of the material should be digestible over a single year. After a
year of blood, sweat, and tears, readers should have a broad familiarity with the
foundations of the subject, and be ready to attend seminars, and learn more ad-
vanced material. They should not just have a vague intuitive understanding of
the ideas of the subject; they should know interesting examples, know why they
are interesting, and be able to work through their details. Readers in other fields
of mathematics should know enough to understand the algebro-geometric ideas
that arise in their area of interest.

This means that this book is not encyclopedic, and even beyond that, hard
choices have to be made. (In particular, analytic aspects are essentially ignored,
and are at best dealt with in passing without proof. This is a book about algebraic
algebraic geometry.)

This book is usable (and has been used) for a course, but the course should
(as always) take on the personality of the instructor. With a good course, people
should be able to leave early and still get something useful from the experience.
With this book, it is possible to leave without regret after learning about category
theory, or about sheaves, or about geometric spaces, having become a better per-
son.

The book is also usable (and has been used) for learning on your own. But
most mortals cannot learn algebraic geometry fully on their own; ideally you
should read in a group, and even if not, you should have someone you can ask
questions to (both stupid and smart questions).

There is certainly more than a year’s material here, but I have tried to make
clear which topics are essential, and which are not. Those teaching a class will
choose which “inessential” things are important for the point they wish to get
across, and use them.

There is a canon (at least for this particular approach to algebraic geometry). I
have been repeatedly surprised at how much people in different parts of algebraic
geometry agree on what every civilized algebraic geometer should know after a
first (serious) year. (There are of course different canons for different parts of the
subject, e.g., complex algebraic geometry, combinatorial algebraic geometry, com-
putational algebraic geometry, etc.) There are extra bells and whistles that different
instructors might add on, to prepare students for their particular part of the field
or their own point of view, but the core of the subject remains unified, despite the
diversity and richness of the subject. There are some serious and painful compro-
mises to be made to reconcile this goal with the previous one.
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Algebraic geometry is for everyone (with the appropriate definition of “ev-
eryone”). Algebraic geometry courses tend to require a lot of background, which
makes them inaccessible to all but those who know they will go deeply into the
subject. Algebraic geometry is too important for that; it is essential that many of
those in nearby fields develop some serious familiarity with the foundational ideas
and tools of the subject, and not just at a superficial level. (Similarly, algebraic ge-
ometers uninterested in any nearby field are necessarily arid, narrow thinkers. Do
not be such a person!)

For this reason, this book attempts to require as little background as possible.
The background required will, in a technical sense, be surprisingly minimal — ide-
ally just some commutative ring theory and point-set topology, and some comfort
with things like prime ideals and localization. This is misleading of course — the
more you know, the better. And the less background you have, the harder you will
have to work — this is not a light read. On a related note...

The book is intended to be as self-contained as possible. I have tried to
follow the motto: “if you use it, you must prove it”. I have noticed that most
students are human beings: if you tell them that some algebraic fact is in some late
chapter of a book in commutative algebra, they will not immediately go and read
it. Surprisingly often, what we need can be developed quickly from scratch, and
even if people do not read it, they can see what is involved. The cost is that the
book is much denser, and that significant sophistication and maturity is demanded
of the reader. The benefit is that more people can follow it; they are less likely to
reach a point where they get thrown. On the other hand, people who already have
some familiarity with algebraic geometry, but want to understand the foundations
more completely, should not be bored, and can focus on more subtle issues.

As just one example, Krull’s Principal Ideal Theorem 11.3.3 is an important
tool. I have included an essentially standard proof (§11.5). I do not want people
to read it (unless they really really want to), and signal this by a double-star in the
title: ⋆⋆. Instead, I want people to skim it and realize that they could read it, and
that it is not seriously hard.

This is an important goal because it is important not just to know what is true,
but to know why things are true, and what is hard, and what is not hard. Also,
this helps the previous goal, by reducing the number of prerequisites.

The book is intended to build intuition for the formidable machinery of al-
gebraic geometry. The exercises are central for this (see §0.0.1). Informal language
can sometimes be helpful. Many examples are given. Learning how to think
cleanly (and in particular categorically) is essential. The advantages of appropriate
generality should be made clear by example, and not by intimidation. The mo-
tivation is more local than global. For example, there is no introductory chapter
explaining why one might be interested in algebraic geometry, and instead there
is an introductory chapter explaining why you should want to think categorically
(and how to actually do this).

Balancing the above goals is already impossible. We must thus give up any
hope of achieving any other desiderata. There are no other goals.



Part I

Preliminaries





CHAPTER 1

Some category theory

The introduction of the digit 0 or the group concept was general nonsense too, and
mathematics was more or less stagnating for thousands of years because nobody was
around to take such childish steps...

— A. Grothendieck, [BP, p. 4–5]

That which does not kill me, makes me stronger.
— F. Nietzsche

1.1 Motivation

Before we get to any interesting geometry, we need to develop a language
to discuss things cleanly and effectively. This is best done in the language of
categories. There is not much to know about categories to get started; it is just
a very useful language. Like all mathematical languages, category theory comes
with an embedded logic, which allows us to abstract intuitions in settings we know
well to far more general situations.

Our motivation is as follows. We will be creating some new mathematical
objects (such as schemes, and certain kinds of sheaves), and we expect them to
act like objects we have seen before. We could try to nail down precisely what
we mean by “act like”, and what minimal set of things we have to check in order
to verify that they act the way we expect. Fortunately, we don’t have to — other
people have done this before us, by defining key notions, such as abelian categories,
which behave like modules over a ring.

Our general approach will be as follows. I will try to tell you what you need to
know, and no more. (This I promise: if I use the word “topoi”, you can shoot me.) I
will begin by telling you things you already know, and describing what is essential
about the examples, in a way that we can abstract a more general definition. We
will then see this definition in less familiar settings, and get comfortable with using
it to solve problems and prove theorems.

For example, we will define the notion of product of schemes. We could just
give a definition of product, but then you should want to know why this precise
definition deserves the name of “product”. As a motivation, we revisit the notion
of product in a situation we know well: (the category of) sets. One way to define
the product of sets U and V is as the set of ordered pairs {(u, v) : u ∈ U, v ∈ V}.
But someone from a different mathematical culture might reasonably define it as
the set of symbols {

u
v : u ∈ U, v ∈ V}. These notions are “obviously the same”.

Better: there is “an obvious bijection between the two”.

23
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This can be made precise by giving a better definition of product, in terms
of a universal property. Given two sets M and N, a product is a set P, along with
maps µ : P →M and ν : P → N, such that for any set P ′ with maps µ ′ : P ′ →M and
ν ′ : P ′ → N, these maps must factor uniquely through P:

(1.1.0.1) P ′

∃!
  

ν ′

((PP
PPP

PPP
PPP

PPP
P

µ ′

��0
00
00
00
00
00
00
0

P
ν

//

µ

��

N

M

(The symbol ∃ means “there exists”, and the symbol ! here means “unique”.) Thus
a product is a diagram

P
ν //

µ

��

N

M

and not just a set P, although the maps µ and ν are often left implicit.
This definition agrees with the traditional definition, with one twist: there

isn’t just a single product; but any two products come with a unique isomorphism
between them. In other words, the product is unique up to unique isomorphism.
Here is why: if you have a product

P1
ν1 //

µ1

��

N

M

and I have a product

P2
ν2 //

µ2

��

N

M

then by the universal property of my product (letting (P2, µ2, ν2) play the role of
(P, µ, ν), and (P1, µ1, ν1) play the role of (P ′, µ ′, ν ′) in (1.1.0.1)), there is a unique
map f : P1 → P2 making the appropriate diagram commute (i.e., µ1 = µ2 ◦ f and
ν1 = ν2 ◦ f). Similarly by the universal property of your product, there is a unique
map g : P2 → P1 making the appropriate diagram commute. Now consider the
universal property of my product, this time letting (P2, µ2, ν2) play the role of
both (P, µ, ν) and (P ′, µ ′, ν ′) in (1.1.0.1). There is a unique map h : P2 → P2 such
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that
P2

h

AA
A

  A
AA

ν2

''PP
PPP

PPP
PPP

PPP
P

µ2

��0
00
00
00
00
00
00
0

P2 ν2

//

µ2

��

N

M

commutes. However, I can name two such maps: the identity map idP2
, and f ◦ g.

Thus f ◦ g = idP2
. Similarly, g ◦ f = idP1

. Thus the maps f and g arising from
the universal property are bijections. In short, there is a unique bijection between
P1 and P2 preserving the “product structure” (the maps to M and N). This gives
us the right to name any such product M × N, since any two such products are
uniquely identified.

This definition has the advantage that it works in many circumstances, and
once we define categories, we will soon see that the above argument applies ver-
batim in any category to show that products, if they exist, are unique up to unique
isomorphism. Even if you haven’t seen the definition of category before, you can
verify that this agrees with your notion of product in some category that you have
seen before (such as the category of vector spaces, where the maps are taken to
be linear maps; or the category of differentiable manifolds, where the maps are
taken to be submersions, i.e., differentiable maps whose differential is everywhere
surjective).

This is handy even in cases that you understand. For example, one way of
defining the product of two manifoldsM andN is to cut them both up into charts,
then take products of charts, then glue them together. But if I cut up the manifolds
in one way, and you cut them up in another, how do we know our resulting mani-
folds are the “same”? We could wave our hands, or make an annoying argument
about refining covers, but instead, we should just show that they are “categorical
products” and hence canonically the “same” (i.e., isomorphic). We will formalize
this argument in §1.3.

Another set of notions we will abstract are categories that “behave like mod-
ules”. We will want to define kernels and cokernels for new notions, and we
should make sure that these notions behave the way we expect them to. This
leads us to the definition of abelian categories, first defined by Grothendieck in his
Tôhoku paper [Gr1].

In this chapter, we will give an informal introduction to these and related no-
tions, in the hope of giving just enough familiarity to comfortably use them in
practice.

1.2 Categories and functors

Before functoriality, people lived in caves. — B. Conrad

We begin with an informal definition of categories and functors.

1.2.1. Categories.
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A category consists of a collection of objects, and for each pair of objects, a
set of morphisms (or arrows) between them. (For experts: technically, this is the
definition of a locally small category. In the correct definition, the morphisms need
only form a class, not necessarily a set, but see Caution 0.3.1.) Morphisms are often
informally called maps. The collection of objects of a category C is often denoted
obj(C ), but we will usually denote the collection also by C . If A,B ∈ C , then the
set of morphisms from A to B is denoted Mor(A,B). A morphism is often written
f : A → B, and A is said to be the source of f, and B the target of f. (Of course,
Mor(A,B) is taken to be disjoint from Mor(A ′, B ′) unless A = A ′ and B = B ′.)

Morphisms compose as expected: there is a composition Mor(B,C)×Mor(A,B)→
Mor(A,C), and if f ∈ Mor(A,B) and g ∈ Mor(B,C), then their composition is de-
noted g ◦ f. Composition is associative: if f ∈ Mor(A,B), g ∈ Mor(B,C), and
h ∈ Mor(C,D), then h ◦ (g ◦ f) = (h ◦ g) ◦ f. For each object A ∈ C , there is always
an identity morphism idA : A→ A, such that when you (left- or right-)compose a
morphism with the identity, you get the same morphism. More precisely, for any
morphisms f : A → B and g : B → C, idB ◦f = f and g ◦ idB = g. (If you wish,
you may check that “identity morphisms are unique”: there is only one morphism
deserving the name idA.) This ends the definition of a category.

We have a notion of isomorphism between two objects of a category (a mor-
phism f : A → B such that there exists some — necessarily unique — morphism
g : B → A, where f ◦ g and g ◦ f are the identity on B and A respectively), and a
notion of automorphism of an object (an isomorphism of the object with itself).

1.2.2. Example. The prototypical example to keep in mind is the category of sets,
denoted Sets. The objects are sets, and the morphisms are maps of sets. (Because
Russell’s paradox shows that there is no set of all sets, we did not say earlier that
there is a set of all objects. But as stated in §0.3, we are deliberately omitting all
set-theoretic issues.)

1.2.3. Example. Another good example is the category Veck of vector spaces over
a given field k. The objects are k-vector spaces, and the morphisms are linear
transformations. (What are the isomorphisms?)

1.2.A. UNIMPORTANT EXERCISE. A category in which each morphism is an iso-
morphism is called a groupoid. (This notion is not important in what we will
discuss. The point of this exercise is to give you some practice with categories, by
relating them to an object you know well.)
(a) A perverse definition of a group is: a groupoid with one object. Make sense of
this.
(b) Describe a groupoid that is not a group.

1.2.B. EXERCISE. If A is an object in a category C , show that the invertible ele-
ments of Mor(A,A) form a group (called the automorphism group of A, denoted
Aut(A)). What are the automorphism groups of the objects in Examples 1.2.2
and 1.2.3? Show that two isomorphic objects have isomorphic automorphism
groups. (For readers with a topological background: if X is a topological space,
then the fundamental groupoid is the category where the objects are points of X,
and the morphisms x → y are paths from x to y, up to homotopy. Then the auto-
morphism group of x0 is the (pointed) fundamental group π1(X, x0). In the case
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where X is connected, and π1(X) is not abelian, this illustrates the fact that for
a connected groupoid — whose definition you can guess — the automorphism
groups of the objects are all isomorphic, but not canonically isomorphic.)

1.2.4. Example: abelian groups. The abelian groups, along with group homomor-
phisms, form a category Ab.

1.2.5. Important Example: Modules over a ring. If A is a ring, then the A-modules
form a category ModA. (This category has additional structure; it will be the pro-
totypical example of an abelian category, see §1.6.) Taking A = k, we obtain Exam-
ple 1.2.3; taking A = Z, we obtain Example 1.2.4.

1.2.6. Example: rings. There is a category Rings, where the objects are rings, and
the morphisms are maps of rings in the usual sense (maps of sets which respect
addition and multiplication, and which send 1 to 1 by our conventions, §0.3).

1.2.7. Example: topological spaces. The topological spaces, along with continuous
maps, form a category Top. The isomorphisms are homeomorphisms.

In all of the above examples, the objects of the categories were in obvious
ways sets with additional structure (a concrete category, although we won’t use
this terminology). This needn’t be the case, as the next example shows.

1.2.8. Example: partially ordered sets. A partially ordered set, (or poset), is a set S
along with a binary relation ≥ on S satisfying:

(i) x ≥ x (reflexivity),
(ii) x ≥ y and y ≥ z imply x ≥ z (transitivity), and

(iii) if x ≥ y and y ≥ x then x = y (antisymmetry).
A partially ordered set (S,≥) can be interpreted as a category whose objects are
the elements of S, and with a single morphism from x to y if and only if x ≥ y (and
no morphism otherwise).

A trivial example is (S,≥) where x ≥ y if and only if x = y. Another example
is

(1.2.8.1) •

��
• // •

Here there are three objects. The identity morphisms are omitted for convenience,
and the two non-identity morphisms are depicted. A third example is

(1.2.8.2) •

��

// •

��
• // •

Here the “obvious” morphisms are again omitted: the identity morphisms, and
the morphism from the upper left to the lower right. Similarly,

· · · // • // • // •

depicts a partially ordered set, where again, only the “generating morphisms” are
depicted.
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1.2.9. Example: the category of subsets of a set, and the category of open subsets of a topo-
logical space. If X is a set, then the subsets form a partially ordered set, where the
order is given by inclusion. Informally, if U ⊂ V , then we have exactly one mor-
phism U→ V in the category (and otherwise none). Similarly, if X is a topological
space, then the open sets form a partially ordered set, where the order is given by
inclusion.

1.2.10. Definition. A subcategory A of a category B has as its objects some of the
objects of B, and some of the morphisms, such that the morphisms of A include
the identity morphisms of the objects of A , and are closed under composition.
(For example, (1.2.8.1) is in an obvious way a subcategory of (1.2.8.2). Also, we
have an obvious “inclusion functor” i : A → B.)

1.2.11. Functors.
A covariant functor F from a category A to a category B, denoted F : A → B,

is the following data. It is a map of objects F : obj(A ) → obj(B), and for each A1,
A2 ∈ A , and morphismm : A1 → A2, a morphism F(m) : F(A1)→ F(A2) in B. We
require that F preserves identity morphisms (forA ∈ A , F(idA) = idF(A)), and that
F preserves composition (F(m2 ◦m1) = F(m2) ◦ F(m1)). (You may wish to verify
that covariant functors send isomorphisms to isomorphisms.) A trivial example is
the identity functor id : A → A , whose definition you can guess. Here are some
less trivial examples.

1.2.12. Example: a forgetful functor. Consider the functor from the category of
vector spaces (over a field k) Veck to Sets, that associates to each vector space its
underlying set. The functor sends a linear transformation to its underlying map of
sets. This is an example of a forgetful functor, where some additional structure is
forgotten. Another example of a forgetful functor is ModA → Ab from A-modules
to abelian groups, remembering only the abelian group structure of theA-module.

1.2.13. Topological examples. Examples of covariant functors include the funda-
mental group functor π1, which sends a topological space Xwith choice of a point
x0 ∈ X to a group π1(X, x0) (what are the objects and morphisms of the source cat-
egory?), and the ith homology functor Top→ Ab, which sends a topological space
X to its ith homology group Hi(X,Z). The covariance corresponds to the fact that
a (continuous) morphism of pointed topological spaces ϕ : X→ Y with ϕ(x0) = y0
induces a map of fundamental groups π1(X, x0) → π1(Y, y0), and similarly for
homology groups.

1.2.14. Example. Suppose A is an object in a category C . Then there is a func-
tor hA : C → Sets sending B ∈ C to Mor(A,B), and sending f : B1 → B2 to
Mor(A,B1)→Mor(A,B2) described by

[g : A→ B1] 7→ [f ◦ g : A→ B1 → B2].

This seemingly silly functor ends up surprisingly being an important concept.

1.2.15. Definitions. If F : A → B and G : B → C are covariant functors, then we
define a functor G ◦ F : A → C (the composition of G and F) in the obvious way.
Composition of functors is associative in an evident sense.
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A covariant functor F : A → B is faithful if for all A,A ′ ∈ A , the map
MorA (A,A ′) → MorB(F(A), F(A ′)) is injective, and full if it is surjective. A func-
tor that is full and faithful is fully faithful. A subcategory i : A → B is a full
subcategory if i is full. (Inclusions are always faithful, so there is no need for the
phrase “faithful subcategory”.) Thus a subcategory A ′ of A is full if and only if for
all A,B ∈ obj(A ′), MorA ′(A,B) = MorA (A,B). For example, the forgetful func-
tor Veck → Sets is faithful, but not full; and if A is a ring, the category of finitely
generated A-modules is a full subcategory of the category ModA of A-modules.

1.2.16. Definition. A contravariant functor is defined in the same way as a covari-
ant functor, except the arrows switch directions: in the above language, F(A1 →
A2) is now an arrow from F(A2) to F(A1). (Thus F(m2 ◦m1) = F(m1) ◦ F(m2), not
F(m2) ◦ F(m1).)

It is wise to state whether a functor is covariant or contravariant, unless the
context makes it very clear. If it is not stated (and the context does not make it
clear), the functor is often assumed to be covariant.

(Sometimes people describe a contravariant functor C → D as a covariant
functor C opp → D , where C opp is the same category as C except that the arrows
go in the opposite direction. Here C opp is said to be the opposite category to C .)
One can define fullness, etc. for contravariant functors, and you should do so.

1.2.17. Linear algebra example. If Veck is the category of k-vector spaces (introduced
in Example 1.2.3), then taking duals gives a contravariant functor (·)∨ : Veck →
Veck. Indeed, to each linear transformation f : V →W, we have a dual transforma-
tion f∨ : W∨ → V∨, and (f ◦ g)∨ = g∨ ◦ f∨.

1.2.18. Topological example (cf. Example 1.2.13) for those who have seen cohomology. The
ith cohomology functor Hi(·,Z) : Top→ Ab is a contravariant functor.

1.2.19. Example. There is a contravariant functor Top→ Rings taking a topological
space X to the ring of real-valued continuous functions on X. A morphism of
topological spaces X → Y (a continuous map) induces the pullback map from
functions on Y to functions on X.

1.2.20. Example (the functor of points, cf. Example 1.2.14). Suppose A is an object
of a category C . Then there is a contravariant functor hA : C → Sets sending
B ∈ C to Mor(B,A), and sending the morphism f : B1 → B2 to the morphism
Mor(B2, A)→Mor(B1, A) via

[g : B2 → A] 7→ [g ◦ f : B1 → B2 → A].

This example initially looks weird and different, but Examples 1.2.17 and 1.2.19
may be interpreted as special cases; do you see how? What is A in each case? This
functor might reasonably be called the functor of maps (toA), but is actually known
as the functor of points. We will meet this functor again in §1.3.10 and (in the
category of schemes) in Definition 6.3.9.

1.2.21. ⋆ Natural transformations (and natural isomorphisms) of covariant func-
tors, and equivalences of categories.

(This notion won’t come up in an essential way until at least Chapter 6, so you
shouldn’t read this section until then.) Suppose F andG are two covariant functors
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from A to B. A natural transformation of covariant functors F → G is the data
of a morphism mA : F(A)→ G(A) for each A ∈ A such that for each f : A→ A ′ in
A , the diagram

F(A)
F(f) //

mA

��

F(A ′)

mA ′

��
G(A)

G(f)
// G(A ′)

commutes. A natural isomorphism of functors is a natural transformation such
that each mA is an isomorphism. (We make analogous definitions when F and G
are both contravariant.)

The data of functors F : A → B and F ′ : B → A such that F ◦ F ′ is naturally
isomorphic to the identity functor idB on B and F ′ ◦ F is naturally isomorphic to
idA is said to be an equivalence of categories. “Equivalence of categories” is an
equivalence relation on categories. The right notion of when two categories are
“essentially the same” is not isomorphism (a functor giving bijections of objects and
morphisms) but equivalence. Exercises 1.2.C and 1.2.D might give you some vague
sense of this. Later exercises (for example, that “rings” and “affine schemes” are
essentially the same, once arrows are reversed, Exercise 6.3.D) may help too.

Two examples might make this strange concept more comprehensible. The
double dual of a finite-dimensional vector space V is not V , but we learn early to
say that it is canonically isomorphic to V . We can make that precise as follows. Let
f.d.Vec

k
be the category of finite-dimensional vector spaces over k. Note that this

category contains oodles of vector spaces of each dimension.

1.2.C. EXERCISE. Let (·)∨∨ : f.d.Vec
k
→ f.d.Vec

k
be the double dual functor from

the category of finite-dimensional vector spaces over k to itself. Show that (·)∨∨

is naturally isomorphic to the identity functor on f.d.Vec
k

. (Without the finite-
dimensionality hypothesis, we only get a natural transformation of functors from
id to (·)∨∨.)

Let V be the category whose objects are the k-vector spaces kn for each n ≥ 0
(there is one vector space for each n), and whose morphisms are linear transfor-
mations. The objects of V can be thought of as vector spaces with bases, and the
morphisms as matrices. There is an obvious functor V → f.d.Vec

k
, as each kn is a

finite-dimensional vector space.

1.2.D. EXERCISE. Show that V → f.d.Vec
k

gives an equivalence of categories,
by describing an “inverse” functor. (Recall that we are being cavalier about set-
theoretic assumptions, see Caution 0.3.1, so feel free to simultaneously choose
bases for each vector space in f.d.Vec

k
. To make this precise, you will need to use

Gödel-Bernays set theory or else replace f.d.Vec
k

with a very similar small category,
but we won’t worry about this.)

1.2.22. ⋆⋆ Aside for experts. Your argument for Exercise 1.2.D will show that (mod-
ulo set-theoretic issues) this definition of equivalence of categories is the same as
another one commonly given: a covariant functor F : A → B is an equivalence
of categories if it is fully faithful and every object of B is isomorphic to an object
of the form F(A) for some A ∈ A (F is essentially surjective, a term we will not



November 18, 2017 draft 31

need). Indeed, one can show that such a functor has a quasiinverse (another term
we will not use later), i.e., a functor G : B → A (necessarily also an equivalence
and unique up to unique isomorphism) for which G ◦ F ∼= idA and F ◦ G ∼= idB,
and conversely, any functor that has a quasiinverse is an equivalence.

1.3 Universal properties determine an object up to unique
isomorphism

Given some category that we come up with, we often will have ways of pro-
ducing new objects from old. In good circumstances, such a definition can be
made using the notion of a universal property. Informally, we wish that there were
an object with some property. We first show that if it exists, then it is essentially
unique, or more precisely, is unique up to unique isomorphism. Then we go about
constructing an example of such an object to show existence.

Explicit constructions are sometimes easier to work with than universal prop-
erties, but with a little practice, universal properties are useful in proving things
quickly and slickly. Indeed, when learning the subject, people often find explicit
constructions more appealing, and use them more often in proofs, but as they be-
come more experienced, they find universal property arguments more elegant and
insightful.

1.3.1. Products were defined by a universal property. We have seen one im-
portant example of a universal property argument already in §1.1: products. You
should go back and verify that our discussion there gives a notion of product in
any category, and shows that products, if they exist, are unique up to unique iso-
morphism.

1.3.2. Initial, final, and zero objects. Here are some simple but useful concepts
that will give you practice with universal property arguments. An object of a
category C is an initial object if it has precisely one map to every object. It is a
final object if it has precisely one map from every object. It is a zero object if it is
both an initial object and a final object.

1.3.A. EXERCISE. Show that any two initial objects are uniquely isomorphic. Show
that any two final objects are uniquely isomorphic.

In other words, if an initial object exists, it is unique up to unique isomorphism,
and similarly for final objects. This (partially) justifies the phrase “the initial object”
rather than “an initial object”, and similarly for “the final object” and “the zero
object”. (Convention: we often say “the”, not “a”, for anything defined up to
unique isomorphism.)

1.3.B. EXERCISE. What are the initial and final objects in Sets, Rings, and Top (if
they exist)? How about in the two examples of §1.2.9?

1.3.3. Localization of rings and modules. Another important example of a defi-
nition by universal property is the notion of localization of a ring. We first review a
constructive definition, and then reinterpret the notion in terms of universal prop-
erty. A multiplicative subset S of a ring A is a subset closed under multiplication
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containing 1. We define a ring S−1A. The elements of S−1A are of the form a/s

where a ∈ A and s ∈ S, and where a1/s1 = a2/s2 if (and only if) for some s ∈ S,
s(s2a1 − s1a2) = 0. We define (a1/s1) + (a2/s2) = (s2a1 + s1a2)/(s1s2), and
(a1/s1) × (a2/s2) = (a1a2)/(s1s2). (If you wish, you may check that this equal-
ity of fractions really is an equivalence relation and the two binary operations on
fractions are well-defined on equivalence classes and make S−1A into a ring.) We
have a canonical ring map

(1.3.3.1) A→ S−1A

given by a 7→ a/1. Note that if 0 ∈ S, S−1A is the 0-ring.
There are two particularly important flavors of multiplicative subsets. The

first is {1, f, f2, . . . }, where f ∈ A. This localization is denoted Af. The second is
A− p, where p is a prime ideal. This localization S−1A is denoted Ap. (Notational
warning: If p is a prime ideal, thenAp means you’re allowed to divide by elements
not in p. However, if f ∈ A, Af means you’re allowed to divide by f. This can be
confusing. For example, if (f) is a prime ideal, then Af ̸= A(f).)

Warning: sometimes localization is first introduced in the special case whereA
is an integral domain and 0 /∈ S. In that case,A ↪→ S−1A, but this isn’t always true,
as shown by the following exercise. (But we will see that noninjective localizations
needn’t be pathological, and we can sometimes understand them geometrically,
see Exercise 3.2.L.)

1.3.C. EXERCISE. Show that A → S−1A is injective if and only if S contains no
zerodivisors. (A zerodivisor of a ringA is an element a such that there is a nonzero
element b with ab = 0. The other elements of A are called non-zerodivisors. For
example, an invertible element is never a zerodivisor. Counter-intuitively, 0 is a
zerodivisor in every ring but the 0-ring. More generally, ifM is anA-module, then
a ∈ A is a zerodivisor for M if there is a nonzero m ∈M with am = 0. The other
elements of A are called non-zerodivisors forM.)

IfA is an integral domain and S = A−{0}, then S−1A is called the fraction field
ofA, which we denote K(A). The previous exercise shows thatA is a subring of its
fraction field K(A). We now return to the case where A is a general (commutative)
ring.

1.3.D. EXERCISE. Verify thatA→ S−1A satisfies the following universal property:
S−1A is initial among A-algebras B where every element of S is sent to an invert-
ible element in B. (Recall: the data of “an A-algebra B” and “a ring map A → B”
are the same.) Translation: any map A→ B where every element of S is sent to an
invertible element must factor uniquely through A → S−1A. Another translation:
a ring map out of S−1A is the same thing as a ring map from A that sends every
element of S to an invertible element. Furthermore, an S−1A-module is the same
thing as an A-module for which s × · : M → M is an A-module isomorphism for
all s ∈ S.

In fact, it is cleaner to define A → S−1A by the universal property, and to
show that it exists, and to use the universal property to check various properties
S−1A has. Let’s get some practice with this by defining localizations of modules
by universal property. Suppose M is an A-module. We define the A-module map
ϕ : M→ S−1M as being initial amongA-module mapsM→ N such that elements
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of S are invertible in N (s × · : N → N is an isomorphism for all s ∈ S). More
precisely, any such map α : M→ N factors uniquely through ϕ:

M
ϕ //

α
##F

FF
FF

FF
FF

S−1M

∃!
��
N

(Translation: M → S−1M is universal (initial) among A-module maps from M to
modules that are actually S−1A-modules. Can you make this precise by defining
clearly the objects and morphisms in this category?)

Notice: (i) this determines ϕ : M → S−1M up to unique isomorphism (you
should think through what this means); (ii) we are defining not only S−1M, but
also the map ϕ at the same time; and (iii) essentially by definition the A-module
structure on S−1M extends to an S−1A-module structure.

1.3.E. EXERCISE. Show that ϕ : M → S−1M exists, by constructing something
satisfying the universal property. Hint: define elements of S−1M to be of the
form m/s where m ∈ M and s ∈ S, and m1/s1 = m2/s2 if and only if for some
s ∈ S, s(s2m1 − s1m2) = 0. Define the additive structure by (m1/s1) + (m2/s2) =
(s2m1 + s1m2)/(s1s2), and the S−1A-module structure (and hence the A-module
structure) is given by (a1/s1) · (m2/s2) = (a1m2)/(s1s2).

1.3.F. EXERCISE.
(a) Show that localization commutes with finite products, or equivalently, with
finite direct sums. In other words, if M1, . . . , Mn are A-modules, describe an iso-
morphism (ofA-modules, and of S−1A-modules) S−1(M1×· · ·×Mn)→ S−1M1×
· · · × S−1Mn.
(b) Show that localization commutes with arbitrary direct sums.
(c) Show that “localization does not necessarily commute with infinite products”:
the obvious map S−1(

∏
iMi)→∏i S

−1Mi induced by the universal property of
localization is not always an isomorphism. (Hint: (1, 1/2, 1/3, 1/4, . . . ) ∈ Q×Q×
· · · .)

1.3.4. Remark. Localization does not always commute with Hom, see Exam-
ple 1.6.8. But Exercise 1.6.G will show that in good situations (if the first argument
of Hom is finitely presented), localization does commute with Hom.

1.3.5. Tensor products. Another important example of a universal property con-
struction is the notion of a tensor product of A-modules

⊗A : obj(ModA)× obj(ModA) // obj(ModA)

(M,N)
� //M⊗A N

The subscriptA is often suppressed when it is clear from context. The tensor prod-
uct is often defined as follows. Suppose you have two A-modulesM andN. Then
elements of the tensor productM⊗AN are finiteA-linear combinations of symbols
m ⊗ n (m ∈ M, n ∈ N), subject to relations (m1 +m2) ⊗ n = m1 ⊗ n +m2 ⊗ n,
m⊗ (n1+n2) = m⊗n1+m⊗n2, a(m⊗n) = (am)⊗n = m⊗ (an) (where a ∈ A,



34 The Rising Sea: Foundations of Algebraic Geometry

m1,m2 ∈M, n1, n2 ∈ N). More formally,M⊗AN is the free A-module generated
by M ×N, quotiented by the submodule generated by (m1 +m2, n) − (m1, n) −
(m2, n), (m,n1+n2)−(m,n1)−(m,n2), a(m,n)−(am,n), and a(m,n)−(m,an)
for a ∈ A, m,m1,m2 ∈ M, n,n1, n2 ∈ N. The image of (m,n) in this quotient is
m⊗ n.

If A is a field k, we recover the tensor product of vector spaces.

1.3.G. EXERCISE (IF YOU HAVEN’T SEEN TENSOR PRODUCTS BEFORE). Show that
Z/(10) ⊗Z Z/(12) ∼= Z/(2). (This exercise is intended to give some hands-on prac-
tice with tensor products.)

1.3.H. IMPORTANT EXERCISE: RIGHT-EXACTNESS OF (·)⊗AN. Show that (·)⊗AN
gives a covariant functor ModA → ModA. Show that (·) ⊗A N is a right-exact
functor, i.e., if

M ′ →M→M ′′ → 0

is an exact sequence of A-modules (which means f : M → M ′′ is surjective, and
M ′ surjects onto the kernel of f; see §1.6), then the induced sequence

M ′ ⊗A N→M⊗A N→M ′′ ⊗A N→ 0

is also exact. This exercise is repeated in Exercise 1.6.F, but you may get a lot out of
doing it now. (You will be reminded of the definition of right-exactness in §1.6.5.)

In contrast, you can quickly check that tensor product is not left-exact: tensor
the exact sequence of Z-modules

0 // Z ×2 // Z // Z/(2) // 0

with Z/(2).
The constructive definition ⊗ is a weird definition, and really the “wrong”

definition. To motivate a better one: notice that there is a natural A-bilinear map
M × N → M ⊗A N. (If M,N, P ∈ ModA, a map f : M × N → P is A-bilinear if
f(m1 +m2, n) = f(m1, n) + f(m2, n), f(m,n1 + n2) = f(m,n1) + f(m,n2), and
f(am,n) = f(m,an) = af(m,n).) AnyA-bilinear mapM×N→ P factors through
the tensor product uniquely: M×N→M⊗A N→ P. (Think this through!)

We can take this as the definition of the tensor product as follows. It is an
A-module T along with an A-bilinear map t : M × N → T , such that given any
A-bilinear map t ′ : M × N → T ′, there is a unique A-linear map f : T → T ′ such
that t ′ = f ◦ t.

M×N t //

t ′ ##G
GG

GG
GG

GG
T

∃!f��
T ′

1.3.I. EXERCISE. Show that (T, t : M×N→ T) is unique up to unique isomorphism.
Hint: first figure out what “unique up to unique isomorphism” means for such
pairs, using a category of pairs (T, t). Then follow the analogous argument for the
product.

In short: given M and N, there is an A-bilinear map t : M × N → M ⊗A N,
unique up to unique isomorphism, defined by the following universal property:
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for any A-bilinear map t ′ : M × N → T ′ there is a unique A-linear map f : M ⊗A
N→ T ′ such that t ′ = f ◦ t.

As with all universal property arguments, this argument shows uniqueness
assuming existence. To show existence, we need an explicit construction.

1.3.J. EXERCISE. Show that the construction of §1.3.5 satisfies the universal prop-
erty of tensor product.

The three exercises below are useful facts about tensor products with which
you should be familiar.

1.3.K. IMPORTANT EXERCISE.
(a) IfM is an A-module and A→ B is a morphism of rings, give B⊗AM the struc-
ture of a B-module (this is part of the exercise). Show that this describes a functor
ModA →ModB.
(b) If further A→ C is another morphism of rings, show that B⊗A C has a natural
structure of a ring. Hint: multiplication will be given by (b1 ⊗ c1)(b2 ⊗ c2) =
(b1b2)⊗ (c1c2). (Exercise 1.3.U will interpret this construction as a fibered coprod-
uct.)

1.3.L. IMPORTANT EXERCISE. If S is a multiplicative subset of A and M is an A-
module, describe a natural isomorphism (S−1A)⊗AM ∼= S−1M (as S−1A-modules
and as A-modules).

1.3.M. EXERCISE (⊗ COMMUTES WITH ⊕). Show that tensor products commute
with arbitrary direct sums: ifM and {Ni}i∈I are allA-modules, describe an isomor-
phism

M⊗ (⊕i∈INi)
∼ // ⊕i∈I (M⊗Ni) .

1.3.6. Essential Example: Fibered products. Suppose we have morphisms
α : X → Z and β : Y → Z (in any category). Then the fibered product (or fi-
bred product) is an object X ×Z Y along with morphisms prX : X ×Z Y → X and
prY : X×Z Y → Y, where the two compositions α ◦prX, β ◦prY : X×Z Y → Z agree,
such that given any object W with maps to X and Y (whose compositions to Z
agree), these maps factor through some uniqueW → X×Z Y:

W

∃!
##

��5
55

55
55

55
55

55
55

5

))SSS
SSSS

SSSS
SSSS

SSSS

X×Z Y

prX

��

prY
// Y

β

��
X

α // Z

(Warning: the definition of the fibered product depends on α and β, even though
they are omitted from the notation X×Z Y.)

By the usual universal property argument, if it exists, it is unique up to unique
isomorphism. (You should think this through until it is clear to you.) Thus the use
of the phrase “the fibered product” (rather than “a fibered product”) is reasonable,
and we should reasonably be allowed to give it the name X×Z Y. We know what
maps to it are: they are precisely maps to X and maps to Y that agree as maps to Z.
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Depending on your religion, the diagram

X×Z Y

prX

��

prY
// Y

β

��
X

α // Z

is called a fibered/pullback/Cartesian diagram/square (six possibilities — even
more are possible if you prefer “fibred” to “fibered”).

The right way to interpret the notion of fibered product is first to think about
what it means in the category of sets.

1.3.N. EXERCISE (FIBERED PRODUCTS OF SETS). Show that in Sets,

X×Z Y = {(x, y) ∈ X× Y : α(x) = β(y)}.

More precisely, show that the right side, equipped with its evident maps to X and
Y, satisfies the universal property of the fibered product. (This will help you build
intuition for fibered products.)

1.3.O. EXERCISE. If X is a topological space, show that fibered products always
exist in the category of open sets of X, by describing what a fibered product is.
(Hint: it has a one-word description.)

1.3.P. EXERCISE. If Z is the final object in a category C , and X, Y ∈ C , show that
“X ×Z Y = X × Y”: “the” fibered product over Z is uniquely isomorphic to “the”
product. Assume all relevant (fibered) products exist. (This is an exercise about
unwinding the definition.)

1.3.Q. USEFUL EXERCISE: TOWERS OF CARTESIAN DIAGRAMS ARE CARTESIAN DI-
AGRAMS. If the two squares in the following commutative diagram are Cartesian
diagrams, show that the “outside rectangle” (involving U, V , Y, and Z) is also a
Cartesian diagram.

U //

��

V

��
W //

��

X

��
Y // Z

1.3.R. EXERCISE. Given morphisms X1 → Y, X2 → Y, and Y → Z, show that there
is a natural morphism X1×Y X2 → X1×Z X2, assuming that both fibered products
exist. (This is trivial once you figure out what it is saying. The point of this exercise
is to see why it is trivial.)

1.3.S. USEFUL EXERCISE: THE MAGIC DIAGRAM. Suppose we are given mor-
phisms X1, X2 → Y and Y → Z. Show that the following diagram is a Cartesian
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square.

X1 ×Y X2 //

��

X1 ×Z X2

��
Y // Y ×Z Y

Assume all relevant (fibered) products exist. This diagram is surprisingly useful
— so useful that we will call it the magic diagram.

1.3.7. Coproducts. Define coproduct in a category by reversing all the arrows in
the definition of product. Define fibered coproduct in a category by reversing all
the arrows in the definition of fibered product.

1.3.T. EXERCISE. Show that coproduct for Sets is disjoint union. This is why we
use the notation

⨿
for disjoint union.

1.3.U. EXERCISE. Suppose A → B and A → C are two ring morphisms, so in
particular B and C are A-modules. Recall (Exercise 1.3.K) that B ⊗A C has a ring
structure. Show that there is a natural morphism B→ B⊗A C given by b 7→ b⊗ 1.
(This is not necessarily an inclusion; see Exercise 1.3.G.) Similarly, there is a natural
morphism C→ B⊗AC. Show that this gives a fibered coproduct on rings, i.e., that

B⊗A C Coo

B

OO

Aoo

OO

satisfies the universal property of fibered coproduct.

1.3.8. Monomorphisms and epimorphisms.

1.3.9. Definition. A morphism π : X → Y is a monomorphism if any two mor-
phisms µ1 : Z → X and µ2 : Z → X such that π ◦ µ1 = π ◦ µ2 must satisfy µ1 = µ2.
In other words, there is at most one way of filling in the dotted arrow so that the
diagram

Z

≤1
�� ��?

??
??

??
?

X
π

// Y

commutes — for any object Z, the natural map Mor(Z,X) → Mor(Z, Y) is an in-
jection. Intuitively, it is the categorical version of an injective map, and indeed
this notion generalizes the familiar notion of injective maps of sets. (The reason
we don’t use the word “injective” is that in some contexts, “injective” will have
an intuitive meaning which may not agree with “monomorphism”. One example:
in the category of divisible groups, the map Q → Q/Z is a monomorphism but
not injective. This is also the case with “epimorphism” (to be defined shortly) vs.
“surjective”.)

1.3.V. EXERCISE. Show that the composition of two monomorphisms is a monomor-
phism.
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1.3.W. EXERCISE. Prove that a morphism π : X → Y is a monomorphism if and
only if the fibered product X×Y X exists, and the induced morphism X→ X×Y X
is an isomorphism. We may then take this as the definition of monomorphism.
(Monomorphisms aren’t central to future discussions, although they will come up
again. This exercise is just good practice.)

1.3.X. EASY EXERCISE. We use the notation of Exercise 1.3.R. Show that if Y → Z

is a monomorphism, then the morphism X1 ×Y X2 → X1 ×Z X2 you described in
Exercise 1.3.R is an isomorphism. (Hint: for any object V , give a natural bijection
between maps from V to the first and maps from V to the second. It is also possible
to use the magic diagram, Exercise 1.3.S.)

The notion of an epimorphism is “dual” to the definition of monomorphism,
where all the arrows are reversed. This concept will not be central for us, although
it turns up in the definition of an abelian category. Intuitively, it is the categori-
cal version of a surjective map. (But be careful when working with categories of
objects that are sets with additional structure, as epimorphisms need not be surjec-
tive. Example: in the category Rings, Z→ Q is an epimorphism, but obviously not
surjective.)

1.3.10. Representable functors and Yoneda’s Lemma. Much of our discussion
about universal properties can be cleanly expressed in terms of representable func-
tors, under the rubric of “Yoneda’s Lemma”. Yoneda’s lemma is an easy fact stated
in a complicated way. Informally speaking, you can essentially recover an object
in a category by knowing the maps into it. For example, we have seen that the
data of maps to X × Y are naturally (canonically) the data of maps to X and to Y.
Indeed, we have now taken this as the definition of X× Y.

Recall Example 1.2.20. Suppose A is an object of category C . For any object
C ∈ C , we have a set of morphisms Mor(C,A). If we have a morphism f : B → C,
we get a map of sets

(1.3.10.1) Mor(C,A)→Mor(B,A),

by composition: given a map from C to A, we get a map from B to A by precom-
posing with f : B → C. Hence this gives a contravariant functor hA : C → Sets.
Yoneda’s Lemma states that the functor hA determines A up to unique isomor-
phism. More precisely:

1.3.Y. IMPORTANT EXERCISE THAT YOU SHOULD DO ONCE IN YOUR LIFE (YONEDA’S
LEMMA).
(a) Suppose you have two objects A and A ′ in a category C , and morphisms

(1.3.10.2) iC : Mor(C,A)→Mor(C,A ′)

that commute with the maps (1.3.10.1). Show that the iC (as C ranges over the ob-
jects of C ) are induced from a unique morphism g : A→ A ′. More precisely, show
that there is a unique morphism g : A→ A ′ such that for all C ∈ C , iC is u 7→ g◦u.
(b) If furthermore the iC are all bijections, show that the resulting g is an isomor-
phism. (Hint for both: This is much easier than it looks. This statement is so
general that there are really only a couple of things that you could possibly try.
For example, if you’re hoping to find a morphism A → A ′, where will you find
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it? Well, you are looking for an element Mor(A,A ′). So just plug in C = A to
(1.3.10.2), and see where the identity goes.)

There is an analogous statement with the arrows reversed, where instead of
maps into A, you think of maps from A. The role of the contravariant functor hA
of Example 1.2.20 is played by the covariant functor hA of Example 1.2.14. Because
the proof is the same (with the arrows reversed), you needn’t think it through.

The phrase “Yoneda’s Lemma” properly refers to a more general statement.
Although it looks more complicated, it is no harder to prove.

1.3.Z. ⋆ EXERCISE.
(a) Suppose A and B are objects in a category C . Give a bijection between the nat-
ural transformations hA → hB of covariant functors C → Sets (see Example 1.2.14
for the definition) and the morphisms B→ A.
(b) State and prove the corresponding fact for contravariant functors hA (see Ex-
ample 1.2.20). Remark: A contravariant functor F from C to Sets is said to be
representable if there is a natural isomorphism

ξ : F
∼ // hA .

Thus the representing object A is determined up to unique isomorphism by the
pair (F, ξ). There is a similar definition for covariant functors. (We will revisit
this in §6.6, and this problem will appear again as Exercise 6.6.C. The element
ξ−1(idA) ∈ F(A) is often called the “universal object”; do you see why?)
(c) Yoneda’s Lemma. Suppose F is a covariant functor C → Sets, and A ∈ C .
Give a bijection between the natural transformations hA → F and F(A). (The
corresponding fact for contravariant functors is essentially Exercise 9.1.C.)

In fancy terms, Yoneda’s lemma states the following. Given a category C , we
can produce a new category, called the functor category of C , where the objects are
contravariant functors C → Sets, and the morphisms are natural transformations
of such functors. We have a functor (which we can usefully call h) from C to its
functor category, which sends A to hA. Yoneda’s Lemma states that this is a fully
faithful functor, called the Yoneda embedding. (Fully faithful functors were defined
in §1.2.15.)

1.3.11. Joke. The Yoda embedding, contravariant it is.

1.4 Limits and colimits

Limits and colimits are two important definitions determined by universal
properties. They generalize a number of familiar constructions. I will give the def-
inition first, and then show you why it is familiar. For example, fractions will be
motivating examples of colimits (Exercise 1.4.C(a)), and the p-adic integers (Exam-
ple 1.4.3) will be motivating examples of limits.

1.4.1. Limits. We say that a category is a small category if the objects and the
morphisms are sets. (This is a technical condition intended only for experts.) Sup-
pose I is any small category, and C is any category. Then a functor F : I → C
(i.e., with an object Ai ∈ C for each element i ∈ I , and appropriate commuting
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morphisms dictated by I ) is said to be a diagram indexed by I . We call I an
index category. Our index categories will usually be partially ordered sets (Ex-
ample 1.2.8), in which in particular there is at most one morphism between any
two objects. (But other examples are sometimes useful.) For example, if □ is the
category

•

��

// •

��
• // •

and A is a category, then a functor □ → A is precisely the data of a commuting
square in A .

Then the limit of the diagram is an object lim←−
I

Ai of C along with morphisms

fj : lim←−
I

Ai → Aj for each j ∈ I , such that ifm : j→ k is a morphism in I , then

(1.4.1.1) lim←−
I

Ai

fj

��

fk

!!C
CC

CC
CC

Aj
F(m) // Ak

commutes, and this object and maps to eachAi are universal (final) with respect to
this property. More precisely, given any other objectW along with maps gi : W →
Ai commuting with the F(m) (ifm : j→ k is a morphism in I , then gk = F(m)◦gj),
then there is a unique map

g : W → lim←−
I

Ai

so that gi = fi ◦g for all i. (In some cases, the limit is sometimes called the inverse
limit or projective limit. We won’t use this language.) By the usual universal
property argument, if the limit exists, it is unique up to unique isomorphism.

1.4.2. Examples: products. For example, if I is the partially ordered set

•

��
• // •

we obtain the fibered product.
If I is

• •
we obtain the product.

If I is a set (i.e., the only morphisms are the identity maps), then the limit is
called the product of the Ai, and is denoted

∏
iAi. The special case where I has

two elements is the example of the previous paragraph.

1.4.A. EXERCISE (REALITY CHECK). Suppose that the partially ordered set I has
an initial object e. Show that the limit of any diagram indexed by I exists.

1.4.3. Example: the p-adic integers. For a prime number p, the p-adic integers
(or more informally, p-adics), Zp, are often described informally (and somewhat
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unnaturally) as being of the form Zp = a0 + a1p+ a2p
2 + · · · (where 0 ≤ ai < p).

They are an example of a limit in the category of rings:

Zp

!!D
DD

DD
DD

D

))RR
RRR

RRR
RRR

RRR
RRR

++VVVV
VVVVV

VVVVV
VVVVV

VVVVV
VVV

· · · // Z/p3 // Z/p2 // Z/p.

(Warning: Zp is sometimes is used to denote the integers modulo p, but Z/(p) or
Z/pZ is better to use for this, to avoid confusion. Worse: by §1.3.3, Zp also denotes
those rationals whose denominators are a power of p. Hopefully the meaning
of Zp will be clear from the context.) The p-adic integers are an example of a
completion, the topic of Chapter 29.

Limits do not always exist for any index category I . However, you can often
easily check that limits exist if the objects of your category can be interpreted as
sets with additional structure, and arbitrary products exist (respecting the set-like
structure).

1.4.B. IMPORTANT EXERCISE. Show that in the category Sets,

{
(ai)i∈I ∈

∏
i

Ai : F(m)(aj) = ak for allm ∈ MorI (j, k) ∈ Mor(I )

}
,

along with the obvious projection maps to each Ai, is the limit lim←−
I

Ai.

This clearly also works in the category ModA of A-modules (in particular Veck
and Ab), as well as Rings.

From this point of view, 2 + 3p + 2p2 + · · · ∈ Zp can be understood as the
sequence (2, 2+ 3p, 2+ 3p+ 2p2, . . . ).

1.4.4. Colimits. More immediately relevant for us will be the dual (arrow-
reversed version) of the notion of limit (or inverse limit). We just flip the arrows
fi in (1.4.1.1), and get the notion of a colimit, which is denoted lim−→IAi. (You
should draw the corresponding diagram.) Again, if it exists, it is unique up to
unique isomorphism. (In some cases, the colimit is sometimes called the direct
limit, inductive limit, or injective limit. We won’t use this language. I prefer us-
ing limit/colimit in analogy with kernel/cokernel and product/coproduct. This
is more than analogy, as kernels and products may be interpreted as limits, and
similarly with cokernels and coproducts. Also, I remember that kernels “map to”,
and cokernels are “mapped to”, which reminds me that a limit maps to all the ob-
jects in the big commutative diagram indexed by I ; and a colimit has a map from
all the objects.)

1.4.5. Joke. A comathematician is a device for turning cotheorems into ffee.

Even though we have just flipped the arrows, colimits behave quite differently
from limits.
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1.4.6. Example. The set 5−∞Z of rational numbers whose denominators are powers
of 5 is a colimit lim−→ 5−iZ. More precisely, 5−∞Z is the colimit of the diagram

Z // 5−1Z // 5−2Z // · · ·

The colimit over an index set I is called the coproduct, denoted
⨿
iAi, and is

the dual (arrow-reversed) notion to the product.

1.4.C. EXERCISE.
(a) Interpret the statement “Q = lim−→ 1

n
Z”.

(b) Interpret the union of some subsets of a given set as a colimit. (Dually, the
intersection can be interpreted as a limit.) The objects of the category in question
are the subsets of the given set.

Colimits do not always exist, but there are two useful large classes of examples
for which they do.

1.4.7. Definition. A nonempty partially ordered set (S,≥) is filtered (or is said to
be a filtered set) if for each x, y ∈ S, there is a z such that x ≥ z and y ≥ z. More
generally, a nonempty category I is filtered if:

(i) for each x, y ∈ I , there is a z ∈ I and arrows x→ z and y→ z, and
(ii) for every two arrows u : x→ y and v : x→ y, there is an arrow w : y→ z

such that w ◦ u = w ◦ v.
(Other terminologies are also commonly used, such as “directed partially ordered
set” and “filtered index category”, respectively.)

1.4.D. EXERCISE. Suppose I is filtered. (We will almost exclusively use the case
where I is a filtered set.) Recall the symbol

⨿
for disjoint union of sets. Show

that any diagram in Sets indexed by I has the following, with the obvious maps
to it, as a colimit:{
(ai, i) ∈

⨿
i∈I

Ai

}/(
(ai, i) ∼ (aj, j) if and only if there are f : Ai → Ak and

g : Aj → Ak in the diagram for which f(ai) = g(aj) in Ak

)
(You will see that the “filtered” hypothesis is there is to ensure that ∼ is an equiva-
lence relation.)

For example, in Example 1.4.6, each element of the colimit is an element of
something upstairs, but you can’t say in advance what it is an element of. For
instance, 17/125 is an element of the 5−3Z (or 5−4Z, or later ones), but not 5−2Z.

This idea applies to many categories whose objects can be interpreted as sets
with additional structure (such as abelian groups, A-modules, groups, etc.). For
example, the colimit lim−→Mi in the category of A-modules ModA can be described
as follows. The set underlying lim−→Mi is defined as in Exercise 1.4.D. To add the
elements mi ∈ Mi and mj ∈ Mj, choose an ℓ ∈ I with arrows u : i → ℓ and
v : j → ℓ, and then define the sum of mi and mj to be F(u)(mi) + F(v)(mj) ∈ Mℓ.
The element mi ∈ Mi is 0 if and only if there is some arrow u : i → k for which
F(u)(mi) = 0, i.e., if it becomes 0 “later in the diagram”. Last, multiplication by an
element ofA is defined in the obvious way. (You can now reinterpret Example 1.4.6
as a colimit of groups, not just of sets.)
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1.4.E. EXERCISE. Verify that the A-module described above is indeed the colimit.
(Make sure you verify that addition is well-defined, i.e., is independent of the
choice of representatives mi and mj, the choice of ℓ, and the choice of arrows u
and v. Similarly, make sure that scalar multiplication is well-defined.)

1.4.F. USEFUL EXERCISE (LOCALIZATION AS A COLIMIT). Generalize Exercise 1.4.C(a)
to interpret localization of an integral domain as a colimit over a filtered set: sup-
pose S is a multiplicative set of A, and interpret S−1A = lim−→ 1

s
A where the limit

is over s ∈ S, and in the category of A-modules. (Aside: Can you make some
version of this work even if A isn’t an integral domain, e.g., S−1A = lim−→As? This
will work in the category of A-algebras.)

A variant of this construction works without the filtered condition, if you have
another means of “connecting elements in different objects of your diagram”. For
example:

1.4.G. EXERCISE: COLIMITS OF A-MODULES WITHOUT THE FILTERED CONDITION.
Suppose you are given a diagram of A-modules indexed by I : F : I → ModA,
where we let Mi := F(i). Show that the colimit is ⊕i∈IMi modulo the relations
mi−F(n)(mi) for every n : i→ j in I (i.e., for every arrow in the diagram). (Some-
what more precisely: “modulo” means “quotiented by the submodule generated
by”.)

1.4.8. Summary. One useful thing to informally keep in mind is the following. In
a category where the objects are “set-like”, an element of a limit can be thought of
as a family of elements of each object in the diagram, that are “compatible” (Ex-
ercise 1.4.B). And an element of a colimit can be thought of (“has a representative
that is”) an element of a single object in the diagram (Exercise 1.4.D). Even though
the definitions of limit and colimit are the same, just with arrows reversed, these
interpretations are quite different.

1.4.9. Small remark. In fact, colimits exist in the category of sets for all reasonable
(“small”) index categories (see for example [E, Thm. A6.1]), but that won’t matter
to us.

1.5 Adjoints

We next come to a very useful notion closely related to universal properties.
Just as a universal property “essentially” (up to unique isomorphism) determines
an object in a category (assuming such an object exists), “adjoints” essentially de-
termine a functor (again, assuming it exists). Two covariant functors F : A → B
and G : B → A are adjoint if there is a natural bijection for all A ∈ A and B ∈ B

(1.5.0.1) τAB : MorB(F(A), B)→MorA (A,G(B)).

We say that (F,G) form an adjoint pair, and that F is left-adjoint to G (and G is
right-adjoint to F). We say F is a left adjoint (andG is a right adjoint). By “natural”
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we mean the following. For all f : A→ A ′ in A , we require

(1.5.0.2) MorB(F(A ′), B)
Ff∗ //

τA ′B

��

MorB(F(A), B)

τAB

��
MorA (A ′, G(B))

f∗ // MorA (A,G(B))

to commute, and for all g : B→ B ′ in B we want a similar commutative diagram to
commute. (Here f∗ is the map induced by f : A → A ′, and Ff∗ is the map induced
by Ff : F(A)→ F(A ′).)

1.5.A. EXERCISE. Write down what this diagram should be.

1.5.B. EXERCISE. Show that the map τAB (1.5.0.1) has the following properties.
For each A there is a map ηA : A → GF(A) so that for any g : F(A) → B, the corre-
sponding τAB(g) : A→ G(B) is given by the composition

A
ηA // GF(A)

Gg // G(B).

Similarly, there is a map ϵB : FG(B) → B for each B so that for any f : A → G(B),
the corresponding map τ−1AB(f) : F(A)→ B is given by the composition

F(A)
Ff // FG(B)

ϵB // B.

Here is a key example of an adjoint pair.

1.5.C. EXERCISE. Suppose M, N, and P are A-modules (where A is a ring). De-
scribe a bijection HomA(M⊗AN,P)↔ HomA(M,HomA(N,P)). (Hint: try to use
the universal property of ⊗.)

1.5.D. EXERCISE. Show that (·)⊗A N and HomA(N, ·) are adjoint functors.

1.5.E. EXERCISE. Suppose B → A is a morphism of rings. If M is an A-module,
you can create a B-module MB by considering it as a B-module. This gives a
functor ·B : ModA → ModB. Show that this functor is right-adjoint to · ⊗B A. In
other words, describe a bijection

HomA(N⊗B A,M) ∼= HomB(N,MB)

functorial in both arguments. (This adjoint pair is very important, and is the key
player in Chapter 16.)

1.5.1. ⋆ Fancier remarks we won’t use. You can check that the left adjoint deter-
mines the right adjoint up to natural isomorphism, and vice versa. The maps
ηA and ϵB of Exercise 1.5.B are called the unit and counit of the adjunction. This
leads to a different characterization of adjunction. Suppose functors F : A → B
and G : B → A are given, along with natural transformations η : idA → GF and
ϵ : FG → idB with the property that Gϵ ◦ ηG = idG (for each B ∈ B, the compo-
sition of ηG(B) : G(B) → GFG(B) and G(ϵB) : GFG(B) → G(B) is the identity) and
ϵF◦Fη = idF. Then you can check that F is left-adjoint toG. These facts aren’t hard
to check, so if you want to use them, you should verify everything for yourself.
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1.5.2. Examples from other fields. For those familiar with representation theory:
Frobenius reciprocity may be understood in terms of adjoints. Suppose V is a
finite-dimensional representation of a finite group G, andW is a representation of
a subgroupH < G. Then induction and restriction are an adjoint pair (IndGH,ResGH)
between the category of G-modules and the category of H-modules.

Topologists’ favorite adjoint pair may be the suspension functor and the loop
space functor.

1.5.3. Example: groupification of abelian semigroups. Here is another motivat-
ing example: getting an abelian group from an abelian semigroup. (An abelian
semigroup is just like an abelian group, except we don’t require an identity or an
inverse. Morphisms of abelian semigroups are maps of sets preserving the binary
operation. One example is the non-negative integers Z≥0 = {0, 1, 2, . . . } under ad-
dition. Another is the positive integers 1, 2, . . . under multiplication. You may
enjoy groupifying both.) From an abelian semigroup, you can create an abelian
group. In our examples, from the nonnegative (Z≥0,+), we create the integers Z,
and from the positive integers under multiplication (Z>0,×), we create the posi-
tive rationals Q>0. Here is a formalization of that notion. A groupification of a
semigroup S is a map of abelian semigroups π : S → G such that G is an abelian
group, and any map of abelian semigroups from S to an abelian group G ′ factors
uniquely through G:

S
π //

  @
@@

@@
@@

G

∃!
��
G ′

(Perhaps “abelian groupification” would be more precise than “groupification”.)

1.5.F. EXERCISE (AN ABELIAN GROUP IS GROUPIFIED BY ITSELF). Show that if an
abelian semigroup is already a group then the identity morphism is the groupifi-
cation. (More correct: the identity morphism is a groupification.) Note that you
don’t need to construct groupification (or even know that it exists in general) to
solve this exercise.

1.5.G. EXERCISE. Construct the “groupification functor” H from the category
of nonempty abelian semigroups to the category of abelian groups. (One possible
construction: given an abelian semigroup S, the elements of its groupificationH(S)
are ordered pairs (a, b) ∈ S× S, which you may think of as a− b, with the equiva-
lence that (a, b) ∼ (c, d) if a+d+e = b+c+e for some e ∈ S. Describe addition in
this group, and show that it satisfies the properties of an abelian group. Describe
the abelian semigroup map S → H(S).) Let F be the forgetful functor from the
category of abelian groups Ab to the category of abelian semigroups. Show that H
is left-adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category.
We want to “project” from the category to the subcategory. We have

Morcategory(S,H) = Morsubcategory(G,H)

automatically; thus we are describing the left adjoint to the forgetful functor. How
the argument worked: we constructed something which was in the smaller cate-
gory, which automatically satisfies the universal property.)
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1.5.H. EXERCISE (CF. EXERCISE 1.5.E). The purpose of this exercise is to give
you more practice with “adjoints of forgetful functors”, the means by which we
get groups from semigroups, and sheaves from presheaves. Suppose A is a ring,
and S is a multiplicative subset. Then S−1A-modules are a fully faithful subcate-
gory (§1.2.15) of the category ofA-modules (via the obvious inclusion ModS−1A ↪→
ModA). Then ModA → ModS−1A can be interpreted as an adjoint to the forgetful
functor ModS−1A →ModA. State and prove the correct statements.

(Here is the larger story. Every S−1A-module is an A-module, and this is an
injective map, so we have a covariant forgetful functor F : ModS−1A → ModA. In
fact this is a fully faithful functor: it is injective on objects, and the morphisms
between any two S−1A-modules asA-modules are just the same when they are con-
sidered as S−1A-modules. Then there is a functor G : ModA → ModS−1A, which
might reasonably be called “localization with respect to S”, which is left-adjoint
to the forgetful functor. Translation: If M is an A-module, and N is an S−1A-
module, then Mor(GM,N) (morphisms as S−1A-modules, which are the same as
morphisms as A-modules) are in natural bijection with Mor(M,FN) (morphisms
as A-modules).)

Here is a table of most of the adjoints that will come up for us.

situation category category left adjoint right adjoint
A B F : A → B G : B → A

A-modules (Ex. 1.5.D) ModA ModA (·)⊗A N HomA(N, ·)
ring maps (·)⊗B A M 7→MB

B→ A (Ex. 1.5.E) ModB ModA (extension (restriction
of scalars) of scalars)

(pre)sheaves on a presheaves sheaves
topological space on X on X sheafification forgetful
X (Ex. 2.4.L)
(semi)groups (§1.5.3) semigroups groups groupification forgetful
sheaves, sheaves sheaves π−1 π∗
π : X→ Y (Ex. 2.7.B) on Y on X
sheaves of abelian
groups or O-modules, sheaves sheaves π! π−1

open embeddings on U on Y
π : U ↪→ Y (Ex. 2.7.G)
quasicoherent sheaves, QCohY QCohX π∗ π∗
π : X→ Y (Prop. 16.3.6)
ring maps M 7→MB N 7→
B→ A (Ex. 30.3.A) ModA ModB (restriction HomB(A,N)

of scalars)
quasicoherent sheaves, QCohX QCohY
affine π : X→ Y π∗ π!sh
(Ex. 30.3.B(b))

Other examples will also come up, such as the adjoint pair (∼, Γ•) between
graded modules over a graded ring, and quasicoherent sheaves on the correspond-
ing projective scheme (§15.4).
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1.5.4. Useful comment for experts. One last comment only for people who have seen
adjoints before: If (F,G) is an adjoint pair of functors, then F commutes with col-
imits, and G commutes with limits. Also, limits commute with limits and colimits
commute with colimits. We will prove these facts (and a little more) in §1.6.12.

1.6 An introduction to abelian categories

Ton papier sur l’Algèbre homologique a été lu soigneusement, et a converti tout le
monde (même Dieudonné, qui semble complètement fonctorisé!) à ton point de vue.

Your paper on homological algebra was read carefully and converted everyone (even
Dieudonné, who seems to be completely functorised!) to your point of view.

— J.-P. Serre, letter to A. Grothendieck, Jul 13, 1955 [GrS, p. 17-18]

Since learning linear algebra, you have been familiar with the notions and
behaviors of kernels, cokernels, etc. Later in your life you saw them in the category
of abelian groups, and later still in the category of A-modules.

We will soon define some new categories (certain sheaves) that will have familiar-
looking behavior, reminiscent of that of modules over a ring. The notions of ker-
nels, cokernels, images, and more will make sense, and they will behave “the way
we expect” from our experience with modules. This can be made precise through
the notion of an abelian category. Abelian categories are the right general setting
in which one can do “homological algebra”, in which notions of kernel, cokernel,
and so on are used, and one can work with complexes and exact sequences.

We will see enough to motivate the definitions that we will see in general:
monomorphism (and subobject), epimorphism, kernel, cokernel, and image. But
in this book we will avoid having to show that they behave “the way we expect”
in a general abelian category because the examples we will see are directly inter-
pretable in terms of modules over rings. In particular, it is not worth memorizing
the definition of abelian category.

Two central examples of an abelian category are the category Ab of abelian
groups, and the category ModA of A-modules. The first is a special case of the
second (just take A = Z). As we give the definitions, you should verify that ModA
is an abelian category.

We first define the notion of additive category. We will use it only as a stepping
stone to the notion of an abelian category. Two examples you can keep in mind
while reading the definition: the category of free A-modules (where A is a ring),
and real (or complex) Banach spaces.

1.6.1. Definition. A category C is said to be additive if it satisfies the following
properties.

Ad1. For each A,B ∈ C , Mor(A,B) is an abelian group, such that composition
of morphisms distributes over addition. (You should think about what
this means — it translates to two distinct statements.)

Ad2. C has a zero object, denoted 0. (This is an object that is simultaneously
an initial object and a final object, Definition 1.3.2.)

Ad3. It has products of two objects (a product A × B for any pair of objects),
and hence by induction, products of any finite number of objects.
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In an additive category, the morphisms are often called homomorphisms, and
Mor is denoted by Hom. In fact, this notation Hom is a good indication that you’re
working in an additive category. A functor between additive categories preserving
the additive structure of Hom, is called an additive functor.

1.6.2. Remarks. It is a consequence of the definition of additive category that finite
direct products are also finite direct sums (coproducts) — the details don’t matter
to us. The symbol ⊕ is used for this notion. Also, it is quick to show that additive
functors send zero objects to zero objects (show that Z is a 0-object if and only if
idZ = 0Z; additive functors preserve both id and 0), and preserve products.

One motivation for the name 0-object is that the 0-morphism in the abelian
group Hom(A,B) is the composition A→ 0→ B. (We also remark that the notion
of 0-morphism thus makes sense in any category with a 0-object.)

The category of A-modules ModA is clearly an additive category, but it has
even more structure, which we now formalize as an example of an abelian cate-
gory.

1.6.3. Definition. Let C be a category with a 0-object (and thus 0-morphisms). A
kernel of a morphism f : B → C is a map i : A → B such that f ◦ i = 0, and that is
universal with respect to this property. Diagramatically:

Z

��?
??

??
??

?
0

''OO
OOO

OOO
OOO

OOO

∃!
��
A

i //

0

88B
f // C

(Note that the kernel is not just an object; it is a morphism of an object to B.) Hence
it is unique up to unique isomorphism by universal property nonsense. The kernel
is written ker f → B. A cokernel (denoted coker f) is defined dually by reversing
the arrows — do this yourself. The kernel of f : B → C is the limit (§1.4) of the
diagram

(1.6.3.1) 0

��
B

f // C

and similarly the cokernel is a colimit (see (2.6.0.1)).
If i : A→ B is a monomorphism, then we say thatA is a subobject of B, where

the map i is implicit. There is also the notion of quotient object, defined dually to
subobject.

An abelian category is an additive category satisfying three additional prop-
erties.

(1) Every map has a kernel and cokernel.
(2) Every monomorphism is the kernel of its cokernel.
(3) Every epimorphism is the cokernel of its kernel.

It is a nonobvious (and imprecisely stated) fact that every property you want
to be true about kernels, cokernels, etc. follows from these three. (Warning: in
part of the literature, additional hypotheses are imposed as part of the definition.)
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The image of a morphism f : A → B is defined as im(f) = ker(coker f) when-
ever it exists (e.g., in every abelian category). The morphism f : A → B factors
uniquely through im f → B whenever im f exists, and A → im f is an epimor-
phism and a cokernel of ker f → A in every abelian category. The reader may
want to verify this as a (hard!) exercise.

The cokernel of a monomorphism is called the quotient. The quotient of a
monomorphism A→ B is often denoted B/A (with the map from B implicit).

We will leave the foundations of abelian categories untouched. The key thing
to remember is that if you understand kernels, cokernels, images and so on in
the category of modules over a given ring, you can manipulate objects in any
abelian category. This is made precise by Freyd-Mitchell Embedding Theorem
(Remark 1.6.4).

However, the abelian categories we will come across will obviously be related
to modules, and our intuition will clearly carry over, so we needn’t invoke a the-
orem whose proof we haven’t read. For example, we will show that sheaves of
abelian groups on a topological space X form an abelian category (§2.6), and the
interpretation in terms of “compatible germs” will connect notions of kernels, cok-
ernels etc. of sheaves of abelian groups to the corresponding notions of abelian
groups.

1.6.4. Small remark on chasing diagrams. It is useful to prove facts (and solve ex-
ercises) about abelian categories by chasing elements. This can be justified by
the Freyd-Mitchell Embedding Theorem: If C is an abelian category such that
Hom(X, Y) is a set for all X, Y ∈ C , then there is a ringA and an exact, fully faithful
functor from C into ModA, which embeds C as a full subcategory. (Unfortunately,
the ring A need not be commutative.) A proof is sketched in [Weib, §1.6], and
references to a complete proof are given there. A proof is also given in [KS1, §9.7].
The upshot is that to prove something about a diagram in some abelian category,
we may assume that it is a diagram of modules over some ring, and we may then
“diagram-chase” elements. Moreover, any fact about kernels, cokernels, and so on
that holds in ModA holds in any abelian category.

If invoking a theorem whose proof you haven’t read bothers you, a short al-
ternative is Mac Lane’s “elementary rules for chasing diagrams”, [Mac, Thm. 3,
p. 200]; [Mac, Lem. 4, p. 201] gives a proof of the Five Lemma (Exercise 1.7.6) as an
example.

But in any case, do what you need to do to put your mind at ease, so you can
move forward. Do as little as your conscience will allow.

1.6.5. Complexes, exactness, and homology.
(In this entire discussion, we assume we are working in an abelian category.)

We say a sequence

(1.6.5.1) · · · // A
f // B

g // C // · · ·

is a complex at B if g ◦ f = 0, and is exact at B if kerg = im f. (More specifically,
g has a kernel that is an image of f. Exactness at B implies being a complex at B
— do you see why?) A sequence is a complex (resp. exact) if it is a complex (resp.
exact) at each (internal) term. A short exact sequence is an exact sequence with
five terms, the first and last of which are zeros — in other words, an exact sequence
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of the form
0 // A // B // C // 0.

For example, 0 // A // 0 is exact if and only if A = 0;

0 // A
f // B

is exact if and only if f is a monomorphism (with a similar statement for A f // B // 0 );

0 // A
f // B // 0

is exact if and only if f is an isomorphism; and

0 // A
f // B

g // C

is exact if and only if f is a kernel of g (with a similar statement for A f // B
g // C // 0 ).

To show some of these facts it may be helpful to prove that (1.6.5.1) is exact at B if
and only if the cokernel of f is a cokernel of the kernel of g.

If you would like practice in playing with these notions before thinking about
homology, you can prove the Snake Lemma (stated in Example 1.7.5, with a stronger
version in Exercise 1.7.B), or the Five Lemma (stated in Example 1.7.6, with a
stronger version in Exercise 1.7.C). (I would do this in the category of A-modules,
but see [KS1, Lem. 12.1.1, Lem. 8.3.13] for proofs in general.)

If (1.6.5.1) is a complex at B, then its homology at B (often denoted by H) is
kerg / im f. (More precisely, there is some monomorphism im f ↪→ kerg, and that
H is the cokernel of this monomorphism.) Therefore, (1.6.5.1) is exact at B if and
only if its homology at B is 0. We say that elements of kerg (assuming the ob-
jects of the category are sets with some additional structure) are the cycles, and
elements of im f are the boundaries (so homology is “cycles mod boundaries”). If
the complex is indexed in decreasing order, the indices are often written as sub-
scripts, and Hi is the homology at Ai+1 → Ai → Ai−1. If the complex is indexed
in increasing order, the indices are often written as superscripts, and the homology
Hi at Ai−1 → Ai → Ai+1 is often called cohomology.

An exact sequence

(1.6.5.2) A• : · · · // Ai−1
fi−1

// Ai
fi // Ai+1

fi+1

// · · ·

can be “factored” into short exact sequences

0 // ker fi // Ai // ker fi+1 // 0

which is helpful in proving facts about long exact sequences by reducing them to
facts about short exact sequences.

More generally, if (1.6.5.2) is assumed only to be a complex, then it can be
“factored” into short exact sequences.

(1.6.5.3) 0 // ker fi // Ai // im fi // 0

0 // im fi−1 // ker fi // Hi(A•) // 0
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1.6.A. EXERCISE. Describe exact sequences

(1.6.5.4) 0 // im fi // Ai+1 // coker fi // 0

0 // Hi(A•) // coker fi−1 // im fi // 0

(These are somehow dual to (1.6.5.3). In fact in some mirror universe this might
have been given as the standard definition of homology.) Assume the category is
that of modules over a fixed ring for convenience, but be aware that the result is
true for any abelian category.

1.6.B. EXERCISE AND IMPORTANT DEFINITION. Suppose

0
d0

// A1
d1

// · · · d
n−1

// An
dn

// // 0

is a complex of finite-dimensional k-vector spaces (often called A• for short). De-
fine hi(A•) := dimHi(A•). Show that

∑
(−1)i dimAi =

∑
(−1)ihi(A•). In par-

ticular, if A• is exact, then
∑

(−1)i dimAi = 0. (If you haven’t dealt much with
cohomology, this will give you some practice.)

1.6.C. IMPORTANT EXERCISE. Suppose C is an abelian category. Define the cate-
gory ComC of complexes as follows. The objects are infinite complexes

A• : · · · // Ai−1
fi−1

// Ai
fi // Ai+1

fi+1

// · · ·

in C , and the morphisms A• → B• are commuting diagrams

(1.6.5.5) · · · // Ai−1

��

fi−1

// Ai
fi //

��

Ai+1
fi+1

//

��

· · ·

· · · // Bi−1
gi−1

// Bi
gi

// Bi+1
gi+1

// · · ·

Show that ComC is an abelian category. Feel free to deal with the special case
of modules over a fixed ring. (Remark for experts: Essentially the same argument
shows that the C I is an abelian category for any small category I and any abelian
category C . This immediately implies that the category of presheaves on a topo-
logical space X with values in an abelian category C is automatically an abelian
category, cf. §2.3.5.)

1.6.D. IMPORTANT EXERCISE. Show that (1.6.5.5) induces a map of homology
Hi(A•) → Hi(B•). Show furthermore that Hi is a covariant functor ComC → C .
(Again, feel free to deal with the special case ModA.)

We will later define when two maps of complexes are homotopic (§23.1), and
show that homotopic maps induce the same map on cohomology (Exercise 23.1.A),
but we won’t need that any time soon.
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1.6.6. Theorem (Long exact sequence). — A short exact sequence of complexes

0•

��

: · · · // 0 //

��

0 //

��

0 //

��

· · ·

A•

��

: · · · // Ai−1

��

fi−1

// Ai
fi //

��

Ai+1
fi+1

//

��

· · ·

B•

��

: · · · // Bi−1

��

gi−1

// Bi
gi

//

��

Bi+1
gi+1

//

��

· · ·

C•

��

: · · · // Ci−1
hi−1

//

��

Ci
hi

//

��

Ci+1
hi+1

//

��

· · ·

0• : · · · // 0 // 0 // 0 // · · ·

induces a long exact sequence in cohomology

. . . // Hi−1(C•) //

Hi(A•) // Hi(B•) // Hi(C•) //

Hi+1(A•) // · · ·

(This requires a definition of the connecting homomorphism Hi−1(C•) →
Hi(A•), which is “natural” in an appropriate sense.) In the category of modules
over a ring, Theorem 1.6.6 will come out of our discussion of spectral sequences,
see Exercise 1.7.F, but this is a somewhat perverse way of proving it. For a proof
in general, see [KS1, Theorem 12.3.3]. You may want to prove it yourself, by first
proving a weaker version of the Snake Lemma (Example 1.7.5), where in the hy-
potheses (1.7.5.1), the 0’s in the bottom left and top right are removed, and in the
conclusion (1.7.5.2), the first and last 0’s are removed.

1.6.7. Exactness of functors. If F : A → B is a covariant additive functor from one
abelian category to another, we say that F is right-exact if the exactness of

A ′ // A // A ′′ // 0,

in A implies that

F(A ′) // F(A) // F(A ′′) // 0

is also exact. Dually, we say that F is left-exact if the exactness of

0 // A ′ // A // A ′′ implies

0 // F(A ′) // F(A) // F(A ′′) is exact.
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A contravariant functor is left-exact if the exactness of

A ′ // A // A ′′ // 0 implies

0 // F(A ′′) // F(A) // F(A ′) is exact.

The reader should be able to deduce what it means for a contravariant functor to
be right-exact.

A covariant or contravariant functor is exact if it is both left-exact and right-
exact.

1.6.E. EXERCISE. Suppose F is an exact functor. Show that applying F to an exact se-
quence preserves exactness. For example, if F is covariant, andA ′ → A→ A ′′ is ex-
act, then FA ′ → FA→ FA ′′ is exact. (This will be generalized in Exercise 1.6.H(c).)

1.6.F. EXERCISE. Suppose A is a ring, S ⊂ A is a multiplicative subset, and M is
an A-module.
(a) Show that localization of A-modules ModA → ModS−1A is an exact covariant
functor.
(b) Show that (·)⊗AM is a right-exact covariant functor ModA →ModA. (This is a
repeat of Exercise 1.3.H.)
(c) Show that Hom(M, ·) is a left-exact covariant functor ModA → ModA. If C is
any abelian category, and C ∈ C , show that Hom(C, ·) is a left-exact covariant
functor C → Ab.
(d) Show that Hom(·,M) is a left-exact contravariant functor ModA →ModA. If C
is any abelian category, and C ∈ C , show that Hom(·, C) is a left-exact contravari-
ant functor C → Ab.

1.6.G. EXERCISE. Suppose M is a finitely presented A-module: M has a finite
number of generators, and with these generators it has a finite number of relations;
or usefully equivalently, fits in an exact sequence

(1.6.7.1) A⊕q → A⊕p →M→ 0

Use (1.6.7.1) and the left-exactness of Hom to describe an isomorphism

S−1HomA(M,N) ∼= HomS−1A(S
−1M,S−1N).

(You might be able to interpret this in light of a variant of Exercise 1.6.H below, for
left-exact contravariant functors rather than right-exact covariant functors.)

1.6.8. Example: Hom doesn’t always commute with localization. In the language of
Exercise 1.6.G, take A = N = Z,M = Q, and S = Z \ {0}.

1.6.9. ⋆ Two useful facts in homological algebra.
We now come to two (sets of) facts I wish I had learned as a child, as they

would have saved me lots of grief. They encapsulate what is best and worst of
abstract nonsense. The statements are so general as to be nonintuitive. The proofs
are very short. They generalize some specific behavior it is easy to prove on an
ad hoc basis. Once they are second nature to you, many subtle facts will become
obvious to you as special cases. And you will see that they will get used (implicitly
or explicitly) repeatedly.
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1.6.10. ⋆ Interaction of homology and (right/left-)exact functors.
You might wait to prove this until you learn about cohomology in Chapter 18,

when it will first be used in a serious way.

1.6.H. IMPORTANT EXERCISE (THE FHHF THEOREM). This result can take you
far, and perhaps for that reason it has sometimes been called the Fernbahnhof
(FernbaHnHoF) Theorem, notably in [Vak, Exer. 1.6.H]. Suppose F : A → B is a
covariant functor of abelian categories, and C• is a complex in A .

(a) (F right-exact yields FH• // H•F ) If F is right-exact, describe a natu-
ral morphism FH• → H•F. (More precisely, for each i, the left side is F
applied to the cohomology at piece i of C•, while the right side is the
cohomology at piece i of FC•.)

(b) (F left-exact yields FH• H•Foo ) If F is left-exact, describe a natural mor-
phism H•F→ FH•.

(c) (F exact yields FH• oo ∼ // H•F ) If F is exact, show that the morphisms of
(a) and (b) are inverses and thus isomorphisms.

Hint for (a): use Ci
di

// Ci+1 // cokerdi // 0 to give an isomorphism
F cokerdi ∼= coker Fdi. Then use the first line of (1.6.5.4) to give a epimorphism
F imdi // // im Fdi . Then use the second line of (1.6.5.4) to give the desired map

FHiC• // HiFC• . While you are at it, you may as well describe a map for the

fourth member of the quartet {coker, im, H, ker}: Fkerdi // ker Fdi .

1.6.11. If this makes your head spin, you may prefer to think of it in the following
specific case, where both A and B are the category of A-modules, and F is (·)⊗N
for some fixedN-module. Your argument in this case will translate without change
to yield a solution to Exercise 1.6.H(a) and (c) in general. If ⊗N is exact, then N is
called a flat A-module. (The notion of flatness will turn out to be very important,
and is discussed in detail in Chapter 24.)

For example, localization is exact (Exercise 1.6.F(a)), so S−1A is a flatA-algebra
for all multiplicative sets S. Thus taking cohomology of a complex of A-modules
commutes with localization — something you could verify directly.

1.6.12. Interaction of adjoints, (co)limits, and (left- and right-) exactness.
A surprising number of arguments boil down to the statement:
Limits commute with limits and right adjoints. In particular, in an abelian category,

because kernels are limits, both right adjoints and limits are left-exact.
as well as its dual:
Colimits commute with colimits and left adjoints. In particular, because cokernels are

colimits, both left adjoints and colimits are right-exact.
These statements were promised in §1.5.4, and will be proved below. The latter

has a useful extension:
In ModA, colimits over filtered index categories are exact. “Filtered” was defined

in §1.4.7.

1.6.13. ⋆⋆ Caution. It is not true that in abelian categories in general, colimits
over filtered index categories are exact. (Grothendieck realized the desirability of
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such colimits being exact, and formalized this as his “AB5” axiom, see for exam-
ple [Stacks, tag 079A].) Here is a counterexample. Because the axioms of abelian
categories are self-dual, it suffices to give an example in which a filtered limit fails
to be exact, and we do this. Fix a prime p. In the category Ab of abelian groups,
for each positive integer n, we have an exact sequence Z → Z/(pn) → 0. Taking
the limit over all n in the obvious way, we obtain Z → Zp → 0, which is certainly
not exact.)

See Unimportant Remark 1.6.16 for another dashed hope.

1.6.14. If you want to use these statements (for example, later in this book), you
will have to prove them. Let’s now make them precise.

1.6.I. EXERCISE (KERNELS COMMUTE WITH LIMITS). Suppose C is an abelian
category, and a : I → C and b : I → C are two diagrams in C indexed by I .
For convenience, let Ai = a(i) and Bi = b(i) be the objects in those two diagrams.
Let hi : Ai → Bi be maps commuting with the maps in the diagram. (Translation:
h is a natural transformation of functors a → b, see §1.2.21.) Then the kerhi
form another diagram in C indexed by I . Describe a canonical isomorphism
lim←−kerhi ∼= ker(lim←−Ai → lim←−Bi), assuming the limits exist.

Implicit in the previous exercise is the idea that limits should somehow be
understood as functors.

1.6.J. EXERCISE. Make sense of the statement that “limits commute with limits” in
a general category, and prove it. (Hint: recall that kernels are limits. The previous
exercise should be a corollary of this one.)

1.6.15. Proposition (right adjoints commute with limits). — Suppose (F : C →
D , G : D → C ) is a pair of adjoint functors. If A = lim←−Ai is a limit in D of a diagram
indexed by I , then GA = lim←−GAi (with the corresponding maps GA→ GAi) is a limit
in C .

Proof. We must show that GA → GAi satisfies the universal property of limits.
Suppose we have maps W → GAi commuting with the maps of I . We wish to
show that there exists a uniqueW → GA extending theW → GAi. By adjointness
of F and G, we can restate this as: Suppose we have maps FW → Ai commuting
with the maps of I . We wish to show that there exists a unique FW → A extending
the FW → Ai. But this is precisely the universal property of the limit. □

Of course, the dual statements to Exercise 1.6.J and Proposition 1.6.15 hold by
the dual arguments.

If F and G are additive functors between abelian categories, and (F,G) is an
adjoint pair, then (as kernels are limits and cokernels are colimits) G is left-exact
and F is right-exact.

1.6.K. EXERCISE. Show that in ModA, colimits over filtered index categories are
exact. (Your argument will apply without change to any abelian category whose
objects can be interpreted as “sets with additional structure”.) Right-exactness
follows from the above discussion, so the issue is left-exactness. (Possible hint:
After you show that localization is exact, Exercise 1.6.F(a), or stalkification is exact,
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Exercise 2.6.D, in a hands-on way, you will be easily able to prove this. Conversely,
if you do this exercise, those two will be easy.)

1.6.L. EXERCISE. Show that filtered colimits commute with homology in ModA.
Hint: use the FHHF Theorem (Exercise 1.6.H), and the previous Exercise.

In light of Exercise 1.6.L, you may want to think about how limits (and colim-
its) commute with homology in general, and which way maps go. The statement
of the FHHF Theorem should suggest the answer. (Are limits analogous to left-
exact functors, or right-exact functors?) We won’t directly use this insight.

Just as colimits are exact (not just right-exact) in especially good circumstances,
limits are exact (not just left-exact) too. The following will be used twice in Chap-
ter 29.

1.6.M. EXERCISE. Suppose

...

��

...

��

...

��
0 // An+1 //

��

Bn+1 //

��

Cn+1 //

��

0

0 // An //

��

Bn //

��

Cn //

��

0

...

��

...

��

...

��
0 // A0 //

��

B0 //

��

C0 //

��

0

0 0 0

is an inverse system of exact sequences of modules over a ring, such that the maps
An+1 → An are surjective. (We say: “transition maps of the left term are surjec-
tive”.) Show that the limit

(1.6.15.1) 0 // lim←−An // lim←−Bn // lim←−Cn // 0

is also exact. (You will need to define the maps in (1.6.15.1).)

1.6.16. Unimportant Remark. Based on these ideas, you may suspect that right-
exact functors always commute with colimits. The fact that tensor product com-
mutes with infinite direct sums (Exercise 1.3.M) may reinforce this idea. Unfortu-
nately, it is not true — “double dual” ·∨∨ : Veck → Veck is covariant and right
exact (why is it right-exact?), but does not commute with infinite direct sums, as
⊕∞i=1(k∨∨) is not isomorphic to (⊕∞i=1k)∨∨.
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1.6.17. ⋆ Dreaming of derived functors. When you see a left-exact functor, you
should always dream that you are seeing the end of a long exact sequence. If

0→M ′ →M→M ′′ → 0

is an exact sequence in abelian category A , and F : A → B is a left-exact functor,
then

0→ FM ′ → FM→ FM ′′

is exact, and you should always dream that it should continue in some natural
way. For example, the next term should depend only onM ′, call it R1FM ′, and if it
is zero, then FM→ FM ′′ is an epimorphism. This remark holds true for left-exact
and contravariant functors too. In good cases, such a continuation exists, and is
incredibly useful. We will discuss this in Chapter 23.

1.7 ⋆ Spectral sequences

Je suis quelque peu affolé par ce déluge de cohomologie, mais j’ai courageusement tenu
le coup. Ta suite spectrale me paraı̂t raisonnable (je croyais, sur un cas particulier, l’avoir
mise en défaut, mais je m’étais trompé, et cela marche au contraire admirablement bien).

I am a bit panic-stricken by this flood of cohomology, but have borne up courageously.
Your spectral sequence seems reasonable to me (I thought I had shown that it was wrong
in a special case, but I was mistaken, on the contrary it works remarkably well).

— J.-P. Serre, letter to A. Grothendieck, March 14, 1956 [GrS, p. 38]

Spectral sequences are a powerful book-keeping tool for proving things in-
volving complicated commutative diagrams. They were introduced by Leray in
the 1940’s at the same time as he introduced sheaves. They have a reputation for
being abstruse and difficult. It has been suggested that the name ‘spectral’ was
given because, like spectres, spectral sequences are terrifying, evil, and danger-
ous. I have heard no one disagree with this interpretation, which is perhaps not
surprising since I just made it up.

Nonetheless, the goal of this section is to tell you enough that you can use
spectral sequences without hesitation or fear, and why you shouldn’t be frightened
when they come up in a seminar. What is perhaps different in this presentation is
that we will use spectral sequences to prove things that you may have already seen,
and that you can prove easily in other ways. This will allow you to get some hands-
on experience for how to use them. We will also see them only in the special case of
double complexes (the version by far the most often used in algebraic geometry),
and not in the general form usually presented (filtered complexes, exact couples,
etc.). See [Weib, Ch. 5] for more detailed information if you wish.

You should not read this section when you are reading the rest of Chapter 1.
Instead, you should read it just before you need it for the first time. When you
finally do read this section, you must do the exercises up to Exercise 1.7.F.

For concreteness, we work in the category ModA of module over a ring A.
However, everything we say will apply in any abelian category. (And if it helps
you feel secure, work instead in the category Veck of vector spaces over a field k.)

1.7.1. Double complexes.
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A double complex is a collection of A-modules Ep,q (p, q ∈ Z), and “right-
ward” morphisms dp,q→ : Ep,q → Ep+1,q and “upward” morphisms dp,q↑ : Ep,q →
Ep,q+1. In the superscript, the first entry denotes the column number (the “x-
coordinate”), and the second entry denotes the row number (the “y-coordinate”).
(Warning: this is opposite to the convention for matrices.) The subscript is meant
to suggest the direction of the arrows. We will always write these as d→ and d↑
and ignore the superscripts. We require that d→ and d↑ satisfy (a) d2→ = 0, (b)
d2↑ = 0, and one more condition: (c) either d→d↑ = d↑d→ (all the squares com-
mute) or d→d↑ + d↑d→ = 0 (they all anticommute). Both come up in nature, and
you can switch from one to the other by replacing dp,q↑ with (−1)pdp,q↑ . So I will
assume that all the squares anticommute, but that you know how to turn the com-
muting case into this one. (You will see that there is no difference in the recipe,
basically because the image and kernel of a homomorphism f equal the image and
kernel respectively of −f.)

Ep,q+1
dp,q+1→ // Ep+1,q+1

anticommutes

Ep,q

d
p,q↑

OO

dp,q→ // Ep+1,q

d
p+1,q↑

OO

There are variations on this definition, where for example the vertical arrows
go downwards, or some subset of the Ep,q is required to be zero, but I will leave
these straightforward variations to you.

From the double complex we construct a corresponding (single) complex E•

with Ek = ⊕iEi,k−i, with d = d→ + d↑. In other words, when there is a single
superscript k, we mean a sum of the kth antidiagonal of the double complex. The
single complex is sometimes called the total complex. Note that d2 = (d→+d↑)2 =
d2→ + (d→d↑ + d↑d→) + d2↑ = 0, so E• is indeed a complex.

The cohomology of the single complex is sometimes called the hypercoho-
mology of the double complex. We will instead use the phrase “cohomology of
the double complex”.

Our initial goal will be to find the cohomology of the double complex. You
will see later that we secretly also have other goals.

A spectral sequence is a recipe for computing some information about the
cohomology of the double complex. I won’t yet give the full recipe. Surprisingly,
this fragmentary bit of information is sufficent to prove lots of things.

1.7.2. Approximate Definition. A spectral sequence with rightward orientation
is a sequence of tables or pages→Ep,q0 ,→Ep,q1 ,→Ep,q2 , . . . (p, q ∈ Z), where→Ep,q0 =
Ep,q, along with a differential

→dp,qr : →Ep,qr → →Ep−r+1,q+rr

with →dp,qr ◦ →dp+r−1,q−rr = 0, and with an isomorphism of the cohomology of
→dr at →Ep,qr (i.e., ker→dp,qr / im→dp+r−1,q−rr ) with →Ep,qr+1.

The orientation indicates that our 0th differential is the rightward one: d0 =
d→. The left subscript “→” is usually omitted.
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The order of the morphisms is best understood visually:

(1.7.2.1) •

•

•

•
d0

//

d1

OOd2//////

WW//////d3

ZZ55555555555555555555555
•

(the morphisms each apply to different pages). Notice that the map always is
“degree 1” in terms of the grading of the single complex E•. (You should figure
out what this informal statement really means.)

The actual definition describes what E•,•r and d•,•r really are, in terms of E•,•.
We will describe d0, d1, and d2 below, and you should for now take on faith that
this sequence continues in some natural way.

Note that Ep,qr is always a subquotient of the corresponding term on the ith
page Ep,qi for all i < r. In particular, if Ep,q = 0, then Ep,qr = 0 for all r.

Suppose now that E•,• is a first quadrant double complex, i.e., Ep,q = 0 for
p < 0 or q < 0 (so Ep,qr = 0 for all r unless p, q ∈ Z≥0). Then for any fixed p, q,
once r is sufficiently large, Ep,qr+1 is computed from (E•,•r , dr) using the complex

0

E
p,q
r

dp,q
r

YY3333333333333

0

dp+r−1,q−r
r

YY3333333333333

and thus we have canonical isomorphisms

Ep,qr
∼= E

p,q
r+1

∼= E
p,q
r+2

∼= · · · .

We denote this module Ep,q∞ . The same idea works in other circumstances, for
example if the double complex is only nonzero in a finite number of rows — Ep,q =
0 unless q0 < q < q1. This will come up for example in the mapping cone and
long exact sequence discussion (Exercises 1.7.F and 1.7.E below).

We now describe the first few pages of the spectral sequence explicitly. As
stated above, the differential d0 on E•,•0 = E•,• is defined to be d→. The rows are
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complexes:
• // • // •

The 0th page E0: • // • // •

• // • // •
and so E1 is just the table of cohomologies of the rows. You should check that
there are now vertical maps dp,q1 : Ep,q1 → E

p,q+1
1 of the row cohomology groups,

induced by d↑, and that these make the columns into complexes. (This is essen-
tially the fact that a map of complexes induces a map on homology.) We have
“used up the horizontal morphisms”, but “the vertical differentials live on”.

• • •

The 1st page E1: •

OO

•

OO

•

OO

•

OO

•

OO

•

OO

We take cohomology of d1 on E1, giving us a new table, Ep,q2 . It turns out that
there are natural morphisms from each entry to the entry two above and one to the
left, and that the composition of these two is 0. (It is a very worthwhile exercise
to work out how this natural morphism d2 should be defined. Your argument
may be reminiscent of the connecting homomorphism in the Snake Lemma 1.7.5
or in the long exact sequence in cohomology arising from a short exact sequence
of complexes, Exercise 1.6.C. This is no coincidence.)

• • •

The 2nd page E2: • • •

• •

WW...............
•

WW...............

This is the beginning of a pattern.
Then it is a theorem that there is a filtration ofHk(E•) by Ep,q∞ where p+q = k.

(We can’t yet state it as an official Theorem because we haven’t precisely defined
the pages and differentials in the spectral sequence.) More precisely, there is a
filtration

(1.7.2.2) E0,k∞ � �E
1,k−1∞ // ?

� �E
2,k−2∞ // · · · � � E

k,0∞ // Hk(E•)

where the quotients are displayed above each inclusion. (Here is a tip for remem-
ber which way the quotients are supposed to go. The differentials on later and later
pages point deeper and deeper into the filtration. Thus the entries in the direction
of the later arrowheads are the subobjects, and the entries in the direction of the



November 18, 2017 draft 61

later “arrowtails” are quotients. This tip has the advantage of being independent
of the details of the spectral sequence, e.g., the “quadrant” or the orientation.)

We say that the spectral sequence →E•,•• converges to H•(E•). We often say
that →E•,•2 (or any other page) abuts to H•(E•).

Although the filtration gives only partial information about H•(E•), some-
times one can find H•(E•) precisely. One example is if all Ei,k−i∞ are zero, or if
all but one of them are zero (e.g., if E•,•r has precisely one nonzero row or col-
umn, in which case one says that the spectral sequence collapses at the rth step,
although we will not use this term). Another example is in the category of vector
spaces over a field, in which case we can find the dimension of Hk(E•). Also, in
lucky circumstances, E2 (or some other small page) already equals E∞.

1.7.A. EXERCISE: INFORMATION FROM THE SECOND PAGE. Show that H0(E•) =
E0,0∞ = E0,02 and

0 // E0,12 // H1(E•) // E1,02
d1,0

2 // E0,22 // H2(E•)

is exact.

1.7.3. The other orientation.
You may have observed that we could as well have done everything in the

opposite direction, i.e., reversing the roles of horizontal and vertical morphisms.
Then the sequences of arrows giving the spectral sequence would look like this
(compare to (1.7.2.1)).

(1.7.3.1) •

•

OO

//

''OO
OOO

OOO
OOO

OOO

%%J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ •

•

•

This spectral sequence is denoted ↑E•,•• (“with the upward orientation”). Then
we would again get pieces of a filtration of H•(E•) (where we have to be a bit
careful with the order with which ↑Ep,q∞ corresponds to the subquotients — it in
the opposite order to that of (1.7.2.2) for →Ep,q∞ ). Warning: in general there is no
isomorphism between →Ep,q∞ and ↑Ep,q∞ .

In fact, this observation that we can start with either the horizontal or vertical
maps was our secret goal all along. Both algorithms compute information about
the same thing (H•(E•)), and usually we don’t care about the final answer — we
often care about the answer we get in one way, and we get at it by doing the
spectral sequence in the other way.

1.7.4. Examples.
We are now ready to see how this is useful. The moral of these examples is

the following. In the past, you may have proved various facts involving various
sorts of diagrams, by chasing elements around. Now, you will just plug them into
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a spectral sequence, and let the spectral sequence machinery do your chasing for
you.

1.7.5. Example: Proving the Snake Lemma. Consider the diagram

(1.7.5.1) 0 // D // E // F // 0

0 // A //

α

OO

B //

β

OO

C

γ

OO

// 0

where the rows are exact in the middle (at A, B, C, D, E, F) and the squares com-
mute. (Normally the Snake Lemma is described with the vertical arrows pointing
downwards, but I want to fit this into my spectral sequence conventions.) We wish
to show that there is an exact sequence

(1.7.5.2) 0→ kerα→ kerβ→ kerγ→ cokerα→ cokerβ→ cokerγ→ 0.

We plug this into our spectral sequence machinery. We first compute the co-
homology using the rightward orientation, i.e., using the order (1.7.2.1). Then be-
cause the rows are exact, Ep,q1 = 0, so the spectral sequence has already converged:
Ep,q∞ = 0.

We next compute this “0” in another way, by computing the spectral sequence
using the upward orientation. Then ↑E•,•1 (with its differentials) is:

0 // cokerα // cokerβ // cokerγ // 0

0 // kerα // kerβ // kerγ // 0.

Then ↑E•,•2 is of the form:

0

''NN
NNN

NNN
NNN

NNN 0

''OO
OOO

OOO
OOO

OOO

0

''OO
OOO

OOO
OOO

OOO ??

''NN
NNN

NNN
NNN

NNN
?

''OO
OOO

OOO
OOO

OOO ? 0

0 ? ?

''OO
OOO

OOO
OOO

OOO ??

''NN
NNN

NNN
NNN

NNN
0

0 0

We see that after ↑E2, all the terms will stabilize except for the double question
marks — all maps to and from the single question marks are to and from 0-entries.
And after ↑E3, even these two double-question-mark terms will stabilize. But in
the end our complex must be the 0 complex. This means that in ↑E2, all the entries
must be zero, except for the two double question marks, and these two must be
isomorphic. This means that 0→ kerα→ kerβ→ kerγ and cokerα→ cokerβ→
cokerγ → 0 are both exact (that comes from the vanishing of the single question
marks), and

coker(kerβ→ kerγ) ∼= ker(cokerα→ cokerβ)
is an isomorphism (that comes from the equality of the double question marks).
Taken together, we have proved the exactness of (1.7.5.2), and hence the Snake
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Lemma! (Notice: in the end we didn’t really care about the double complex. We
just used it as a prop to prove the Snake Lemma.)

Spectral sequences make it easy to see how to generalize results further. For
example, ifA→ B is no longer assumed to be injective, how would the conclusion
change?

1.7.B. UNIMPORTANT EXERCISE (GRAFTING EXACT SEQUENCES, A WEAKER VER-
SION OF THE SNAKE LEMMA). Extend the Snake Lemma as follows. Suppose we
have a commuting diagram

0 // X ′ // Y ′ // Z ′ // A ′ // · · ·

· · · // W //

OO

X //

a

OO

Y //

b

OO

Z //

c

OO

0.

OO

where the top and bottom rows are exact. Show that the top and bottom rows can
be “grafted together” to an exact sequence

· · · // W // kera // kerb // ker c

// cokera // cokerb // coker c // A ′ // · · · .

1.7.6. Example: the Five Lemma. Suppose

(1.7.6.1) F // G // H // I // J

A //

α

OO

B //

β

OO

C

γ

OO

// D //

δ

OO

E

ϵ

OO

where the rows are exact and the squares commute.
Suppose α, β, δ, ϵ are isomorphisms. We will show that γ is an isomorphism.
We first compute the cohomology of the total complex using the rightward

orientation (1.7.2.1). We choose this because we see that we will get lots of zeros.
Then →E•,•1 looks like this:

? 0 0 0 ?

?

OO

0

OO

0

OO

0

OO

?

OO

Then→E2 looks similar, and the sequence will converge by E2, as we will never get
any arrows between two nonzero entries in a table thereafter. We can’t conclude
that the cohomology of the total complex vanishes, but we can note that it van-
ishes in all but four degrees — and most important, it vanishes in the two degrees
corresponding to the entries C and H (the source and target of γ).

We next compute this using the upward orientation (1.7.3.1). Then ↑E1 looks
like this:

0 // 0 // ? // 0 // 0

0 // 0 // ? // 0 // 0
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and the spectral sequence converges at this step. We wish to show that those two
question marks are zero. But they are precisely the cohomology groups of the total
complex that we just showed were zero — so we are done!

The best way to become comfortable with this sort of argument is to try it out
yourself several times, and realize that it really is easy. So you should do the fol-
lowing exercises! Many can readily be done directly, but you should deliberately
try to use this spectral sequence machinery in order to get practice and develop
confidence.

1.7.C. EXERCISE: A SUBTLER FIVE LEMMA. By looking at the spectral sequence
proof of the Five Lemma above, prove a subtler version of the Five Lemma, where
one of the isomorphisms can instead just be required to be an injection, and an-
other can instead just be required to be a surjection. (I am deliberately not telling
you which ones, so you can see how the spectral sequence is telling you how to
improve the result.)

1.7.D. EXERCISE: ANOTHER SUBTLE VERSION OF THE FIVE LEMMA. If β and δ (in
(1.7.6.1)) are injective, and α is surjective, show that γ is injective. Give the dual
statement (whose proof is of course essentially the same).

The next two exercises no longer involve first quadrant double complexes.
You will have to think a little to realize why there is no reason for confusion or
alarm.

1.7.E. EXERCISE (THE MAPPING CONE). Suppose µ : A• → B• is a morphism of
complexes. Suppose C• is the single complex associated to the double complex
A• → B•. (C• is called the mapping cone of µ.) Show that there is a long exact
sequence of complexes:

· · ·→ Hi−1(C•)→ Hi(A•)→ Hi(B•)→ Hi(C•)→ Hi+1(A•)→ · · · .

(There is a slight notational ambiguity here; depending on how you index your
double complex, your long exact sequence might look slightly different.) In partic-
ular, we will use the fact that µ induces an isomorphism on cohomology if and only
if the mapping cone is exact. (We won’t use it until the proof of Theorem 18.2.4.)

1.7.F. EXERCISE. Use spectral sequences to show that a short exact sequence of
complexes gives a long exact sequence in cohomology (Exercise 1.6.C). (This is a
generalization of Exercise 1.7.E.)

The Grothendieck composition-of-functors spectral sequence (Theorem 23.3.5)
will be an important example of a spectral sequence that specializes in a number
of useful ways.

You are now ready to go out into the world and use spectral sequences to your
heart’s content!

1.7.7. ⋆⋆ Complete definition of the spectral sequence, and proof.
You should most definitely not read this section any time soon after reading

the introduction to spectral sequences above. Instead, flip quickly through it to
convince yourself that nothing fancy is involved.
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1.7.8. Remark: Spectral sequences are actually spectral functors. It is useful to notice
that the proof implies that spectral sequences are functorial in the 0th page: the
spectral sequence formalism has good functorial properties in the double complex.
Unfortunately the terminology “spectral functor” that Grothendieck used in [Gr1,
§2.4] did not catch on.

1.7.9. Goals. We consider the rightward orientation. The upward orientation is of
course a trivial variation of this. We wish to describe the pages and differentials of
the spectral sequence explicitly, and prove that they behave the way we said they
did. More precisely, we wish to:

(a) describe Ep,qr (and verify that Ep,q0 is indeed Ep,q),
(b) verify that Hk(E•) is filtered by Ep,k−p∞ as in (1.7.2.2),
(c) describe dr and verify that d2r = 0, and
(d) verify that Ep,qr+1 is given by cohomology using dr.

Before tackling these goals, you can impress your friends by giving this short
description of the pages and differentials of the spectral sequence. We say that
an element of E•,• is a (p, q)-strip if it is an element of ⊕l≥0Ep−l,q+l (see Fig. 1.1).
Its nonzero entries lie on an “upper-leftwards” semi-infinite antidiagonal starting
with position (p, q). We say that the (p, q)-entry (the projection to Ep,q) is the
leading term of the (p, q)-strip. Let Sp,q ⊂ E•,• be the submodule of all the (p, q)-
strips. Clearly Sp,q ⊂ Ep+q, and Sk,0 = Ek.

. . . 0 0 0 0

0 ∗p−2,q+2 0 0 0

0 0 ∗p−1,q+1 0 0

0 0 0 ∗p,q 0

0 0 0 0 0p+1,q−1

FIGURE 1.1. A (p, q)-strip (in Sp,q ⊂ Ep+q). Clearly Sk,0 = Ek.

Note that the differential d = d↑+d→ sends a (p, q)-strip x to a (p+ 1, q)-strip
dx. If dx is furthermore a (p−r+1, q+r)-strip (r ∈ Z≥0), we say that x is an r-closed
(p, q)-strip — “the differential knocks x at least r terms deeper into the filtration”.
We denote the set of r-closed (p, q)-strips Sp,qr (so for example Sp,q0 = Sp,q, and
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Sk,00 = Ek). An element of Sp,qr may be depicted as:

. . . // ?

∗p−2,q+2

OO

// 0

∗p−1,q+1

OO

// 0

∗p,q //

OO

0

1.7.10. Preliminary definition of Ep,qr . We are now ready to give a first definition of
E
p,q
r , which by construction should be a subquotient of Ep,q = E

p,q
0 . We describe

it as such by describing two submodules Yp,qr ⊂ Xp,qr ⊂ Ep,q, and defining Ep,qr =
X
p,q
r /Y

p,q
r . Let Xp,qr be those elements of Ep,q that are the leading terms of r-closed

(p, q)-strips. Note that by definition, d sends (r−1)-closed (p+(r−1)−1, q−(r−1))-
strips to (p, q)-strips. Let Yp,qr be the leading ((p, q))-terms of the differential d of
(r−1)-closed (p+(r−1)−1, q−(r−1))-strips (where the differential is considered
as a (p, q)-strip).

1.7.G. EXERCISE (REALITY CHECK). Verify that Ep,q0 is (canonically isomorphic to)
Ep,q.

We next give the definition of the differential dr of such an element x ∈ Xp,qr .
We take any r-closed (p, q)-strip with leading term x. Its differential d is a (p− r+
1, q + r)-strip, and we take its leading term. The choice of the r-closed (p, q)-strip
means that this is not a well-defined element of Ep,q. But it is well-defined modulo
the differentials of the (r − 1)-closed (p − 1, q + 1)-strips, and hence gives a map
E
p,q
r → E

p−r+1,q+r
r .

This definition is fairly short, but not much fun to work with, so we will forget
it, and instead dive into a snakes’ nest of subscripts and superscripts.

We begin with making some quick but important observations about (p, q)-
strips.

1.7.H. EXERCISE (NOT HARD). Verify the following.

(a) Sp,q = Sp−1,q+1 ⊕ Ep,q.
(b) (Any closed (p, q)-strip is r-closed for all r.) Any element x of Sp,q = S

p,q
0

that is a cycle (i.e., dx = 0) is automatically in Sp,qr for all r. For example,
this holds when x is a boundary (i.e., of the form dy).

(c) Show that for fixed p, q,

S
p,q
0 ⊃ Sp,q1 ⊃ · · · ⊃ Sp,qr ⊃ · · ·

stabilizes for r ≫ 0 (i.e., Sp,qr = S
p,q
r+1 = · · · ). Denote the stabilized mod-

ule Sp,q∞ . Show Sp,q∞ is the set of closed (p, q)-strips (those (p, q)-strips
annihilated by d, i.e., the cycles). In particular, Sk,0∞ is the set of cycles in
Ek.
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1.7.11. Defining Ep,qr .
Define Xp,qr := Sp,qr /S

p−1,q+1
r−1 and

Yp,qr :=
(
dS
p+(r−1)−1,q−(r−1)
r−1 + Sp−1,q+1r−1

)
/S
p−1,q+1
r−1 .

Then Yp,qr ⊂ Xp,qr by Exercise 1.7.H(b). We define

(1.7.11.1) Ep,qr =
X
p,q
r

Y
p,q
r

=
S
p,q
r

dS
p+(r−1)−1,q−(r−1)
r−1 + Sp−1,q+1r−1

We have completed Goal 1.7.9(a).
You are welcome to verify that these definitions of Xp,qr and Yp,qr and hence

E
p,q
r agree with the earlier ones of §1.7.10 (and in particular Xp,qr and Yp,qr are both

submodules of Ep,q), but we won’t need this fact.

1.7.I. EXERCISE: Ep,k−p∞ GIVES SUBQUOTIENTS OF Hk(E•). By Exercise 1.7.H(c),
E
p,q
r stabilizes as r → ∞. For r ≫ 0, interpret Sp,qr /dS

p+(r−1)−1,q−(r−1)
r−1 as the

cycles in Sp,q∞ ⊂ Ep+q modulo those boundary elements of dEp+q−1 contained in
Sp,q∞ . Finally, show that Hk(E•) is indeed filtered as described in (1.7.2.2).

We have completed Goal 1.7.9(b).

1.7.12. Definition of dr.
We shall see that the map dr : E

p,q
r → E

p−r+1,q+r
r is just induced by our differ-

ential d. Notice that d sends r-closed (p, q)-strips Sp,qr to (p − r + 1, q + r)-strips
Sp−r+1,q+r, by the definition “r-closed”. By Exercise 1.7.H(b), the image lies in
S
p−r+1,q+r
r .

1.7.J. EXERCISE. Verify that d sends

dS
p+(r−1)−1,q−(r−1)
r−1 +Sp−1,q+1r−1 → dS

(p−r+1)+(r−1)−1,(q+r)−(r−1)
r−1 +S

(p−r+1)−1,(q+r)+1
r−1 .

(The first term on the left goes to 0 from d2 = 0, and the second term on the left
goes to the first term on the right.)

Thus we may define

dr : E
p,q
r =

S
p,q
r

dS
p+(r−1)−1,q−(r−1)
r−1 + Sp−1,q+1r−1

→

S
p−r+1,q+r
r

dS
p−1,q+1
r−1 + Sp−r,q+r+1r−1

= Ep−r+1,q+rr

and clearly d2r = 0 (as we may interpret it as taking an element of Sp,qr and apply-
ing d twice).

We have accomplished Goal 1.7.9(c).
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1.7.13. Verifying that the cohomology of dr at Ep,qr is Ep,qr+1. We are left with the
unpleasant job of verifying that the cohomology of

(1.7.13.1) Sp+r−1,q−r
r

dS
p+2r−3,q−2r+1

r−1
+Sp+r−2,q−r+1

r−1

dr // Sp,q
r

dS
p+r−2,q−r+1

r−1
+Sp−1,q+1

r−1

dr // Sp−r+1,q+r
r

dS
p−1,q+1

r−1
+Sp−r,q+r+1

r−1

is naturally identified with

S
p,q
r+1

dS
p+r−1,q−r
r + Sp−1,q+1r

and this will conclude our final Goal 1.7.9(d).
We begin by understanding the kernel of the right map of (1.7.13.1). Suppose

a ∈ Sp,qr is mapped to 0. This means that da = db + c, where b ∈ Sp−1,q+1r−1 . If
u = a − b, then u ∈ Sp,q, while du = c ∈ Sp−r,q+r+1r−1 ⊂ Sp−r,q+r+1, from which
u is (r + 1)-closed, i.e., u ∈ Sp,qr+1. Thus a = b + u ∈ Sp−1,q+1r−1 + Sp,qr+1. Conversely,
any a ∈ Sp−1,q+1r−1 + Sp,qr+1 satisfies

da ∈ dSp−1,q+1r−1 + dSp,qr+1 ⊂ dS
p−1,q+1
r−1 + Sp−r,q+r+1r−1

(using dSp,qr+1 ⊂ S
p−r,q+r+1
0 and Exercise 1.7.H(b)) so any such a is indeed in the

kernel of

Sp,qr → S
p−r+1,q+r
r

dS
p−1,q+1
r−1 + Sp−r,q+r+1r−1

.

Hence the kernel of the right map of (1.7.13.1) is

ker =
S
p−1,q+1
r−1 + Sp,qr+1

dS
p+r−2,q−r+1
r−1 + Sp−1,q+1r−1

.

Next, the image of the left map of (1.7.13.1) is immediately

im =
dS
p+r−1,q−r
r + dSp+r−2,q−r+1r−1 + Sp−1,q+1r−1

dS
p+r−2,q−r+1
r−1 + Sp−1,q+1r−1

=
dS
p+r−1,q−r
r + Sp−1,q+1r−1

dS
p+r−2,q−r+1
r−1 + Sp−1,q+1r−1

(as Sp+r−1,q−rr contains Sp+r−2,q−r+1r−1 ).
Thus the cohomology of (1.7.13.1) is

ker / im =
S
p−1,q+1
r−1 + Sp,qr+1

dS
p+r−1,q−r
r + Sp−1,q+1r−1

=
S
p,q
r+1

S
p,q
r+1 ∩ (dSp+r−1,q−rr + Sp−1,q+1r−1 )

where the equality on the right uses the fact that dSp+r−1,q−rr ⊂ S
p,q
r+1 and an

isomorphism theorem. We thus must show

S
p,q
r+1 ∩ (dSp+r−1,q−rr + Sp−1,q+1r−1 ) = dSp+r−1,q−rr + Sp−1,q+1r .

However,

S
p,q
r+1 ∩ (dSp+r−1,q−rr + Sp−1,q+1r−1 ) = dSp+r−1,q−rr + Sp,qr+1 ∩ S

p−1,q+1
r−1

and Sp,qr+1 ∩ S
p+1,q−1
r−1 consists of (p−1, q+1)-strips whose differential vanishes up

to row p+ r, from which Sp,qr+1 ∩ S
p−1,q+1
r−1 = Sp−1,q+1r as desired.
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This completes the explanation of how spectral sequences work for a first-
quadrant double complex. The argument applies without significant change to
more general situations, including filtered complexes.





CHAPTER 2

Sheaves

It is perhaps surprising that geometric spaces are often best understood in
terms of (nice) functions on them. For example, a differentiable manifold that is
a subset of Rn can be studied in terms of its differentiable functions. Because
“geometric spaces” can have few (everywhere-defined) functions, a more precise
version of this insight is that the structure of the space can be well understood
by considering all functions on all open subsets of the space. This information
is encoded in something called a sheaf. Sheaves were introduced by Leray in the
1940’s, and Serre introduced them to algebraic geometry. (The reason for the name
will be somewhat explained in Remark 2.4.4.) We will define sheaves and describe
useful facts about them. We will begin with a motivating example to convince you
that the notion is not so foreign.

One reason sheaves are slippery to work with is that they keep track of a huge
amount of information, and there are some subtle local-to-global issues. There are
also three different ways of getting a hold of them:

• in terms of open sets (the definition §2.2) — intuitive but in some ways
the least helpful;

• in terms of stalks (see §2.4.1); and
• in terms of a base of a topology (§2.5).

(Some people strongly prefer the espace étalé interpretation, §2.2.11, as well.) Know-
ing which to use requires experience, so it is essential to do a number of exercises
on different aspects of sheaves in order to truly understand the concept.

2.1 Motivating example: The sheaf of differentiable functions

Consider differentiable functions on the topological space X = Rn (or more
generally on a differentiable manifold X). The sheaf of differentiable functions on
X is the data of all differentiable functions on all open subsets on X. We will see
how to manage these data, and observe some of their properties. On each open set
U ⊂ X, we have a ring of differentiable functions. We denote this ring of functions
O(U).

Given a differentiable function on an open set, you can restrict it to a smaller
open set, obtaining a differentiable function there. In other words, if U ⊂ V is an
inclusion of open sets, we have a “restriction map” resV,U : O(V)→ O(U).

Take a differentiable function on a big open set, and restrict it to a medium
open set, and then restrict that to a small open set. The result is the same as if you
restrict the differentiable function on the big open set directly to the small open set.

71
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In other words, if U ↪→ V ↪→W, then the following diagram commutes:

O(W)
resW,V //

resW,U ##H
HH

HH
HH

HH
O(V)

resV,U{{www
ww
ww
ww

O(U)

Next take two differentiable functions f1 and f2 on a big open set U, and an
open cover of U by some collection of open subsets {Ui}. (We say {Ui} covers U, or
is an open cover of U, if U = ∪Ui.) Suppose that f1 and f2 agree on each of these
Ui. Then they must have been the same function to begin with. In other words, if
{Ui}i∈I is a cover ofU, and f1, f2 ∈ O(U), and resU,Ui

f1 = resU,Ui
f2, then f1 = f2.

Thus we can identify functions on an open set by looking at them on a covering by
small open sets.

Finally, suppose you are given the sameU and cover {Ui}, take a differentiable
function on each of the Ui — a function f1 on U1, a function f2 on U2, and so
on — and assume they agree on the pairwise overlaps. Then they can be “glued
together” to make one differentiable function on all of U. In other words, given
fi ∈ O(Ui) for all i, such that resUi,Ui∩Uj

fi = resUj,Ui∩Uj
fj for all i and j, then

there is some f ∈ O(U) such that resU,Ui
f = fi for all i.

The entire example above would have worked just as well with continuous
functions, or smooth functions, or just plain functions. Thus all of these classes
of “nice” functions share some common properties. We will soon formalize these
properties in the notion of a sheaf.

2.1.1. The germ of a differentiable function. Before we do, we first give another
definition, that of the germ of a differentiable function at a point p ∈ X. Intuitively,
it is a “shred” of a differentiable function at p. Germs are objects of the form

{(f, open U) : p ∈ U, f ∈ O(U)}

modulo the relation that (f,U) ∼ (g, V) if there is some open setW ⊂ U,V contain-
ing p where f|W = g|W (i.e., resU,W f = resV,W g). In other words, two functions
that are the same in an open neighborhood of p (but may differ elsewhere) have
the same germ. We call this set of germs the stalk at p, and denote it Op. Notice
that the stalk is a ring: you can add two germs, and get another germ: if you have
a function f defined on U, and a function g defined on V , then f + g is defined on
U ∩ V . Moreover, f + g is well-defined: if f̃ has the same germ as f, meaning that
there is some open set W containing p on which they agree, and g̃ has the same
germ as g, meaning they agree on some open W ′ containing p, then f̃ + g̃ is the
same function as f+ g on U ∩ V ∩W ∩W ′.

Notice also that if p ∈ U, you get a map O(U)→ Op. Experts may already see
that we are talking about germs as colimits.

We can see that Op is a local ring as follows. Consider those germs vanishing
at p, which we denote mp ⊂ Op. They certainly form an ideal: mp is closed under
addition, and when you multiply something vanishing at p by any function, the
result also vanishes at p. We check that this ideal is maximal by showing that the
quotient ring is a field:

(2.1.1.1) 0 // mp := ideal of germs vanishing at p // Op
f 7→f(p)// R // 0
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2.1.A. EXERCISE. Show that this is the only maximal ideal of Op. (Hint: show that
every element of Op \mp is invertible.)

Note that we can interpret the value of a function at a point, or the value of
a germ at a point, as an element of the local ring modulo the maximal ideal. (We
will see that this doesn’t work for more general sheaves, but does work for things
behaving like sheaves of functions. This will be formalized in the notion of a locally
ringed space, which we will see, briefly, in §6.3.)

2.1.2. Aside. Notice that mp/m2p is a module over Op/mp ∼= R, i.e., it is a real vector
space. It turns out to be naturally (whatever that means) the cotangent space to
the smooth manifold at p. This insight will prove handy later, when we define
tangent and cotangent spaces of schemes.

2.1.B. ⋆ EXERCISE FOR THOSE WITH DIFFERENTIAL GEOMETRIC BACKGROUND.
Prove this. (Rhetorical question for experts: what goes wrong if the sheaf of con-
tinuous functions is substituted for the sheaf of differentiable functions?)

2.2 Definition of sheaf and presheaf

We now formalize these notions, by defining presheaves and sheaves. Presheaves
are simpler to define, and notions such as kernel and cokernel are straightforward.
Sheaves are more complicated to define, and some notions such as cokernel re-
quire more thought. But sheaves are more useful because they are in some vague
sense more geometric; you can get information about a sheaf locally.

2.2.1. Definition of sheaf and presheaf on a topological space X.
To be concrete, we will define sheaves of sets. However, in the definition the

category Sets can be replaced by any category, and other important examples are
abelian groups Ab, k-vector spaces Veck, rings Rings, modules over a ring ModA,
and more. (You may have to think more when dealing with a category of objects
that aren’t “sets with additional structure”, but there aren’t any new complications.
In any case, this won’t be relevant for us, although people who want to do this
should start by solving Exercise 2.2.C.) Sheaves (and presheaves) are often written
in calligraphic font. The fact that F is a sheaf on a topological space X is often
written as

F

X

2.2.2. Definition: Presheaf. A presheaf F on a topological space X is the follow-
ing data.

• To each open set U ⊂ X, we have a set F (U) (e.g., the set of differentiable
functions in our motivating example). (Notational warning: Several notations are
in use, for various good reasons: F (U) = Γ(U,F ) = H0(U,F ). We will use them
all.) The elements of F (U) are called sections of F over U. (§2.2.11 combined
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with Exercise 2.2.G gives a motivation for this terminology, although this isn’t so
important for us.)

By convention, if the “U” is omitted, it is implicitly taken to be X: “sections of
F” means “sections of F over X”. These are also called global sections.

• For each inclusionU ↪→ V of open sets, we have a restriction map resV,U : F (V)→
F (U) (just as we did for differentiable functions).

The data is required to satisfy the following two conditions.
• The map resU,U is the identity: resU,U = idF(U).
• If U ↪→ V ↪→ W are inclusions of open sets, then the restriction maps com-

mute, i.e.,

F (W)
resW,V //

resW,U $$I
II

II
II

II
F (V)

resV,U{{vvv
vv
vv
vv

F (U)

commutes.

2.2.A. EXERCISE FOR CATEGORY-LOVERS: “A PRESHEAF IS THE SAME AS A CON-
TRAVARIANT FUNCTOR”. Given any topological space X, we have a “category
of open sets” (Example 1.2.9), where the objects are the open sets and the mor-
phisms are inclusions. Verify that the data of a presheaf is precisely the data of a
contravariant functor from the category of open sets of X to the category of sets.
(This interpretation is surprisingly useful.)

2.2.3. Definition: Stalks and germs. We define the stalk of a presheaf at a point
in two equivalent ways. One will be hands-on, and the other will be as a colimit.

2.2.4. Define the stalk of a presheaf F at a point p to be the set of germs of F at p,
denoted Fp, as in the example of §2.1.1. Germs correspond to sections over some
open set containing p, and two of these sections are considered the same if they
agree on some smaller open set. More precisely: the stalk is

{(f, open U) : p ∈ U, f ∈ F (U)}

modulo the relation that (f,U) ∼ (g, V) if there is some open set W ⊂ U,V where
p ∈ W and resU,W f = resV,W g. (To explain the agricultural terminology: the
French name “germe” is meant to suggest a tiny shoot sprouting from a seed, cf.
“germinate”.)

2.2.5. A useful equivalent definition of a stalk is as a colimit of all F (U) over all
open sets U containing p:

Fp = lim−→F (U).

The index category is a filtered set (given any two such open sets, there is a third
such set contained in both), so these two definitions are the same by Exercise 1.4.D.
Hence we can define stalks for sheaves of sets, groups, rings, and other things for
which colimits exist for directed sets. It is very helpful to keep both definitions of
stalk in mind at the same time.

If p ∈ U, and f ∈ F (U), then the image of f in Fp is called the germ of f at p.
(Warning: unlike the example of §2.1.1, in general, the value of a section at a point
doesn’t make sense.)
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2.2.6. Definition: Sheaf. A presheaf is a sheaf if it satisfies two more axioms.
Notice that these axioms use the additional information of when some open sets
cover another.

Identity axiom. If {Ui}i∈I is an open cover of U, and f1, f2 ∈ F (U), and
resU,Ui

f1 = resU,Ui
f2 for all i, then f1 = f2.

(A presheaf satisfying the identity axiom is called a separated presheaf, but
we will not use that notation in any essential way.)

Gluability axiom. If {Ui}i∈I is an open cover of U, then given fi ∈ F (Ui)
for all i, such that resUi,Ui∩Uj

fi = resUj,Ui∩Uj
fj for all i, j, then there is some

f ∈ F (U) such that resU,Ui
f = fi for all i.

In mathematics, definitions often come paired: “at most one” and “at least
one”. In this case, identity means there is at most one way to glue, and gluability
means that there is at least one way to glue.

(For experts and scholars of the empty set only: an additional axiom some-
times included is that F (∅) is a one-element set, and in general, for a sheaf with
values in a category, F (∅) is required to be the final object in the category. This
actually follows from the above definitions, assuming that the empty product is
appropriately defined as the final object.)

Example. IfU and V are disjoint, then F (U∪V) = F (U)×F (V). Here we use
the fact that F (∅) is the final object.

The stalk of a sheaf at a point is just its stalk as a presheaf — the same defini-
tion applies — and similarly for the germs of a section of a sheaf.

2.2.B. UNIMPORTANT EXERCISE: PRESHEAVES THAT ARE NOT SHEAVES. Show
that the following are presheaves on C (with the classical topology), but not sheaves:
(a) bounded functions, (b) holomorphic functions admitting a holomorphic square
root.

Both of the presheaves in the previous Exercise satisfy the identity axiom. A
“natural” example failing even the identity axiom is implicit in Remark 2.5.5.

We now make a couple of points intended only for category-lovers.

2.2.7. Interpretation in terms of the equalizer exact sequence. The two axioms for a
presheaf to be a sheaf can be interpreted as “exactness” of the “equalizer exact
sequence”: · // F (U) //∏F (Ui)

// //
∏

F (Ui ∩Uj). Identity is exact-
ness at F (U), and gluability is exactness at

∏
F (Ui). I won’t make this precise,

or even explain what the double right arrow means. (What is an exact sequence of
sets?!) But you may be able to figure it out from the context.

2.2.C. EXERCISE. The identity and gluability axioms may be interpreted as saying
that F (∪i∈IUi) is a certain limit. What is that limit?

Here are a number of examples of sheaves.

2.2.D. EXERCISE.
(a) Verify that the examples of §2.1 are indeed sheaves (of differentiable functions,
or continuous functions, or smooth functions, or functions on a manifold or Rn).
(b) Show that real-valued continuous functions on (open sets of) a topological
space X form a sheaf.
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2.2.8. Important Example: Restriction of a sheaf. Suppose F is a sheaf on X, and U
is an open subset of X. Define the restriction of F to U, denoted F |U, to be the
collection F |U(V) = F (V) for all open subsets V ⊂ U. Clearly this is a sheaf on
U. (Unimportant but fun fact: §2.7 will tell us how to restrict sheaves to arbitrary
subsets.)

2.2.9. Important Example: the skyscraper sheaf. Suppose X is a topological space,
with p ∈ X, and S is a set. Let ip : p→ X be the inclusion. Then ip,∗S defined by

ip,∗S(U) =

{
S if p ∈ U, and
{e} if p /∈ U

forms a sheaf. Here {e} is any one-element set. (Check this if it isn’t clear to you
— what are the restriction maps?) This is called a skyscraper sheaf, because the
informal picture of it looks like a skyscraper at p. (Mild caution: this informal pic-
ture suggests that the only nontrivial stalk of a skyscraper sheaf is at p, which isn’t
the case. Exercise 13.2.A(b) gives an example, although it certainly isn’t the sim-
plest one.) There is an analogous definition for sheaves of abelian groups, except
ip,∗(S)(U) = {0} if p /∈ U; and for sheaves with values in a category more generally,
ip,∗S(U) should be a final object.

(This notation is admittedly hideous, and the alternative (ip)∗S is equally bad.
In §2.2.12 we explain this notation.)

2.2.10. Constant presheaves and constant sheaves. Let X be a topological space, and S
a set. Define Spre(U) = S for all open sets U. You will readily verify that Spre forms
a presheaf (with restriction maps the identity). This is called the constant presheaf
associated to S. This isn’t (in general) a sheaf. (It may be distracting to say why.
Lovers of the empty set will insist that the sheaf axioms force the sections over the
empty set to be the final object in the category, i.e., a one-element set. But even if
we patch the definition by setting Spre(∅) = {e}, if S has more than one element,
and X is the two-point space with the discrete topology, i.e., where every subset
is open, you can check that Spre fails gluability.)

2.2.E. EXERCISE (CONSTANT SHEAVES). Now let F (U) be the maps to S that
are locally constant, i.e., for any point p in U, there is an open neighborhood of p
where the function is constant. Show that this is a sheaf. (A better description is
this: endow S with the discrete topology, and let F (U) be the continuous maps
U → S.) This is called the constant sheaf (associated to S); do not confuse it with
the constant presheaf. We denote this sheaf S.

2.2.F. EXERCISE (“MORPHISMS GLUE”). Suppose Y is a topological space. Show
that “continuous maps to Y” form a sheaf of sets on X. More precisely, to each
open set U of X, we associate the set of continuous maps of U to Y. Show that this
forms a sheaf. (Exercise 2.2.D(b), with Y = R, and Exercise 2.2.E, with Y = S with
the discrete topology, are both special cases.)

2.2.G. EXERCISE. This is a fancier version of the previous exercise.
(a) (sheaf of sections of a map) Suppose we are given a continuous map µ : Y → X.
Show that “sections of µ” form a sheaf. More precisely, to each open set U of X,
associate the set of continuous maps s : U → Y such that µ ◦ s = id|U. Show that
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this forms a sheaf. (For those who have heard of vector bundles, these are a good
example.) This is motivation for the phrase “section of a sheaf”.
(b) (This exercise is for those who know what a topological group is. If you don’t
know what a topological group is, you might be able to guess.) Suppose that Y is
a topological group. Show that continuous maps to Y form a sheaf of groups.

2.2.11. ⋆ The space of sections (espace étalé) of a (pre)sheaf. Depending on your back-
ground, you may prefer the following perspective on sheaves. Suppose F is a
presheaf (e.g., a sheaf) on a topological space X. Construct a topological space F
along with a continuous map π : F → X as follows: as a set, F is the disjoint union
of all the stalks of F . This naturally gives a map of sets π : F→ X. Topologize F as
follows. Each s in F (U) determines a subset {(x, sx) : x ∈ U} of F. The topology
on F is the weakest topology such that these subsets are open. (These subsets form
a base of the topology. For each y ∈ F, there is an open neighborhood V of y and
an open neighborhood U of π(y) such that π|V is a homeomorphism from V to U.
Do you see why these facts are true?) The topological space F could be thought of
as the space of sections of F (and in French is called the espace étalé of F ). We
will not discuss this construction at any length, but it can have some advantages:
(a) It is always better to know as many ways as possible of thinking about a con-
cept. (b) Pullback has a natural interpretation in this language (mentioned briefly
in Exercise 2.7.C). (c) Sheafification has a natural interpretation in this language
(see Remark 2.4.8).

2.2.H. IMPORTANT EXERCISE/DEFINITION: THE PUSHFORWARD SHEAF OR DIRECT
IMAGE SHEAF. Suppose π : X → Y is a continuous map, and F is a presheaf on X.
Then define π∗F by π∗F (V) = F (π−1(V)), where V is an open subset of Y. Show
that π∗F is a presheaf on Y, and is a sheaf if F is. This is called the pushforward
or direct image of F . More precisely, π∗F is called the pushforward of F by π.

2.2.12. As the notation suggests, the skyscraper sheaf (Example 2.2.9) can be inter-
preted as the pushforward of the constant sheaf S on a one-point space p, under
the inclusion morphism ip : {p}→ X.

Once we realize that sheaves form a category, we will see that the pushforward
is a functor from sheaves on X to sheaves on Y (Exercise 2.3.B).

2.2.I. EXERCISE (PUSHFORWARD INDUCES MAPS OF STALKS). Suppose π : X → Y

is a continuous map, and F is a sheaf of sets (or rings or A-modules) on X. If
π(p) = q, describe the natural morphism of stalks (π∗F )q → Fp. (You can use the
explicit definition of stalk using representatives, §2.2.4, or the universal property,
§2.2.5. If you prefer one way, you should try the other.)

2.2.13. Important Example: Ringed spaces, and OX-modules. Suppose OX is
a sheaf of rings on a topological space X (i.e., a sheaf on X with values in the
category of Rings). Then (X,OX) is called a ringed space. The sheaf of rings is
often denoted by OX, pronounced “oh-X”. This sheaf is called the structure sheaf
of the ringed space. Sections of the structure sheaf OX over an open subset U
are called functions on U. (Caution: what we call “functions”, others sometimes call
“regular functions”. Furthermore, we will later define “rational functions” on schemes
in §5.5.6, which are not precisely functions in this sense; they are a particular type of
“partially-defined function”.)
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The symbol OX will always refer to the structure sheaf of a ringed space X.
The restriction OX|U of OX to an open subset U ⊂ X is denoted OU. (We will later
call (U,OU) → (X,OX) an open embedding of ringed spaces, see Definition 6.2.1.)
The stalk of OX at a point p is written “OX,p”, because this looks less hideous than
“OXp”.

Just as we have modules over a ring, we have OX-modules over a sheaf of
rings OX. There is only one possible definition that could go with the name OX-
module — a sheaf of abelian groups F with the following additional structure.
For eachU, F (U) is an OX(U)-module. Furthermore, this structure should behave
well with respect to restriction maps: if U ⊂ V , then

(2.2.13.1)

OX(V)× F (V)
action //

resV,U × resV,U

��

F (V)

resV,U

��
OX(U)× F (U)

action // F (U)

commutes. (You should convince yourself that I haven’t forgotten anything.)
Recall that the notion of A-module generalizes the notion of abelian group,

because an abelian group is the same thing as a Z-module. Similarly, the notion of
OX-module generalizes the notion of sheaf of abelian groups, because the latter is
the same thing as a Z-module, where Z is the constant sheaf associated to Z. Hence
when we are proving things about OX-modules, we are also proving things about
sheaves of abelian groups.

2.2.J. EXERCISE. If (X,OX) is a ringed space, and F is an OX-module, describe
how for each p ∈ X, Fp is an OX,p-module.

2.2.14. For those who know about vector bundles. The motivating example of OX-
modules is the sheaf of sections of a vector bundle. If (X,OX) is a differentiable
manifold (so OX is the sheaf of differentiable functions), and π : V → X is a vector
bundle over X, then the sheaf of differentiable sections σ : X→ V is an OX-module.
Indeed, given a section s of π over an open subset U ⊂ X, and a function f on U,
we can multiply s by f to get a new section fs of π over U. Moreover, if U ′ is a
smaller subset, then we could multiply f by s and then restrict to U ′, or we could
restrict both f and s to U ′ and then multiply, and we would get the same answer.
That is precisely the commutativity of (2.2.13.1).

2.3 Morphisms of presheaves and sheaves

2.3.1. Definitions. Whenever one defines a new mathematical object, category the-
ory teaches to try to understand maps between them. We now define morphisms
of presheaves, and similarly for sheaves. In other words, we will describe the
category of presheaves (of sets, abelian groups, etc.) and the category of sheaves.

A morphism of presheaves of sets (or indeed of presheaves with values in
any category) on X, ϕ : F → G , is the data of maps ϕ(U) : F (U)→ G (U) for all U
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behaving well with respect to restriction: if U ↪→ V then

F (V)

resV,U

��

ϕ(V) // G (V)

resV,U

��
F (U)

ϕ(U) // G (U)

commutes. (Notice: the underlying space of both F and G is X.)
Morphisms of sheaves are defined identically: the morphisms from a sheaf F

to a sheaf G are precisely the morphisms from F to G as presheaves. (Translation:
The category of sheaves on X is a full subcategory of the category of presheaves on
X.) If (X,OX) is a ringed space, then morphisms of OX-modules have the obvious
definition. (Can you write it down?)

An example of a morphism of sheaves is the map from the sheaf of differen-
tiable functions on R to the sheaf of continuous functions. This is a “forgetful
map”: we are forgetting that these functions are differentiable, and remembering
only that they are continuous.

2.3.2. Notation. We may as well set some notation: let SetsX, AbX, etc. denote
the category of sheaves of sets, abelian groups, etc. on a topological space X. Let
ModOX

denote the category of OX-modules on a ringed space (X,OX). Let Setspre
X ,

etc. denote the category of presheaves of sets, etc. on X.

2.3.3. Aside for category-lovers. If you interpret a presheaf on X as a contravari-
ant functor (from the category of open sets), a morphism of presheaves on X is a
natural transformation of functors (§1.2.21).

2.3.A. EXERCISE: MORPHISMS OF (PRE)SHEAVES INDUCE MORPHISMS OF STALKS.
If ϕ : F → G is a morphism of presheaves on X, and p ∈ X, describe an induced
morphism of stalks ϕp : Fp → Gp. Translation: taking the stalk at p induces a
functor SetsX → Sets. (Your proof will extend in obvious ways. For example, if ϕ
is a morphism of OX-modules, then ϕp is a map of OX,p-modules.)

2.3.B. EXERCISE. Suppose π : X → Y is a continuous map of topological spaces
(i.e., a morphism in the category of topological spaces). Show that pushforward
gives a functor π∗ : SetsX → SetsY . Here Sets can be replaced by other categories.
(Watch out for some possible confusion: a presheaf is a functor, and presheaves
form a category. It may be best to forget that presheaves are functors for now.)

2.3.C. IMPORTANT EXERCISE AND DEFINITION: “SHEAF Hom”. Suppose F and
G are two sheaves of sets on X. (In fact, it will suffice that F is a presheaf.) Let
Hom(F ,G ) be the collection of data

Hom(F ,G )(U) := Mor(F |U,G |U).

(Recall the notation F |U, the restriction of the sheaf to the open set U, Exam-
ple 2.2.8.) Show that this is a sheaf of sets on X. (To avoid a common confusion:
the right side does not say Mor(F (U),G (U)).) This sheaf is called “sheaf Hom”.
(Strictly speaking, we should reserve Hom for when we are in an additive cate-
gory, so this should possibly be called “sheaf Mor”. But the terminology “sheaf
Hom” is too established to uproot.) It will be clear from your construction that,
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like Hom, Hom is a contravariant functor in its first argument and a covariant func-
tor in its second argument.

Warning: Hom does not commute with taking stalks. More precisely: it is
not true that Hom(F ,G )p is isomorphic to Hom(Fp,Gp). (Can you think of a
counterexample? There is at least a map from one of these to the other — in which
direction?)

2.3.4. We will use many variants of the definition of Hom . For example, if F and
G are sheaves of abelian groups on X, then HomAbX(F ,G ) is defined by taking
HomAbX(F ,G )(U) to be the maps as sheaves of abelian groups F |U → G |U. (Note
that HomAbX(F ,G ) has the structure of a sheaf of abelian groups in a natural way.)
Similarly, if F and G are OX-modules, we define HomModOX

(F ,G ) in the analo-
gous way (and it is an OX-module). Obnoxiously, the subscripts AbX and ModOX

are often dropped (here and in the literature), so be careful which category you are
working in! We call HomModOX

(F ,OX) the dual of the OX-module F , and denote
it F∨.

2.3.D. UNIMPORTANT EXERCISE (REALITY CHECK).

(a) If F is a sheaf of sets on X, then show that Hom({p},F ) ∼= F , where {p}

is the constant sheaf associated to the one element set {p}.
(b) If F is a sheaf of abelian groups on X, then show that HomAbX(Z,F ) ∼= F

(an isomorphism of sheaves of abelian groups).
(c) If F is an OX-module, then show that HomModOX

(OX,F ) ∼= F (an iso-
morphism of OX-modules).

A key idea in (b) and (c) is that 1 “generates” (in some sense) Z (in (b)) and OX (in
(c)).

2.3.5. Presheaves of abelian groups (and even “presheaf OX-modules”) form an
abelian category.

We can make module-like constructions using presheaves of abelian groups
on a topological space X. (Throughout this section, all (pre)sheaves are of abelian
groups.) For example, we can clearly add maps of presheaves and get another map
of presheaves: if ϕ,ψ : F → G , then we define the map ϕ + ψ by (ϕ + ψ)(V) =
ϕ(V) + ψ(V). (There is something small to check here: that the result is indeed a
map of presheaves.) In this way, presheaves of abelian groups form an additive
category (Definition 1.6.1: the morphisms between any two presheaves of abelian
groups form an abelian group; there is a 0-object; and one can take finite products).
For exactly the same reasons, sheaves of abelian groups also form an additive
category.

If ϕ : F → G is a morphism of presheaves, define the presheaf kernel kerpreϕ

by (kerpreϕ)(U) := kerϕ(U).
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2.3.E. EXERCISE. Show that kerpreϕ is a presheaf. (Hint: if U ↪→ V , define the
restriction map by chasing the following diagram:

0 // kerpreϕ(V)

∃!
��

// F (V)

resV,U

��

// G (V)

resV,U

��
0 // kerpreϕ(U) // F (U) // G (U)

You should check that the restriction maps compose as desired.)

Define the presheaf cokernel cokerpreϕ similarly. It is a presheaf by essentially
the same (dual) argument.

2.3.F. EXERCISE: THE COKERNEL DESERVES ITS NAME. Show that the presheaf cok-
ernel satisfies the universal property of cokernels (Definition 1.6.3) in the category
of presheaves.

Similarly, kerpreϕ→ F satisfies the universal property for kernels in the cate-
gory of presheaves.

It is not too tedious to verify that presheaves of abelian groups form an abelian
category, and the reader is free to do so. The key idea is that all abelian-categorical
notions may be defined and verified “open set by open set”. We needn’t worry
about restriction maps — they “come along for the ride”. Hence we can define
terms such as subpresheaf, image presheaf (or presheaf image), and quotient
presheaf (or presheaf quotient), and they behave as you would expect. You con-
struct kernels, quotients, cokernels, and images open set by open set. Homological
algebra (exact sequences and so forth) works, and also “works open set by open
set”. In particular:

2.3.G. EASY EXERCISE. Show (or observe) that for a topological space Xwith open
set U, F 7→ F (U) gives a functor from presheaves of abelian groups on X, Abpre

X ,
to abelian groups, Ab. Then show that this functor is exact.

2.3.H. EXERCISE. Show that a sequence of presheaves 0 → F1 → F2 → · · · →
Fn → 0 is exact if and only if 0 → F1(U) → F2(U) → · · · → Fn(U) → 0 is exact
for all U.

The above discussion essentially carries over without change to presheaves
with values in any abelian category. (Think this through if you wish.)

However, we are interested in more geometric objects, sheaves, where things
can be understood in terms of their local behavior, thanks to the identity and glu-
ing axioms. We will soon see that sheaves of abelian groups also form an abelian
category, but a complication will arise that will force the notion of sheafification on
us. Sheafification will be the answer to many of our prayers. We just haven’t yet
realized what we should be praying for.

To begin with, sheaves AbX form an additive category, as described in the first
paragraph of §2.3.5.

Kernels work just as with presheaves:
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2.3.I. IMPORTANT EXERCISE. Suppose ϕ : F → G is a morphism of sheaves. Show
that the presheaf kernel kerpreϕ is in fact a sheaf. Show that it satisfies the uni-
versal property of kernels (Definition 1.6.3). (Hint: the second question follows
immediately from the fact that kerpreϕ satisfies the universal property in the cate-
gory of presheaves.)

Thus if ϕ is a morphism of sheaves, we define

kerϕ := kerpreϕ.

The problem arises with the cokernel.

2.3.J. IMPORTANT EXERCISE. Let X be C with the classical topology, let Z be the
constant sheaf on X associated to Z, OX the sheaf of holomorphic functions, and
F the presheaf of functions admitting a holomorphic logarithm. Describe an exact
sequence of presheaves on X:

0 // Z // OX // F // 0

where Z → OX is the natural inclusion and OX → F is given by f 7→ exp(2πif).
(Be sure to verify exactness.) Show that F is not a sheaf. (Hint: F does not satisfy
the gluability axiom. The problem is that there are functions that don’t have a log-
arithm but locally have a logarithm.) This will come up again in Example 2.4.10.

We will have to put our hopes for understanding cokernels of sheaves on hold
for a while. We will first learn to understand sheaves using stalks.

2.4 Properties determined at the level of stalks, and sheafification

2.4.1. Properties determined by stalks. We now come to the second way of
understanding sheaves mentioned at the start of the chapter. In this section, we
will see that lots of facts about sheaves can be checked “at the level of stalks”. This
isn’t true for presheaves, and reflects the local nature of sheaves. We will see that
sections and morphisms are determined “by their stalks”, and the property of a
morphism being an isomorphism may be checked at stalks. (The last one is the
trickiest.)

2.4.A. IMPORTANT EASY EXERCISE (sections are determined by germs). Prove
that a section of a sheaf of sets is determined by its germs, i.e., the natural map

(2.4.1.1) F (U)→ ∏
p∈U

Fp

is injective. Hint 1: you won’t use the gluability axiom, so this is true for separated
presheaves. Hint 2: it is false for presheaves in general, see Exercise 2.4.F, so you
will use the identity axiom. (Your proof will also apply to sheaves of groups, rings,
etc. — to categories of “sets with additional structure”. The same is true of many
exercises in this section.)

2.4.2. Definition: support of a section. This motivates a concept we will find useful
later. Suppose F is a sheaf (or indeed separated presheaf) of abelian groups on X,
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and s is a global section of F . Then let the support of s, denoted Supp(s), be the
points p of X where s has a nonzero germ:

Supp(s) := {p ∈ X : sp ̸= 0 in Fp}.

We think of this as the subset of Xwhere “the section s lives” — the complement is
the locus where s is the 0-section. We could define this even if F is a presheaf, but
without the inclusion of Exercise 2.4.A, we could have the strange situation where
we have a nonzero section that “lives nowhere” (because it is 0 “near every point”,
i.e., is 0 in every stalk).

2.4.B. EXERCISE (THE SUPPORT OF A SECTION IS CLOSED). Show that Supp(s) is
a closed subset of X.

Exercise 2.4.A suggests an important question: which elements of the right
side of (2.4.1.1) are in the image of the left side?

2.4.3. Important definition. We say that an element
∏
p∈U sp of the right side∏

p∈UFp of (2.4.1.1) consists of compatible germs if for all p ∈ U, there is some
representative

(Up open in U, s̃p ∈ F (Up))

for sp (where p ∈ Up ⊂ U) such that the germ of s̃p at all q ∈ Up is sq. Equiv-
alently, there is an open cover {Ui} of U, and sections fi ∈ F (Ui), such that if
p ∈ Ui, then sp is the germ of fi at p. Clearly any section s of F over U gives a
choice of compatible germs for U.

2.4.C. IMPORTANT EXERCISE. Prove that any choice of compatible germs for a
sheaf of sets F over U is the image of a section of F over U. (Hint: you will use
gluability.)

We have thus completely described the image of (2.4.1.1), in a way that we
will find useful.

2.4.4. Remark. This perspective motivates the agricultural terminology “sheaf”: it
is (the data of) a bunch of stalks, bundled together appropriately.

Now we throw morphisms into the mix. Recall Exercise 2.3.A: morphisms of
(pre)sheaves induce morphisms of stalks.

2.4.D. EXERCISE (morphisms are determined by stalks). If ϕ1 and ϕ2 are mor-
phisms from a presheaf of sets F to a sheaf of sets G that induce the same maps
on each stalk, show that ϕ1 = ϕ2. Hint: consider the following diagram.

(2.4.4.1) F (U) //

��

G (U)
_�

��∏
p∈UFp

//∏
p∈U Gp

2.4.E. TRICKY EXERCISE (isomorphisms are determined by stalks). Show that a
morphism of sheaves of sets is an isomorphism if and only if it induces an isomor-
phism of all stalks. Hint: Use (2.4.4.1). Once you have injectivity, show surjectivity,
perhaps using Exercise 2.4.C, or gluability in some other way; this is more subtle.
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Note: this question does not say that if two sheaves have isomorphic stalks, then
they are isomorphic.

2.4.F. EXERCISE.
(a) Show that Exercise 2.4.A is false for general presheaves.
(b) Show that Exercise 2.4.D is false for general presheaves.
(c) Show that Exercise 2.4.E is false for general presheaves.
(General hint for finding counterexamples of this sort: consider a 2-point space
with the discrete topology.)

2.4.5. Sheafification.
Every sheaf is a presheaf (and indeed by definition sheaves on X form a full

subcategory of the category of presheaves on X). Just as groupification (§1.5.3)
gives an abelian group that best approximates an abelian semigroup, sheafifica-
tion gives the sheaf that best approximates a presheaf, with an analogous univer-
sal property. (One possible example to keep in mind is the sheafification of the
presheaf of holomorphic functions admitting a square root on C with the classical
topology. See also the exponential exact sequence, Exercise 2.4.10.)

2.4.6. Definition. If F is a presheaf on X, then a morphism of presheaves sh : F →
F sh on X is a sheafification of F if F sh is a sheaf, and for any sheaf G , and
any presheaf morphism g : F → G , there exists a unique morphism of sheaves
f : F sh → G making the diagram

F
sh //

g
!!D

DD
DD

DD
DD

F sh

f

��
G

commute.
We still have to show that it exists. The following two exercises require exis-

tence (which we will show shortly), but not the details of the construction.

2.4.G. EXERCISE. Show that sheafification is unique up to unique isomorphism,
assuming it exists. Show that if F is a sheaf, then the sheafification is id : F // F .
(This should be second nature by now.)

2.4.H. EASY EXERCISE (SHEAFIFICATION IS A FUNCTOR). Assume for now that
sheafification exists. Use the universal property to show that for any morphism of
presheavesϕ : F → G , we get a natural induced morphism of sheavesϕsh : F sh →
G sh. Show that sheafification is a functor from presheaves on X to sheaves on X.

2.4.7. Construction. We next show that any presheaf of sets (or groups, rings, etc.)
has a sheafification. Suppose F is a presheaf. Define F sh by defining F sh(U) as
the set of “compatible germs” of the presheaf F over U. Explicitly:

F sh(U) := {(fp ∈ Fp)p∈U : for all p ∈ U, there exists an open
neighborhood V of p, contained in U,
and s ∈ F (V) with sq = fq for all q ∈ V}.

Here sq means the germ of s at q— the image of s in the stalk Fq.
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2.4.I. EASY EXERCISE. Show that F sh (using the tautological restriction maps)
forms a sheaf.

2.4.J. EASY EXERCISE. Describe a natural map of presheaves sh : F → F sh.

2.4.K. EXERCISE. Show that the map sh satisfies the universal property of sheafi-
fication (Definition 2.4.6). (This is easier than you might fear.)

2.4.L. USEFUL EXERCISE, NOT JUST FOR CATEGORY-LOVERS. Show that the sheafi-
fication functor is left-adjoint to the forgetful functor from sheaves onX to presheaves
on X. This is not difficult — it is largely a restatement of the universal property.
But it lets you use results from §1.6.12, and can “explain” why you don’t need to
sheafify when taking kernel (why the presheaf kernel is already the sheaf kernel),
and why you need to sheafify when taking cokernel and (soon, in Exercise 2.6.J)
⊗.

2.4.M. EXERCISE. Show F → F sh induces an isomorphism of stalks. (Possible
hint: Use the concrete description of the stalks. Another possibility once you read
Remark 2.7.3: judicious use of adjoints.)

As a reality check, you may want to verify that “the sheafification of a constant
presheaf is the corresponding constant sheaf” (see §2.2.10): if X is a topological
space and S is a set, then (Spre)

sh may be naturally identified with S.

2.4.8. ⋆ Remark. The “space of sections” (or “espace étalé”) construction (§2.2.11)
yields a different-sounding description of sheafification which may be preferred
by some readers. The main idea is identical: if F is a presheaf, let F be the space of
sections (or espace étalé) of F . You may wish to show that if F is a presheaf, the
sheaf of sections of F → X (defined in Exercise 2.2.G(a)) is the sheafification of F .
Exercise 2.2.E may be interpreted as an example of this construction. The “space
of sections” construction of the sheafification is essentially the same as Construc-
tion 2.4.7.

2.4.9. Subsheaves and quotient sheaves.
We now discuss subsheaves and quotient sheaves from the perspective of

stalks.

2.4.N. EXERCISE. Suppose ϕ : F → G is a morphism of sheaves of sets on a
topological space X. Show that the following are equivalent.

(a) ϕ is a monomorphism in the category of sheaves.
(b) ϕ is injective on the level of stalks: ϕp : Fp → Gp is injective for all p ∈ X.
(c) ϕ is injective on the level of open sets: ϕ(U) : F (U) → G (U) is injective

for all open U ⊂ X.

(Possible hints: for (b) implies (a), recall that morphisms are determined by stalks,
Exercise 2.4.D. For (a) implies (c), use the “indicator sheaf” with one section over
every open set contained in U, and no section over any other open set.) If these
conditions hold, we say that F is a subsheaf of G (where the “inclusion” ϕ is
sometimes left implicit).

(You may later wish to extend your solution to Exercise 2.4.N to show that for
any morphism of presheaves, if all maps of sections are injective, then all stalk maps
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are injective. And furthermore, if ϕ : F → G is a morphism from a separated
presheaf to an arbitrary presheaf, then injectivity on the level of stalks implies
that ϕ is a monomorphism in the category of presheaves. This is useful in some
approaches to Exercise 2.6.C.)

2.4.O. EXERCISE. Continuing the notation of the previous exercise, show that the
following are equivalent.

(a) ϕ is an epimorphism in the category of sheaves.
(b) ϕ is surjective on the level of stalks: ϕp : Fp → Gp is surjective for all

p ∈ X.
(Possible hint: use a skyscraper sheaf.)

If these conditions hold, we say that G is a quotient sheaf of F .

Thus monomorphisms and epimorphisms — subsheafiness and quotient sheafiness —
can be checked at the level of stalks.

Both exercises generalize readily to sheaves with values in any reasonable cat-
egory, where “injective” is replaced by “monomorphism” and “surjective” is re-
placed by “epimorphism”.

Notice that there was no part (c) to Exercise 2.4.O, and Example 2.4.10 shows
why. (But there is a version of (c) that implies (a) and (b): surjectivity on all open
sets in the base of a topology implies that the corresponding map of sheaves is an
epimorphism, Exercise 2.5.E.)

2.4.10. Example (cf. Exercise 2.3.J). Let X = C with the classical topology, and define
OX to be the sheaf of holomorphic functions, and O∗

X to be the sheaf of invertible
(nowhere zero) holomorphic functions. This is a sheaf of abelian groups under
multiplication. We have maps of sheaves

(2.4.10.1) 0 // Z ×2πi // OX
exp // O∗

X
// 1

where Z is the constant sheaf associated to Z. (You can figure out what the sheaves
0 and 1mean; they are isomorphic, and are written in this way for reasons that may
be clear.) We will soon interpret this as an exact sequence of sheaves of abelian
groups (the exponential exact sequence, see Exercise 2.6.E), although we don’t yet
have the language to do so.

2.4.P. ENLIGHTENING EXERCISE. Show that exp : OX // O∗
X describes O∗

X as
a quotient sheaf of OX. Find an open set on which this map is not surjective.

This is a great example to get a sense of what “surjectivity” means for sheaves:
nowhere vanishing holomorphic functions have logarithms locally, but they need
not globally.

2.5 Recovering sheaves from a “sheaf on a base”

Sheaves are natural things to want to think about, but hard to get our hands on.
We like the identity and gluability axioms, but they make proving things trickier
than for presheaves. We have discussed how we can understand sheaves using
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stalks (using “compatible germs”). We now introduce a second way of getting a
hold of sheaves, by introducing the notion of a sheaf on a base. Warning: this way
of understanding an entire sheaf from limited information is confusing. It may
help to keep sight of the central insight that this partial information is enough
to understand germs, and the notion of when they are compatible (with nearby
germs).

First, we define the notion of a base of a topology. Suppose we have a topo-
logical space X, i.e., we know which subsets Ui of X are open. Then a base of
a topology is a subcollection of the open sets {Bj} ⊂ {Ui}, such that each Ui is a
union of the Bj. Here is one example that you have seen early in your mathemati-
cal life. Suppose X = Rn. Then the way the classical topology is often first defined
is by defining open balls Br(x) = {y ∈ Rn : |y− x| < r}, and declaring that any
union of open balls is open. So the balls form a base of the classical topology — we
say they generate the classical topology. As an application of how we use them, to
check continuity of some map π : X→ Rn, you need only think about the pullback
of balls on Rn — part of the traditional δ-ϵ definition of continuity.

Now suppose we have a sheaf F on a topological space X, and a base {Bi} of
open sets on X. Then consider the information

({F (Bi)}, {resBi,Bj
: F (Bi)→ F (Bj)}),

which is a subset of the information contained in the sheaf — we are only paying
attention to the information involving elements of the base, not all open sets.

We can recover the entire sheaf from this information. This is because we can
determine the stalks from this information, and we can determine when germs are
compatible.

2.5.A. IMPORTANT EXERCISE. Make this precise. How can you recover a sheaf F
from this partial information?

This suggests a notion, called a sheaf on a base. A sheaf of sets (or abelian
groups, rings, . . . ) on a base {Bi} is the following. For each Bi in the base, we have
a set F(Bi). If Bi ⊂ Bj, we have maps resBj,Bi

: F(Bj) → F(Bi), with resBi,Bi
=

idF(Bi). (Things called “B” are always assumed to be in the base.) If Bi ⊂ Bj ⊂ Bk,
then resBk,Bi

= resBj,Bi
◦ resBk,Bj

. So far we have defined a presheaf on a base
{Bi}.

We also require the base identity axiom: If B = ∪Bi, then if f, g ∈ F(B) are
such that resB,Bi

f = resB,Bi
g for all i, then f = g.

We require the base gluability axiom too: If B = ∪Bi, and we have fi ∈
F(Bi) such that fi agrees with fj on any basic open set contained in Bi ∩ Bj (i.e.,
resBi,Bk

fi = resBj,Bk
fj for all Bk ⊂ Bi ∩ Bj) then there exists f ∈ F(B) such that

resB,Bi
f = fi for all i.

2.5.1. Theorem. — Suppose {Bi} is a base on X, and F is a sheaf of sets on this base.
Then there is a sheaf F extending F (with isomorphisms F (Bi) ∼= F(Bi) agreeing with
the restriction maps). This sheaf F is unique up to unique isomorphism.

Proof. We will define F as the sheaf of compatible germs of F.
Define the stalk of a presheaf F on a base at p ∈ X by

Fp = lim−→ F(Bi)
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where the colimit is over all Bi (in the base) containing p.
We will say a family of germs in an open setU is compatible near p if there is a

section s of F over some Bi containing p such that the germs over Bi are precisely
the germs of s. More formally, define

F (U) := {(fp ∈ Fp)p∈U : for all p ∈ U, there exists Bwith p ∈ B ⊂ U, s ∈ F(B),
with sq = fq for all q ∈ B}

where each B is in our base.
This is a sheaf (for the same reasons that the sheaf of compatible germs was,

cf. Exercise 2.4.I).
I next claim that if B is in our base, the natural map F(B)→ F (B) is an isomor-

phism.

2.5.B. EXERCISE. Verify that F(B) → F (B) is an isomorphism, likely by showing
that it is injective and surjective (or else by describing the inverse map and verify-
ing that it is indeed inverse). Possible hint: elements of F (B) are determined by
stalks, as are elements of F(B).

It will be clear from your solution to Exercise 2.5.B that the restriction maps
for F are the same as the restriction maps of F (for elements of the base).

Finally, you should verify to your satisfaction that F is indeed unique up to
unique isomorphism. (First be sure that you understand what this means!) □

Theorem 2.5.1 shows that sheaves onX can be recovered from their “restriction
to a base”. It is clear from the argument (and in particular the solution to the
Exercise 2.5.B) that if F is a sheaf and F is the corresponding sheaf on the base B,
then for any p ∈ X, Fp is naturally isomorphic to Fp.

Theorem 2.5.1 is a statement about objects in a category, so we should hope for
a similar statement about morphisms.

2.5.C. IMPORTANT EXERCISE: MORPHISMS OF SHEAVES CORRESPOND TO MOR-
PHISMS OF SHEAVES ON A BASE. Suppose {Bi} is a base for the topology of X. A
morphism F → G of sheaves on the base is a collection of maps F(Bk) → G(Bk)
such that the diagram

F(Bi) //

resBi,Bj

��

G(Bi)

resBi,Bj

��
F(Bj) // G(Bj)

commutes for all Bj ↪→ Bi.
(a) Verify that a morphism of sheaves is determined by the induced morphism of
sheaves on the base.
(b) Show that a morphism of sheaves on the base gives a morphism of the induced
sheaves. (Possible hint: compatible stalks.)

2.5.2. Remark. The above constructions and arguments describe an equivalence of
categories (§1.2.21) between sheaves on X and sheaves on a given base of X. There
is no new content to this statement, but you may wish to think through what it
means. What are the functors in each direction? Why aren’t their compositions
the identity?
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2.5.3. Remark. It will be useful to extend these notions to OX-modules (see for ex-
ample Exercise 13.3.C). You will readily be able to verify that there is a correspon-
dence (really, equivalence of categories) between OX-modules and “OX-modules
on a base”. Rather than working out the details, you should just informally think
through the main points: what is an “OX-module on a base”? Given an OX-module
on a base, why is the corresponding sheaf naturally an OX-module? Later, if you
are forced at gunpoint to fill in details, you will be able to.

2.5.D. IMPORTANT EXERCISE. Suppose X = ∪Ui is an open cover of X, and we
have sheaves Fi onUi along with isomorphismsϕij : Fi|Ui∩Uj

→ Fj|Ui∩Uj
(with

ϕii the identity) that agree on triple overlaps, i.e., ϕjk ◦ϕij = ϕik on Ui ∩Uj ∩Uk
(this is called the cocycle condition, for reasons we ignore). Show that these
sheaves can be glued together into a sheaf F on X (unique up to unique isomor-
phism), such that Fi

∼= F |Ui
, and the isomorphisms over Ui ∩Uj are the obvious

ones. (Thus we can “glue sheaves together”, using limited patching information.)
Warning: we are not assuming this is a finite cover, so you cannot use induction.
For this reason this exercise can be perplexing. (You can use the ideas of this sec-
tion to solve this problem, but you don’t necessarily need to. Hint: As the base,
take those open sets contained in some Ui. Small observation: the hypothesis on
ϕii is extraneous, as it follows from the cocycle condition.)

2.5.4. Important remark. We will repeatedly see the theme of constructing some
object by gluing, in many different contexts. Keep an eye out for it! In each case,
we carefully consider what information we need in order to glue.

2.5.5. Remark for experts. Exercise 2.5.D almost says that the “set” of sheaves forms
a sheaf itself, but not quite. Making this precise leads one to the notion of a stack.

2.5.E. UNIMPORTANT EXERCISE. Suppose a morphism of sheaves F → G on a
base {Bi} is surjective for all Bi (i.e., F(Bi) → G(Bi) is surjective for all i). Show
that the corresponding morphism of sheaves (not on the base) is surjective (or more
precisely: an epimorphism). The converse is not true, unlike the case for injectivity.
This gives a useful sufficient criterion for “surjectivity”: a morphism of sheaves is
an epimorphism (“surjective”) if it is surjective for sections on a base. You may
enjoy trying this out with Example 2.4.10 (dealing with holomorphic functions in
the classical topology onX = C), showing that the exponential map exp : OX → O∗

X

is surjective, using the base of contractible open sets.

2.6 Sheaves of abelian groups, and OX-modules, form abelian
categories

We are now ready to see that sheaves of abelian groups, and their cousins, OX-
modules, form abelian categories. In other words, we may treat them similarly to
vector spaces, and modules over a ring. In the process of doing this, we will see
that this is much stronger than an analogy; kernels, cokernels, exactness, and so
forth can be understood at the level of stalks (which are just abelian groups), and
the compatibility of the germs will come for free.
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The category of sheaves of abelian groups on a topological spaceX is clearly an
additive category (Definition 1.6.1). In order to show that it is an abelian category,
we must begin by showing that any morphism ϕ : F → G has a kernel and a
cokernel. We have already seen that ϕ has a kernel (Exercise 2.3.I): the presheaf
kernel is a sheaf, and is a kernel in the category of sheaves.

2.6.A. EXERCISE. Show that the stalk of the kernel is the kernel of the stalks: for
all p ∈ X, there is a natural isomorphism

(ker(F → G ))p ∼= ker(Fp → Gp).

We next address the issue of the cokernel. Now ϕ : F → G has a cokernel in
the category of presheaves; call it Hpre (where the subscript is meant to remind us
that this is a presheaf). Let sh : Hpre → H be its sheafification. Recall that the
cokernel is defined using a universal property: it is the colimit of the diagram

(2.6.0.1) F

��

ϕ // G

0

in the category of presheaves (cf. (1.6.3.1) and the comment thereafter).

2.6.1. Proposition. — The composition G → H is the cokernel of ϕ in the category of
sheaves.

Proof. We show that it satisfies the universal property. Given any sheaf E and a
commutative diagram

F

��

ϕ // G

��
0 // E

We construct

F

��

ϕ // G

��

��
0

**VVV
VVVV

VVVV
VVVV

VVVV
VVVV

VV // Hpre
sh // H

E

We show that there is a unique morphism H → E making the diagram commute.
As Hpre is the cokernel in the category of presheaves, there is a unique morphism
of presheaves Hpre → E making the diagram commute. But then by the universal
property of sheafification (Definition 2.4.6), there is a unique morphism of sheaves
H → E making the diagram commute. □

2.6.B. EXERCISE. Show that the stalk of the cokernel is naturally isomorphic to
the cokernel of the stalk.
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We have now defined the notions of kernel and cokernel, and verified that they
may be checked at the level of stalks. We have also verified that the properties of
a morphism being a monomorphism or epimorphism are also determined at the
level of stalks (Exercises 2.4.N and 2.4.O). Hence we have proved the following:

2.6.2. Theorem. — Sheaves of abelian groups on a topological space X form an abelian
category.

That’s all there is to it — what needs to be proved has been shifted to the stalks,
where everything works because stalks are abelian groups!

And we see more: all structures coming from the abelian nature of this cate-
gory may be checked at the level of stalks. For example:

2.6.C. EXERCISE. Suppose ϕ : F → G is a morphism of sheaves of abelian groups.
Show that the image sheaf imϕ is the sheafification of the image presheaf. (You
must use the definition of image in an abelian category. In fact, this gives the
accepted definition of image sheaf for a morphism of sheaves of sets.) Show that
the stalk of the image is the image of the stalk.

As a consequence, exactness of a sequence of sheaves may be checked at the
level of stalks. In particular:

2.6.D. IMPORTANT EXERCISE (CF. EXERCISE 2.3.A). Show that taking the stalk of
a sheaf of abelian groups is an exact functor. More precisely, if X is a topological
space and p ∈ X is a point, show that taking the stalk at p defines an exact functor
AbX → Ab.

2.6.E. EXERCISE. Check that the exponential exact sequence (2.4.10.1) is exact.

2.6.F. EXERCISE: LEFT-EXACTNESS OF THE FUNCTOR OF “SECTIONS OVERU”. Sup-
pose U ⊂ X is an open set, and 0→ F → G →H is an exact sequence of sheaves
of abelian groups. Show that

0→ F (U)→ G (U)→H (U)

is exact. (You should do this “by hand”, even if you realize there is a very fast
proof using the left-exactness of the “forgetful” right adjoint to the sheafification
functor.) Show that the section functor need not be exact: show that if 0 → F →
G →H → 0 is an exact sequence of sheaves of abelian groups, then

0→ F (U)→ G (U)→H (U)→ 0

need not be exact. (Hint: the exponential exact sequence (2.4.10.1). But feel free to
make up a different example.)

2.6.G. EXERCISE: LEFT-EXACTNESS OF PUSHFORWARD. Suppose 0 → F → G →
H is an exact sequence of sheaves of abelian groups on X. If π : X→ Y is a contin-
uous map, show that

0→ π∗F → π∗G → π∗H

is exact. (The previous exercise, dealing with the left-exactness of the global sec-
tion functor can be interpreted as a special case of this, in the case where Y is a
point.)
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2.6.H. EXERCISE: LEFT-EXACTNESS OF Hom (CF. EXERCISE 1.6.F(C) AND (D)). Sup-
pose F is a sheaf of abelian groups on a topological space X. Show that Hom(F , ·)
is a left-exact covariant functor AbX → AbX. Show that Hom(·,F ) is a left-exact
contravariant functor AbX → AbX.

2.6.3. OX-modules.

2.6.I. EXERCISE. Show that if (X,OX) is a ringed space, then OX-modules form an
abelian category. (There is a fair bit to check, but there aren’t many new ideas.)

2.6.4. Many facts about sheaves of abelian groups carry over to OX-modules with-
out change, because a sequence of OX-modules is exact if and only if the under-
lying sequence of sheaves of abelian groups is exact. You should be able to easily
check that all of the statements of the earlier exercises in §2.6 also hold for OX-
modules, when modified appropriately. For example (Exercise 2.6.H), HomOX

(·, ·)
is a left-exact contravariant functor in its first argument and a left-exact covariant
functor in its second argument.

We end with a useful construction using some of the ideas in this section.

2.6.J. IMPORTANT EXERCISE: TENSOR PRODUCTS OF OX-MODULES.
(a) Suppose OX is a sheaf of rings on X. Define (categorically) what we should
mean by tensor product of two OX-modules. Give an explicit construction, and
show that it satisfies your categorical definition. Hint: take the “presheaf tensor
product” — which needs to be defined — and sheafify. Note: ⊗OX

is often written
⊗ when the subscript is clear from the context. (An example showing sheafifica-
tion is necessary will arise in Example 14.1.1.)
(b) Show that the tensor product of stalks is the stalk of the tensor product. (If you
can show this, you may be able to make sense of the phrase “colimits commute
with tensor products”.)

2.6.5. Conclusion. Just as presheaves are abelian categories because all abelian-
categorical notions make sense open set by open set, sheaves are abelian categories
because all abelian-categorical notions make sense stalk by stalk.

2.7 The inverse image sheaf

We next describe a notion that is fundamental, but rather intricate. We will
not need it for some time, so this may be best left for a second reading. Suppose
we have a continuous map π : X → Y. If F is a sheaf on X, we have defined
the pushforward or direct image sheaf π∗F , which is a sheaf on Y. There is also a
notion of inverse image sheaf. (We will not call it the pullback sheaf, reserving that
name for a later construction for quasicoherent sheaves, §16.3.) This is a covariant
functor π−1 from sheaves on Y to sheaves on X. If the sheaves on Y have some
additional structure (e.g., group or ring), then this structure is respected by π−1.

2.7.1. Definition by adjoint: elegant but abstract. We define the inverse image π−1 as
the left adjoint to π∗.

This isn’t really a definition; we need a construction to show that the adjoint
exists. Note that we then get canonical maps π−1π∗F → F (associated to the



November 18, 2017 draft 93

identity in MorY(π∗F , π∗F )) and G → π∗π
−1G (associated to the identity in

MorX(π−1G , π−1G )).

π−1G

zz
zz
zz
zz
z

// F

kkkk
kkkk

kkkk
kkkk

kkk

X

π

��

G

yy
yy
yy
yy
y

// π∗F

kkk
kkk

kkk
kkk

kkk
kk

Y

2.7.2. Construction: concrete but ugly. Define the temporary notation

π−1preG (U) = lim−→
V⊃π(U)

G (V).

(Recall the explicit description of colimit: sections of π−1pre over U are sections on
open sets containing π(U), with an equivalence relation. Note that π(U) won’t be
an open set in general.)

2.7.A. EXERCISE. Show that this defines a presheaf on X. Show that it needn’t
form a sheaf. (Hint: map 2 points to 1 point.)

Now define the inverse image of G by π−1G := (π−1preG )sh. Note that π−1

is a functor from sheaves on Y to sheaves on X. The next exercise shows that
π−1 is indeed left-adjoint to π∗. But you may wish to try the later exercises first,
and come back to Exercise 2.7.B at another time. (For the later exercises, try to
give two proofs, one using the universal property, and the other using the explicit
description.)

2.7.B. IMPORTANT TRICKY EXERCISE. If π : X→ Y is a continuous map, and F is
a sheaf on X and G is a sheaf on Y, describe a bijection

MorX(π−1G ,F )↔MorY(G , π∗F ).

Observe that your bijection is “natural” in the sense of the definition of adjoints
(i.e., functorial in both F and G ). Thus Construction 2.7.2 satisfies the universal
property of Definition 2.7.1. Possible hint: Show that both sides agree with the
following third construction, which we denote MorYX(G ,F ). A collection of maps
ϕVU : G (V)→ F (U) (as U runs through all open sets of X, and V runs through all
open sets of Y containing π(U)) is said to be compatible if for all open U ′ ⊂ U ⊂ X

and all open V ′ ⊂ V ⊂ Y with π(U) ⊂ V , π(U ′) ⊂ V ′, the diagram

(2.7.2.1) G (V)
ϕVU //

resV,V ′

��

F (U)

resU,U ′

��
G (V ′)

ϕV ′U ′// F (U ′)

commutes. Define MorYX(G ,F ) to be the set of all compatible collections ϕ =
{ϕVU}.
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2.7.3. Remark (“stalk and skyscraper are an adjoint pair”). As a special case, if X is a
point p ∈ Y, we see that π−1G is the stalk Gp of G , and maps from the stalk Gp to
a set S are the same as maps of sheaves on Y from G to the skyscraper sheaf with
set S supported at p. You may prefer to prove this special case by hand directly
before solving Exercise 2.7.B, as it is enlightening. (It can also be useful — can you
use it to solve Exercises 2.4.M and 2.4.O?)

2.7.C. EXERCISE. Show that the stalks of π−1G are the same as the stalks of G .
More precisely, if π(p) = q, describe a natural isomorphism Gq

∼ // (π−1G )p .
(Possible hint: use the concrete description of the stalk, as a colimit. Recall that
stalks are preserved by sheafification, Exercise 2.4.M. Alternatively, use adjoint-
ness.) This, along with the notion of compatible germs, may give you a simple
way of thinking about (and perhaps visualizing) inverse image sheaves. (Those
preferring the “espace étalé” or “space of sections” perspective, §2.2.11, can check
that the pullback of the “space of sections” is the “space of sections” of the pull-
back.)

2.7.D. EXERCISE (EASY BUT USEFUL). If U is an open subset of Y, i : U → Y is the
inclusion, and G is a sheaf on Y, show that i−1G is naturally isomorphic to G |U
(the restriction of G to U, §2.2.8).

2.7.E. EXERCISE. Show that π−1 is an exact functor from sheaves of abelian groups
on Y to sheaves of abelian groups on X (cf. Exercise 2.6.D). (Hint: exactness can be
checked on stalks, and by Exercise 2.7.C, the stalks are the same.) Essentially the
same argument will show that π−1 is an exact functor from OY-modules (on Y) to
(π−1OY)-modules (on X), but don’t bother writing that down. (Remark for experts:
π−1 is a left adjoint, hence right-exact by abstract nonsense, as discussed in §1.6.12.
Left-exactness holds because colimits of abelian groups over filtered index sets are
exact, Exercise 1.6.K.)

2.7.F. EXERCISE.
(a) Suppose Z ⊂ Y is a closed subset, and i : Z ↪→ Y is the inclusion. If F is a sheaf
of sets on Z, then show that the stalk (i∗F )q is a one element-set if q /∈ Z, and Fq

if q ∈ Z.
(b) Definition (cf. Definition 2.4.2, the support of a section): Define the support of a
sheaf G of sets, denoted Supp G , as the locus where the stalks are not the one-
element set:

Supp G := {p ∈ X : |Gp| ̸= 1}.

(More generally, if the sheaf has value in some category, the support consists of
points where the stalk is not the final object. For a sheaf G of abelian groups,
the support consists of points with nonzero stalks — Supp G = {p ∈ X : Gp ̸=
0} — or equivalently is the union of supports of sections over all open sets, see
Definition 2.4.2.) Suppose Supp G ⊂ Z where Z is closed. Show that the natural
map G → i∗i

−1G is an isomorphism. Thus a sheaf supported on a closed subset
can be considered a sheaf on that closed subset. (“Support of a sheaf” is a useful
notion, and will arise again in §13.7.D.)
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The final exercise of this section may be best left for later, when you will realize
why you care about it. (We will start to use it in Chapter 23 — more precisely, in
Exercise 23.4.F.)

2.7.G. EXERCISE (EXTENSION BY ZERO π!: AN OCCASIONAL left adjoint TO π−1).
In addition to always being a left adjoint, π−1 can sometimes be a right adjoint.
Suppose i : U ↪→ Y is an inclusion of an open set into Y. Define the extension of i
by zero i! : ModOU

→ ModOY
as follows. Suppose F is an OU-module. For open

W ⊂ Y, define (i
pre
! F )(W) = F (W) if W ⊂ U, and 0 otherwise (with the obvious

restriction maps). This is clearly a presheaf OY-module. Define i! as (i
pre
! )sh. Note

that i!F is an OY-module, and that this defines a functor. (The symbol “!” is read
as “shriek”. I have no idea why, but I suspect it is because people often shriek
when they see it. Thus “i!” is read as “i-lower-shriek”.)
(a) Show that ipre

! F need not be a sheaf. (We won’t need this, but it may give some
insight into why this is called “extension by zero”. Possible source for an example:
continuous functions on R.)
(b) For q ∈ Y, show that (i!F )q = Fq if q ∈ U, and 0 otherwise.
(c) Show that i! is an exact functor.
(d) If G is an OY-module, describe an inclusion i!i−1G ↪→ G . (Interesting remark
we won’t need: Let Z be the complement of U, and j : Z→ Y the natural inclusion.
Then there is a short exact sequence

0→ i!i
−1G → G → j∗j

−1G → 0.

This is best checked by describing the maps, then checking exactness at stalks.)
(e) Show that (i!, i−1) is an adjoint pair, so there is a natural bijection HomOY

(i!F ,G )↔
HomOU

(F ,G |U) for any OU-module F and OY-module G . (In particular, the sec-
tions of G over U can be identified with HomOY

(i!OU,G ).)





Part II

Schemes



L’idée même de schéma est d’une simplicité enfantine — si simple, si humble, que
personne avant moi n’avait songé à se pencher si bas. Si “bébête” même, pour tout dire,
que pendant des années encore et en dépit de l’évidence, pour beaucoup de mes savants
collègues, ça faisait vraiment “pas sérieux”!

The very idea of scheme is of infantile simplicity — so simple, so humble, that no one
before me thought of stooping so low. So childish, in short, that for years, despite all the
evidence, for many of my erudite colleagues, it was really “not serious”!

— A. Grothendieck [Gr6, p. P32], translated by C. McLarty [Mc, p. 313]



CHAPTER 3

Toward affine schemes: the underlying set, and
topological space

There is no serious historical question of how Grothendieck found his definition of
schemes. It was in the air. Serre has well said that no one invented schemes... . The
question is, what made Grothendieck believe he should use this definition to simplify an 80
page paper by Serre into some 1000 pages of Élements de Géométrie Algébrique?

— C. McLarty [Mc, p. 313]

3.1 Toward schemes

We are now ready to consider the notion of a scheme, which is the type of geometric
space central to algebraic geometry. We should first think through what we mean
by “geometric space”. You have likely seen the notion of a manifold, and we wish
to abstract this notion so that it can be generalized to other settings, notably so that
we can deal with nonsmooth and arithmetic objects.

The key insight behind this generalization is the following: we can understand
a geometric space (such as a manifold) well by understanding the functions on
this space. More precisely, we will understand it through the sheaf of functions
on the space. If we are interested in differentiable manifolds, we will consider
differentiable functions; if we are interested in smooth manifolds, we will consider
smooth functions; and so on.

Thus we will define a scheme to be the following data

• The set: the points of the scheme
• The topology: the open sets of the scheme
• The structure sheaf: the sheaf of “algebraic functions” (a sheaf of rings) on

the scheme.

Recall that a topological space with a sheaf of rings is called a ringed space (§2.2.13).
We will try to draw pictures throughout. Pictures can help develop geometric

intuition, which can guide the algebraic development (and, eventually, vice versa).
Some people find pictures very helpful, while others are repulsed or confused.

We will try to make all three notions as intuitive as possible. For the set, in
the key example of complex (affine) varieties (roughly, things cut out in Cn by
polynomials), we will see that the points are the “traditional points” (n-tuples of
complex numbers), plus some extra points that will be handy to have around. For
the topology, we will require that “the subset where an algebraic function vanishes
must be closed”, and require nothing else. For the sheaf of algebraic functions (the
structure sheaf), we will expect that in the complex plane, (3x2+y2)/(2x+4xy+1)

99
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should be an algebraic function on the open set consisting of points where the
denominator doesn’t vanish, and this will largely motivate our definition.

3.1.1. Example: Differentiable manifolds. As motivation, we return to our
example of differentiable manifolds, reinterpreting them in this light. We will be
quite informal in this discussion. Suppose X is a differentiable manifold. It is a
topological space, and has a sheaf of differentiable functions OX (see §2.1). This gives
X the structure of a ringed space. We have observed that evaluation at a point
p ∈ X gives a surjective map from the stalk to R

OX,p // // R,

so the kernel, the (germs of) functions vanishing at p, is a maximal ideal mX,p (see
§2.1.1).

We could define a differentiable real manifold as a topological space X with a
sheaf of rings. We would require that there is a cover of X by open sets such that
on each open set the ringed space is isomorphic to a ball around the origin in Rn
(with the sheaf of differentiable functions on that ball). With this definition, the
ball is the basic patch, and a general manifold is obtained by gluing these patches
together. (Admittedly, a great deal of geometry comes from how one chooses to
patch the balls together!) In the algebraic setting, the basic patch is the notion of an
affine scheme, which we will discuss soon. (In the definition of manifold, there is an
additional requirement that the topological space be Hausdorff, to avoid patholo-
gies. Schemes are often required to be “separated” to avoid essentially the same
pathologies. Separatedness will be discussed in Chapter 10.)

Functions are determined by their values at points. This is an obvious statement,
but won’t be true for schemes in general. We will see an example in Exercise 3.2.A(a),
and discuss this behavior further in §3.2.11.

Morphisms of manifolds. How can we describe differentiable maps of manifolds
π : X → Y? They are certainly continuous maps — but which ones? We can pull
back functions along continuous maps. Differentiable functions pull back to dif-
ferentiable functions. More formally, we have a map π−1OY → OX. (The inverse
image sheaf π−1 was defined in §2.7.) Inverse image is left-adjoint to pushforward,
so we also get a map π♯ : OY → π∗OX.

Certainly given a differentiable map of differentiable manifolds, differentiable
functions pull back to differentiable functions. It is less obvious that this is a suffi-
cient condition for a continuous function to be differentiable.

3.1.A. IMPORTANT EXERCISE FOR THOSE WITH A LITTLE EXPERIENCE WITH MAN-
IFOLDS. Suppose that π : X → Y is a continuous map of differentiable manifolds
(as topological spaces — not a priori differentiable). Show that π is differentiable
if differentiable functions pull back to differentiable functions, i.e., if pullback by
π gives a map OY → π∗OX. (Hint: check this on small patches. Once you figure
out what you are trying to show, you will realize that the result is immediate.)

3.1.B. EXERCISE. Show that a morphism of differentiable manifolds π : X →
Y with π(p) = q induces a morphism of stalks π♯ : OY,q → OX,p. Show that
π♯(mY,q) ⊂ mX,p. In other words, if you pull back a function that vanishes at
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q, you get a function that vanishes at p— not a huge surprise. (In §6.3, we formal-
ize this by saying that maps of differentiable manifolds are maps of locally ringed
spaces.)

3.1.2. Aside. Here is a little more for experts: Notice that π induces a map on
tangent spaces (see Aside 2.1.2)

(mX,p/m
2
X,p)

∨ → (mY,q/m
2
Y,q)

∨.

This is the tangent map you would geometrically expect. Again, it is interesting
that the cotangent map mY,q/m

2
Y,q → mX,p/m

2
X,p is algebraically more natural than

the tangent map (there are no “duals”).
Experts are now free to try to interpret other differential-geometric informa-

tion using only the map of topological spaces and map of sheaves. For example:
how can one check if π is a submersion of manifolds? How can one check if f is
an immersion? (We will see that the algebro-geometric version of these notions
are smooth morphism and unramified morphism; see Chapter 25, although they will
be defined earlier, in Definition 12.6.2 and §21.6, respectively.)

3.1.3. Side Remark. Manifolds are covered by disks that are all isomorphic. This
isn’t true for schemes (even for “smooth complex varieties”). There are examples
of two “smooth complex curves” (the algebraic version of Riemann surfaces) X
and Y so that no nonempty open subset of X is isomorphic to a nonempty open
subset of Y (see Exercise 6.5.K). And there is a Riemann surface X such that no two
open subsets of X are isomorphic (see Exercise 19.7.D). Informally, this is because
in the Zariski topology on schemes, all nonempty open sets are “huge” and have
more “structure”.

3.1.4. Other examples. If you are interested in differential geometry, you will be
interested in differentiable manifolds, on which the functions under consideration
are differentiable functions. Similarly, if you are interested in topology, you will be
interested in topological spaces, on which you will consider the continuous func-
tion. If you are interested in complex geometry, you will be interested in complex
manifolds (or possibly “complex analytic varieties”), on which the functions are
holomorphic functions. In each of these cases of interesting “geometric spaces”,
the topological space and sheaf of functions is clear. The notion of scheme fits
naturally into this family.

3.2 The underlying set of affine schemes

For any ring A, we are going to define something called SpecA, the spectrum
of A. In this section, we will define it as a set, but we will soon endow it with a
topology, and later we will define a sheaf of rings on it (the structure sheaf). Such
an object is called an affine scheme. Later SpecA will denote the set along with
the topology, and a sheaf of functions. But for now, as there is no possibility of
confusion, SpecA will just be the set.
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3.2.1. The set SpecA is the set of prime ideals of A. The prime ideal p of A when
considered as an element of SpecA will be denoted [p], to avoid confusion. Ele-
ments a ∈ A will be called functions on SpecA, and their value at the point [p]
will be a (mod p). This is weird: a function can take values in different rings at differ-
ent points — the function 5 on SpecZ takes the value 1 (mod 2) at [(2)] and 2 (mod 3)
at [(3)].

“An element a of the ring lying in a prime ideal p” translates to “a function a that
is 0 at the point [p]” or “a function a vanishing at the point [p]”, and we will use
these phrases interchangeably. Notice that if you add or multiply two functions,
you add or multiply their values at all points; this is a translation of the fact that
A → A/p is a ring morphism. These translations are important — make sure you
are very comfortable with them! They should become second nature.

If A is generated over a base field (or base ring) by elements x1, . . . , xr, the
elements x1, . . . , xr are often called coordinates, because we will later be able to
reinterpret them as restrictions of “coordinates on r-space”, via the idea of §3.2.9,
made precise in Exercise 6.2.D.

3.2.2. Glimpses of the future. In §4.1.3: we will interpret functions on SpecA as
global sections of the “structure sheaf”, i.e., as a function on a ringed space, in the
sense of §2.2.13. We repeat a caution from §2.2.13: what we will call “functions”,
others may call “regular functions”. And we will later define “rational functions”
(§5.5.6), which are not precisely functions in this sense; they are a particular type
of “partially-defined function”.

The notion of “value of a function” will be later interpreted as a value of a
function on a particular locally ringed space, see Definition 4.3.6.

3.2.3. We now give some examples.

Example 1 (the complex affine line): A1C := SpecC[x]. Let’s find the prime
ideals of C[x]. As C[x] is an integral domain, 0 is prime. Also, (x− a) is prime, for
any a ∈ C: it is even a maximal ideal, as the quotient by this ideal is a field:

0 // (x− a) // C[x]
f 7→f(a) // C // 0

(This exact sequence may remind you of (2.1.1.1) in our motivating example of
manifolds.)

We now show that there are no other prime ideals. We use the fact that C[x]
has a division algorithm, and is a unique factorization domain. Suppose p is a
prime ideal. If p ̸= (0), then suppose f(x) ∈ p is a nonzero element of smallest
degree. It is not constant, as prime ideals can’t contain 1. If f(x) is not linear,
then factor f(x) = g(x)h(x), where g(x) and h(x) have positive degree. (Here we
use that C is algebraically closed.) Then g(x) ∈ p or h(x) ∈ p, contradicting the
minimality of the degree of f. Hence there is a linear element x − a of p. Then I
claim that p = (x − a). Suppose f(x) ∈ p. Then the division algorithm would give
f(x) = g(x)(x − a) +m where m ∈ C. Then m = f(x) − g(x)(x − a) ∈ p. If m ̸= 0,
then 1 ∈ p, giving a contradiction.

Thus we can and should (and must!) make a picture of A1C = SpecC[x] (see
Figure 3.1). This is just the first illustration of a point of view of Sophie Germain
[Ge]: “L’algèbre n’est qu’une géométrie écrite; la géométrie n’est qu’une algèbre
figurée.” (Algebra is but written geometry; geometry is but drawn algebra.)
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There is one “traditional” point for each complex number, plus one extra (“bonus”)
point [(0)]. We can mostly picture A1C as C: the point [(x − a)] we will reasonably
associate to a ∈ C. Where should we picture the point [(0)]? The best way of think-
ing about it is somewhat zen. It is somewhere on the complex line, but nowhere in
particular. Because (0) is contained in all of these prime ideals, we will somehow
associate it with this line passing through all the other points. This new point [(0)]
is called the “generic point” of the line. (We will formally define “generic point”
in §3.6.) It is “generically on the line” but you can’t pin it down any further than
that. It is not at any particular place on the line. (This is misleading too — we will
see in Easy Exercise 3.6.N that it is “near” every point. So it is near everything, but
located nowhere precisely.) We will place it far to the right for lack of anywhere
better to put it. You will notice that we sketch A1C as one-(real-)dimensional (even
though we picture it as an enhanced version of C); this is to later remind ourselves
that this will be a one-dimensional space, where dimensions are defined in an al-
gebraic (or complex-geometric) sense. (Dimension will be defined in Chapter 11.)

FIGURE 3.1. A picture of A1C = SpecC[x]

To give you some feeling for this space, we make some statements that are
currently undefined, but suggestive. The functions on A1C are the polynomials. So
f(x) = x2 − 3x+ 1 is a function. What is its value at [(x− 1)], which we think of as
the point 1 ∈ C? Answer: f(1)! Or equivalently, we can evaluate f(x) modulo x−1
— this is the same thing by the division algorithm. (What is its value at [(0)]? It is
f(x) (mod 0), which is just f(x).)

Here is a more complicated example: g(x) = (x − 3)3/(x − 2) is a “rational
function”. It is defined everywhere but x = 2. (When we know what the structure
sheaf is, we will be able to say that it is an element of the structure sheaf on the
open set A1C \ {2}.) We want to say that g(x) has a triple zero at 3, and a single pole
at 2, and we will be able to after §12.5.
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Example 2 (the affine line over k = k): A1k := Spec k[x] where k is an alge-
braically closed field. This is called the affine line over k. All of our discussion in
the previous example carries over without change. We will use the same picture,
which is after all intended to just be a metaphor.

Example 3: SpecZ. An amazing fact is that from our perspective, this will
look a lot like the affine line A1

k
. The integers, like k[x], form a unique factorization

domain, with a division algorithm. The prime ideals are: (0), and (p) where p
is prime. Thus everything from Example 1 carries over without change, even the
picture. Our picture of SpecZ is shown in Figure 3.2.

· · ·(2) (3) (5) (0)

FIGURE 3.2. A “picture” of SpecZ, which looks suspiciously like Figure 3.1

Let’s blithely carry over our discussion of functions to this space. 100 is a
function on SpecZ. Its value at (3) is “1 (mod 3)”. Its value at (2) is “0 (mod 2)”,
and in fact it has a double zero. 27/4 is a “rational function” on SpecZ, defined
away from (2). We want to say that it has a double pole at (2), and a triple zero at
(3). Its value at (5) is

27× 4−1 ≡ 2× (−1) ≡ 3 (mod 5).

(We will gradually make this discussion precise over time.)

Example 4: silly but important examples, and the German word for bacon.
The set Speck where k is any field is boring: one point. Spec 0, where 0 is the
zero-ring, is the empty set, as 0 has no prime ideals.

3.2.A. A SMALL EXERCISE ABOUT SMALL SCHEMES.
(a) Describe the set Spec k[ϵ]/(ϵ2). The ring k[ϵ]/(ϵ2) is called the ring of dual
numbers, and will turn out to be quite useful. You should think of ϵ as a very small
number, so small that its square is 0 (although it itself is not 0). It is a nonzero func-
tion whose value at all points is zero, thus giving our first example of functions
not being determined by their values at points. We will discuss this phenomenon
further in §3.2.11.
(b) Describe the set Spec k[x](x) (see §1.3.3 for a discussion of localization). We
will see this scheme again repeatedly, starting with §3.2.8 and Exercise 3.4.K. You
might later think of it as a shred of a particularly nice “smooth curve”.

In Example 2, we restricted to the case of algebraically closed fields for a rea-
son: things are more subtle if the field is not algebraically closed.

Example 5 (the affine line over R): A1R = SpecR[x]. Using the fact that R[x] is a
Euclidean domain domain, similar arguments to those of Examples 1–3 show that
the prime ideals are (0), (x− a) where a ∈ R, and (x2 + ax+ b) where x2 + ax+ b
is an irreducible quadratic. The latter two are maximal ideals, i.e., their quotients
are fields. For example: R[x]/(x− 3) ∼= R, R[x]/(x2 + 1) ∼= C.
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3.2.B. UNIMPORTANT EXERCISE. Show that for the last type of prime, of the form
(x2 + ax+ b), the quotient is always isomorphic to C.

So we have the points that we would normally expect to see on the real line,
corresponding to real numbers; the generic point 0; and new points which we may
interpret as conjugate pairs of complex numbers (the roots of the quadratic). This
last type of point should be seen as more akin to the real numbers than to the
generic point. You can picture A1R as the complex plane, folded along the real axis.
But the key point is that Galois-conjugate points (such as i and −i) are considered
glued.

Let’s explore functions on this space. Consider the function f(x) = x3 − 1. Its
value at the point [(x−2)] is f(x) = 7, or perhaps better, 7 (mod x−2). How about
at (x2 + 1)? We get

x3 − 1 ≡ −x− 1 (mod x2 + 1),

which may be profitably interpreted as −i− 1.
One moral of this example is that we can work over a non-algebraically closed

field if we wish. It is more complicated, but we can recover much of the informa-
tion we care about.

3.2.C. IMPORTANT EXERCISE. Describe the set A1Q. (This is harder to picture in a
way analogous to A1R. But the rough cartoon of points on a line, as in Figure 3.1,
remains a reasonable sketch.)

Example 6 (the affine line over Fp): A1Fp
= SpecFp[x]. As in the previous

examples, Fp[x] is a Euclidean domain, so the prime ideals are of the form (0) or
(f(x)) where f(x) ∈ Fp[x] is an irreducible polynomial, which can be of any degree.
Irreducible polynomials correspond to sets of Galois conjugates in Fp.

Note that SpecFp[x] has p points corresponding to the elements of Fp, but
also many more (infinitely more, see Exercise 3.2.D). This makes this space much
richer than simply p points. For example, a polynomial f(x) is not determined by
its values at the p elements of Fp, but it is determined by its values at the points of
SpecFp[x]. (As we have mentioned before, this is not true for all schemes.)

You should think about this, even if you are a geometric person — this intu-
ition will later turn up in geometric situations. Even if you think you are interested
only in working over an algebraically closed field (such as C), you will have non-
algebraically closed fields (such as C(x)) forced upon you.

3.2.D. EXERCISE. If k is a field, show that Speck[x] has infinitely many points.
(Hint: Euclid’s proof of the infinitude of primes of Z.)

Example 7 (the complex affine plane): A2C = SpecC[x, y]. (As with Examples 1
and 2, our discussion will apply with C replaced by any algebraically closed field.)
Sadly, C[x, y] is not a principal ideal domain: (x, y) is not a principal ideal. We
can quickly name some prime ideals. One is (0), which has the same flavor as the
(0) ideals in the previous examples. (x − 2, y − 3) is prime, and indeed maximal,
because C[x, y]/(x− 2, y− 3) ∼= C, where this isomorphism is via f(x, y) 7→ f(2, 3).
More generally, (x − a, y − b) is prime for any (a, b) ∈ C2. Also, if f(x, y) is an
irreducible polynomial (e.g., y− x2 or y2 − x3) then (f(x, y)) is prime.
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3.2.E. EXERCISE. Show that we have identified all the prime ideals of C[x, y]. Hint:
Suppose p is a prime ideal that is not principal. Show you can find f(x, y), g(x, y) ∈
p with no common factor. By considering the Euclidean algorithm in the Euclidean
domain C(x)[y], show that you can find a nonzero h(x) ∈ (f(x, y), g(x, y)) ⊂ p.
Using primality, show that one of the linear factors of h(x), say (x − a), is in p.
Similarly show there is some (y− b) ∈ p.

FIGURE 3.3. Picturing A2C = SpecC[x, y]

We now attempt to draw a picture of A2C (see Figure 3.3). The maximal prime
ideals of C[x, y] correspond to the traditional points in C2: [(x − a, y − b)] corre-
sponds to (a, b) ∈ C2. We now have to visualize the “bonus points”. [(0)] some-
how lives behind all of the traditional points; it is somewhere on the plane, but
nowhere in particular. So for example, it does not lie on the parabola y = x2. The
point [(y − x2)] lies on the parabola y = x2, but nowhere in particular on it. (Fig-
ure 3.3 is a bit misleading. For example, the point [(0)] isn’t in the fourth quadrant;
it is somehow near every other point, which is why it is depicted as a somewhat
diffuse large dot.) You can see from this picture that we already are implicitly
thinking about “dimension”. The prime ideals (x − a, y − b) are somehow of di-
mension 0, the prime ideals (f(x, y)) are of dimension 1, and (0) is of dimension
2. (All of our dimensions here are complex or algebraic dimensions. The complex
plane C2 has real dimension 4, but complex dimension 2. Complex dimensions
are in general half of real dimensions.) We won’t define dimension precisely until
Chapter 11, but you should feel free to keep it in mind before then.

Note too that maximal ideals correspond to the “smallest” points. Smaller
ideals correspond to “bigger” points. “One prime ideal contains another” means
that the points “have the opposite containment.” All of this will be made precise
once we have a topology. This order-reversal is a little confusing, and will remain
so even once we have made the notions precise.

We now come to the obvious generalization of Example 7.

Example 8 (complex affinen-space — important!): Let AnC := SpecC[x1, . . . , xn].
(Important definition: More generally, AnA is defined to be SpecA[x1, . . . , xn], where
A is an arbitrary ring. When the base ring is clear from context, the subscript A is
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often omitted. For pedants: the notation AnA implicitly includes the data of the n
“coordinate functions” x1, . . . , xn.) For concreteness, let’s consider n = 3. We now
have an interesting question in what at first appears to be pure algebra: What are
the prime ideals of C[x, y, z]?

Analogously to before, (x− a, y− b, z− c) is a prime ideal. This is a maximal
ideal, because its residue ring is a field (C); we think of these as “0-dimensional
points”. We will often write (a, b, c) for [(x−a, y−b, z−c)] because of our geomet-
ric interpretation of these ideals. There are no more maximal ideals, by Hilbert’s
Weak Nullstellensatz.

3.2.4. Hilbert’s Weak Nullstellensatz. — If k is an algebraically closed field, then the
maximal ideals of k[x1, . . . , xn] are precisely those ideals of the form (x1 − a1, . . . , xn −
an), where ai ∈ k.

We may as well state a slightly stronger version now.

3.2.5. Hilbert’s Nullstellensatz. — If k is any field, every maximal ideal of k[x1, . . . , xn]
has residue field a finite extension of k. Translation: any field extension of k that is finitely
generated as a ring is necessarily also finitely generated as a module (i.e., is a finite exten-
sion of fields).

This statement is also often called Zariski’s Lemma.

3.2.F. EXERCISE. Show that the Nullstellensatz 3.2.5 implies the Weak Nullstellen-
satz 3.2.4.

We will prove the Nullstellensatz in §7.4.3, and again in Exercise 11.2.B.
The following fact is a useful accompaniment to the Nullstellensatz.

3.2.G. EXERCISE (NOT REQUIRING THE NULLSTELLENSATZ). Any integral do-
main Awhich is a finite k-algebra (i.e., a k-algebra that is a finite-dimensional vec-
tor space over k) must be a field. Hint: for any nonzero x ∈ A, show ×x : A → A

is an isomorphism. (Thus, in combination the Nullstellensatz 3.2.5, we see that
prime ideals of k[x1, . . . , xn] with finite residue ring are the same as maximal ideals of
k[x1, . . . , xn]. This is worth remembering.)

There are other prime ideals of C[x, y, z] too. We have (0), which corresponds
to a “3-dimensional point”. We have (f(x, y, z)), where f is irreducible. To this
we associate the “hypersurface” f = 0, so this is “2-dimensional” in nature. But
we have not found them all! One clue: we have prime ideals of “dimension” 0,
2, and 3 — we are missing “dimension 1”. Here is one such prime ideal: (x, y).
We picture this as the locus where x = y = 0, which is the z-axis. This is a prime
ideal, as the corresponding quotient C[x, y, z]/(x, y) ∼= C[z] is an integral domain
(and should be interpreted as the functions on the z-axis). There are lots of “1-
dimensional prime ideals”, and it is not possible to classify them in a reasonable
way. It will turn out that they correspond to things that we think of as irreducible
curves. Thus remarkably the answer to the purely algebraic question (“what are
the prime ideals of C[x, y, z]”) is fundamentally geometric!

The fact that the points of A1Q corresponding to maximal ideals of the ring Q[x]
(what we will soon call “closed points”, see Definition 3.6.8) can be interpreted as
points of Q where Galois-conjugates are glued together (Exercise 3.2.C) extends to
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AnQ. For example, in A2Q, (
√
2,
√
2) is glued to (−

√
2,−

√
2) but not to (

√
2,−

√
2).

The following exercise will give you some idea of how this works.

3.2.H. EXERCISE. Describe the maximal ideal of Q[x, y] corresponding to (
√
2,
√
2)

and (−
√
2,−

√
2). Describe the maximal ideal of Q[x, y] corresponding to (

√
2,−

√
2)

and (−
√
2,
√
2). What are the residue fields in each case?

The description of “closed points” of A2Q (those points corresponding to maxi-

mal ideals of the ring Q[x, y]) as Galois-orbits of points in Q2 can even be extended
to other “nonclosed” points, as follows.

3.2.I. UNIMPORTANT AND TRICKY BUT FUN EXERCISE. Consider the map of sets
ϕ : C2 → A2Q defined as follows. (z1, z2) is sent to the prime ideal of Q[x, y] con-
sisting of polynomials vanishing at (z1, z2).
(a) What is the image of (π, π2)?
⋆ (b) Show that ϕ is surjective. (Warning: You will need some ideas we haven’t
discussed in order to solve this. Once we define the Zariski topology on A2Q, you
will be able to check that ϕ is continuous, where we give C2 the classical topology.
This example generalizes. For example, you may later be able to generalize this to
arbitrary dimension.)

3.2.6. Quotients and localizations. Two natural ways of getting new rings from
old — quotients and localizations — have interpretations in terms of spectra.

3.2.7. Quotients: SpecA/I as a subset of SpecA. It is an important fact that the
prime ideals of A/I are in bijection with the prime ideals of A containing I.

3.2.J. ESSENTIAL ALGEBRA EXERCISE (MANDATORY IF YOU HAVEN’T SEEN IT BE-
FORE). Suppose A is a ring, and I an ideal of A. Let ϕ : A → A/I. Show that ϕ−1

gives an inclusion-preserving bijection between prime ideals of A/I and prime
ideals of A containing I. Thus we can picture SpecA/I as a subset of SpecA.

As an important motivational special case, you now have a picture of affine
complex varieties. Suppose A is a finitely generated C-algebra, generated by x1, . . . ,
xn, with relations f1(x1, . . . , xn) = · · · = fr(x1, . . . , xn) = 0. Then this description
in terms of generators and relations naturally gives us an interpretation of SpecA
as a subset of AnC , which we think of as “traditional points” (n-tuples of complex
numbers) along with some “bonus” points we haven’t yet fully described. To see
which of the traditional points are in SpecA, we simply solve the equations f1 =
· · · = fr = 0. For example, SpecC[x, y, z]/(x2+y2−z2) may be pictured as shown in
Figure 3.4. (Admittedly this is just a “sketch of the R-points”, but we will still find
it helpful later.) This entire picture carries over (along with the Nullstellensatz)
with C replaced by any algebraically closed field. Indeed, the picture of Figure 3.4
can be said to depict k[x, y, z]/(x2 + y2 − z2) for most algebraically closed fields k
(although it is misleading in characteristic 2, because of the coincidence x2 + y2 −
z2 = (x+ y+ z)2).

3.2.8. Localizations: SpecS−1A as a subset of SpecA. The following exercise shows
how prime ideals behave under localization.
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FIGURE 3.4. A “picture” of SpecC[x, y, z]/(x2 + y2 − z2)

3.2.K. ESSENTIAL ALGEBRA EXERCISE (MANDATORY IF YOU HAVEN’T SEEN IT BE-
FORE). Suppose S is a multiplicative subset of A. Describe an order-preserving
bijection of the prime ideals of S−1A with the prime ideals of A that don’t meet the
multiplicative set S.

Recall from §1.3.3 that there are two important flavors of localization. The
first is Af = {1, f, f2, . . . }−1A where f ∈ A. A motivating example is A = C[x, y],
f = y−x2. The second isAp = (A−p)−1A, where p is a prime ideal. A motivating
example is A = C[x, y], S = A− (x, y).

If S = {1, f, f2, . . . }, the prime ideals of S−1A are just those prime ideals not con-
taining f — the points where “f doesn’t vanish”. (In §3.5, we will call this a distin-
guished open set, once we know what open sets are.) So to picture SpecC[x, y]y−x2 ,
we picture the affine plane, and throw out those points on the parabola y − x2 —
the points (a, a2) for a ∈ C (by which we mean [(x − a, y − a2)]), as well as the
“new kind of point” [(y− x2)].

It can be initially confusing to think about localization in the case where zerodi-
visors are inverted, because localizationA→ S−1A is not injective (Exercise 1.3.C).
Geometric intuition can help. Consider the case A = C[x, y]/(xy) and f = x. What
is the localization Af? The space SpecC[x, y]/(xy) “is” the union of the two axes
in the plane. Localizing means throwing out the locus where x vanishes. So we
are left with the x-axis, minus the origin, so we expect SpecC[x]x. So there should
be some natural isomorphism

(C[x, y]/(xy))x
∼ // C[x]x.

3.2.L. EXERCISE. Show that these two rings are isomorphic. (You will see that y
on the left goes to 0 on the right.)

If S = A−p, the prime ideals of S−1A are just the prime ideals ofA contained in
p. In our exampleA = C[x, y], p = (x, y), we keep all those points corresponding to
“things through the origin”, i.e., the 0-dimensional point (x, y), the 2-dimensional
point (0), and those 1-dimensional points (f(x, y)) where f(0, 0) = 0, i.e., those
“irreducible curves through the origin”. You can think of this being a shred of the
plane near the origin; anything not actually “visible” at the origin is discarded (see
Figure 3.5).
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SpecC[x, y](x,y)

FIGURE 3.5. Picturing SpecC[x, y](x,y) as a “shred of A2C”. Only
those points near the origin remain.

Another example is when A = k[x], and p = (x) (or more generally when p is
any maximal ideal). Then Ap has only two prime ideals (Exercise 3.2.A(b)). You
should see this as the germ of a “smooth curve”, where one point is the “classical
point”, and the other is the “generic point of the curve”. This is an example of a
discrete valuation ring, and indeed all discrete valuation rings should be visual-
ized in such a way. We will discuss discrete valuation rings in §12.5. By then we
will have justified the use of the words “smooth” and “curve”. (Reality check: try
to picture Spec of Z localized at (2) and at (0). How do the two pictures differ?)

3.2.9. Important fact: Maps of rings induce maps of spectra (as sets). We now
make an observation that will later grow up to be the notion of morphisms of
schemes.

3.2.M. IMPORTANT EASY EXERCISE. If ϕ : B → A is a map of rings, and p is a
prime ideal of A, show that ϕ−1(p) is a prime ideal of B.

Hence a map of rings ϕ : B → A induces a map of sets SpecA → SpecB “in
the opposite direction”. This gives a contravariant functor from the category of
rings to the category of sets: the composition of two maps of rings induces the
composition of the corresponding maps of spectra.

3.2.N. EASY EXERCISE (REALITY CHECK). Let B be a ring.
(a) Suppose I ⊂ B is an ideal. Show that the map SpecB/I → SpecB is the inclu-
sion of §3.2.7.
(b) Suppose S ⊂ B is a multiplicative set. Show that the map SpecS−1B → SpecB
is the inclusion of §3.2.8.

3.2.10. An explicit example. In the case of “affine complex varieties” (or indeed
affine varieties over any algebraically closed field), the translation between maps
given by explicit formulas and maps of rings is quite direct. For example, consider
a map from the parabola in C2 (with coordinates a and b) given by b = a2, to the
“curve” in C3 (with coordinates x, y, and z) cut out by the equations y = x2 and
z = y2. Suppose the map sends the point (a, b) ∈ C2 to the point (a, b, b2) ∈ C3.
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In our new language, we have a map

SpecC[a, b]/(b− a2) // SpecC[x, y, z]/(y− x2, z− y2)

given by

C[a, b]/(b− a2) C[x, y, z]/(y− x2, z− y2)oo

(a, b, b2) (x, y, z),
�oo

i.e., x 7→ a, y 7→ b, and z 7→ b2. If the idea is not yet clear, the following two
exercises are very much worth doing — they can be very confusing the first time
you see them, and very enlightening (and finally, trivial) when you finally figure
them out.

y-line x-line

FIGURE 3.6. The map C→ C given by x 7→ y = x2

3.2.O. IMPORTANT EXERCISE (SPECIAL CASE). Consider the map of complex
manifolds sending C → C via x 7→ y = x2. We interpret the “source” C as the
“x-line”, and the “target” C the “y-line”. You can picture it as the projection of
the parabola y = x2 in the xy-plane to the y-axis (see Figure 3.6). Interpret the
corresponding map of rings as given by C[y] → C[x] by y 7→ x2. Verify that the
preimage (the fiber) above the point a ∈ C is the point(s) ±

√
a ∈ C, using the

definition given above. (A more sophisticated version of this example appears in
Example 9.3.3. Warning: the roles of x and y are swapped there, in order to picture
double covers in a certain way.)

3.2.P. IMPORTANT EXERCISE (GENERALIZING EXAMPLE 3.2.10). Suppose k is a
field, and f1, . . . , fn ∈ k[x1, . . . , xm] are given. Letϕ : k[y1, . . . , yn]→ k[x1, . . . , xm]
be the ring morphism defined by yi 7→ fi.
(a) Show that ϕ induces a map of sets Spec k[x1, . . . , xm]/I→ Spec k[y1, . . . , yn]/J
for any ideals I ⊂ k[x1, . . . , xm] and J ⊂ k[y1, . . . , yn] such that ϕ(J) ⊂ I. (You may
wish to consider the case I = 0 and J = 0 first. In fact, part (a) has nothing to do
with k-algebras; you may wish to prove the statement when the rings k[x1, . . . , xm]
and k[y1, . . . , yn] are replaced by general rings A and B.)
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(b) Show that the map of part (a) sends the point (a1, . . . , am) ∈ km (or more
precisely, [(x1 − a1, . . . , xm − am)] ∈ Speck[x1, . . . , xm]) to

(f1(a1, . . . , am), . . . , fn(a1, . . . , am)) ∈ kn.

3.2.Q. EXERCISE: PICTURING AnZ . Consider the map of sets π : AnZ → SpecZ,
given by the ring map Z→ Z[x1, . . . , xn]. If p is prime, describe a bijection between
the fiber π−1([(p)]) and AnFp

. (You won’t need to describe either set! Which is good
because you can’t.) This exercise may give you a sense of how to picture maps
(see Figure 3.7), and in particular why you can think of AnZ as an “An-bundle”
over SpecZ. (Can you interpret the fiber over [(0)] as Ank for some field k?)

FIGURE 3.7. A picture of AnZ → SpecZ as a “family of An’s”, or
an “An-bundle over SpecZ”. What is the field k? How should
you “geometrically” think of the three points indicated?

3.2.11. Functions are not determined by their values at points: the fault of nilpo-
tents. We conclude this section by describing some strange behavior. We are de-
veloping machinery that will let us bring our geometric intuition to algebra. There
is one serious serious point where your intuition will be false, so you should know
now, and adjust your intuition appropriately. As noted by Mumford ([Mu2, p. 12]),
“it is this aspect of schemes which was most scandalous when Grothendieck de-
fined them.”

Suppose we have a function (ring element) vanishing at all points. Then it is
not necessarily the zero function! The translation of this question is: is the inter-
section of all prime ideals necessarily just 0? The answer is no, as is shown by the
example of the ring of dual numbers k[ϵ]/(ϵ2): ϵ ̸= 0, but ϵ2 = 0. (We saw this
ring in Exercise 3.2.A(a).) Any function whose power is zero certainly lies in the
intersection of all prime ideals.
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3.2.R. EXERCISE. Ring elements that have a power that is 0 are called nilpotents.
(a) Show that if I is an ideal of nilpotents, then the inclusion SpecB/I → SpecB
of Exercise 3.2.J is a bijection. Thus nilpotents don’t affect the underlying set. (We
will soon see in §3.4.5 that they won’t affect the topology either — the difference
will be in the structure sheaf.)
(b) Show that the nilpotents of a ring B form an ideal. This ideal is called the
nilradical, and is denoted N = N(B).

Thus the nilradical is contained in the intersection of all the prime ideals. The
converse is also true:

3.2.12. Theorem. — The nilradical N(A) is the intersection of all the prime ideals of A.
Geometrically: a function on SpecA vanishes at every point if and only if it is nilpotent.

3.2.S. EXERCISE. If you don’t know this theorem, then look it up, or better yet,
prove it yourself. (Hint: Use the fact that any proper ideal of A is contained in
a maximal ideal, which requires Zorn’s Lemma. Possible further hint: Suppose
x /∈ N(A). We wish to show that there is a prime ideal not containing x. Show that
Ax is not the 0-ring, by showing that 1 ̸= 0.)

3.2.13. In particular, although it is upsetting that functions are not determined by
their values at points, we have precisely specified what the failure of this intuition
is: two functions have the same values at points if and only if they differ by a
nilpotent. You should think of this geometrically: a function vanishes at every
point of the spectrum of a ring if and only if it has a power that is zero. And if
there are no nonzero nilpotents — if N = (0) — then functions are determined by
their values at points. If a ring has no nonzero nilpotents, we say that it is reduced.

3.2.T. FUN UNIMPORTANT EXERCISE: DERIVATIVES WITHOUT DELTAS AND EPSILONS
(OR AT LEAST WITHOUT DELTAS). Suppose we have a polynomial f(x) ∈ k[x]. In-
stead, we work in k[x, ϵ]/(ϵ2). What then is f(x + ϵ)? (Do a couple of examples,
then prove the pattern you observe.) This is a hint that nilpotents will be important
in defining differential information (Chapter 21).

3.3 Visualizing schemes I: generic points

A heavy warning used to be given that pictures are not rigorous; this has never had
its bluff called and has permanently frightened its victims into playing for safety. Some
pictures, of course, are not rigorous, but I should say most are (and I use them whenever
possible myself).

— J. E. Littlewood, [Lit, p. 54]

For years, you have been able to picture x2 + y2 = 1 in the plane, and you
now have an idea of how to picture SpecZ. If we are claiming to understand rings
as geometric objects (through the Spec functor), then we should wish to develop
geometric insight into them. To develop geometric intuition about schemes, it is
helpful to have pictures in your mind, extending your intuition about geometric
spaces you are already familiar with. As we go along, we will empirically develop
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some idea of what schemes should look like. This section summarizes what we
have gleaned so far.

Some mathematicians prefer to think completely algebraically, and never think
in terms of pictures. Others will be disturbed by the fact that this is an art, not a sci-
ence. And finally, this hand-waving will necessarily never be used in the rigorous
development of the theory. For these reasons, you may wish to skip these sections.
However, having the right picture in your mind can greatly help understanding
what facts should be true, and how to prove them.

Our starting point is the example of “affine complex varieties” (things cut out
by equations involving a finite number variables over C), and more generally simi-
lar examples over arbitrary algebraically closed fields. We begin with notions that
are intuitive (“traditional” points behaving the way you expect them to), and then
add in the two features which are new and disturbing, generic points and nonre-
duced behavior. You can then extend this notion to seemingly different spaces,
such as SpecZ.

Hilbert’s Weak Nullstellensatz 3.2.4 shows that the “traditional points” are
present as points of the scheme, and this carries over to any algebraically closed
field. If the field is not algebraically closed, the traditional points are glued to-
gether into clumps by Galois conjugation, as in Examples 5 (the real affine line)
and 6 (the affine line over Fp) in §3.2. This is a geometric interpretation of Hilbert’s
Nullstellensatz 3.2.5.

But we have some additional points to add to the picture. You should re-
member that they “correspond” to “irreducible” “closed” (algebraic) subsets. As
motivation, consider the case of the complex affine plane (Example 7): we had
one for each irreducible polynomial, plus one corresponding to the entire plane.
We will make “closed” precise when we define the Zariski topology (in the next
section). You may already have an idea of what “irreducible” should mean; we
make that precise at the start of §3.6. By “correspond” we mean that each closed
irreducible subset has a corresponding point sitting on it, called its generic point
(defined in §3.6). It is a new point, distinct from all the other points in the subset.
(The correspondence is described in Exercise 3.7.E for SpecA, and in Exercise 5.1.B
for schemes in general.) We don’t know precisely where to draw the generic point,
so we may stick it arbitrarily anywhere, but you should think of it as being “almost
everywhere”, and in particular, near every other point in the subset.

In §3.2.7, we saw how the points of SpecA/I should be interpreted as a subset
of SpecA. So for example, when you see SpecC[x, y]/(x + y), you should picture
this not just as a line, but as a line in the xy-plane; the choice of generators x and y
of the algebra C[x, y] implies an inclusion into affine space.

In §3.2.8, we saw how the points of SpecS−1A should be interpreted as subsets
of SpecA. The two most important cases were discussed. The points of SpecAf
correspond to the points of SpecA where f doesn’t vanish; we will later (§3.5)
interpret this as a distinguished open set.

If p is a prime ideal, then SpecAp should be seen as a “shred of the space
SpecA near the subset corresponding to p”. The simplest nontrivial case of this
is p = (x) ⊂ Spec k[x] = A (see Exercise 3.2.A, which we discuss again in Exer-
cise 3.4.K).
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“If any one of them can explain it,” said Alice, (she had grown so large in the last few
minutes that she wasn’t a bit afraid of interrupting him), “I’ll give him sixpence. I don’t
believe there’s an atom of meaning in it.” ...

“If there’s no meaning in it,” said the King, “that saves a world of trouble, you know,
as we needn’t try to find any.”

— Lewis Carroll [Carr, Ch. XII]

3.4 The underlying topological space of an affine scheme

We next introduce the Zariski topology on the spectrum of a ring. When you
first hear the definition, it seems odd, but with a little experience it becomes rea-
sonable. As motivation, consider A2C = SpecC[x, y], the complex plane (with a few
extra points). In algebraic geometry, we will only be allowed to consider algebraic
functions, i.e., polynomials in x and y. The locus where a polynomial vanishes
should reasonably be a closed set, and the Zariski topology is defined by saying
that the only sets we should consider closed should be these sets, and other sets
forced to be closed by these. In other words, it is the coarsest topology where these
sets are closed.

In particular, although topologies are often described using open subsets, it
will be more convenient for us to define this topology in terms of closed subsets.
If S is a subset of a ring A, define the Vanishing set of S by

V(S) := {[p] ∈ SpecA : S ⊂ p}.

It is the set of points on which all elements of S are zero. (It should now be second
nature to equate “vanishing at a point” with “contained in a prime”.) We declare
that these — and no others — are the closed subsets.

For example, consider V(xy, yz) ⊂ A3C = SpecC[x, y, z]. Which points are con-
tained in this locus? We think of this as solving xy = yz = 0. Of the “traditional”
points (interpreted as ordered triples of complex numbers, thanks to the Hilbert’s
Nullstellensatz 3.2.4), we have the points where y = 0 or x = z = 0: the xz-plane
and the y-axis respectively. Of the “new” points, we have the generic point of the
xz-plane (also known as the point [(y)]), and the generic point of the y-axis (also
known as the point [(x, z)]). You might imagine that we also have a number of
“one-dimensional” points contained in the xz-plane.

3.4.A. EASY EXERCISE. Check that the x-axis is contained in V(xy, yz). (The x-axis
is defined by y = z = 0, and the y-axis and z-axis are defined analogously.)

Let’s return to the general situation. The following exercise lets us restrict
attention to vanishing sets of ideals.

3.4.B. EASY EXERCISE. Show that if (S) is the ideal generated by S, then V(S) =
V((S)).

We define the Zariski topology by declaring that V(S) is closed for all S. Let’s
check that this is a topology:

3.4.C. EXERCISE.
(a) Show that ∅ and SpecA are both open subsets of SpecA.
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(b) If Ii is a collection of ideals (as i runs over some index set), show that ∩iV(Ii) =
V(
∑
i Ii). Hence the union of any collection of open sets is open.

(c) Show that V(I1) ∪ V(I2) = V(I1I2). (The product of two ideals I1 and I2 of A
are finite A-linear combinations of products of elements of I1 and I2, i.e., elements
of the form

∑n
j=1 i1,ji2,j, where ik,j ∈ Ik. Equivalently, it is the ideal generated by

products of elements of I1 and I2. You should quickly check that this is an ideal,
and that products are associative, i.e., (I1I2)I3 = I1(I2I3).) Hence the intersection
of any finite number of open sets is open.

3.4.1. Properties of the “vanishing set” function V(·). The function V(·) is ob-
viously inclusion-reversing: If S1 ⊂ S2, then V(S2) ⊂ V(S1). Warning: We could
have equality in the second inclusion without equality in the first, as the next exer-
cise shows.

3.4.D. EXERCISE/DEFINITION. If I ⊂ A is an ideal, then define its radical by

√
I := {r ∈ A : rn ∈ I for some n ∈ Z>0}.

For example, the nilradical N (§3.2.R) is
√
(0). Show that

√
I is an ideal (cf. Exer-

cise 3.2.R(b)). Show that V(
√
I) = V(I). We say an ideal is radical if it equals its

own radical. Show that
√√

I =
√
I, and that prime ideals are radical.

Here are two useful consequences. As (I ∩ J)2 ⊂ IJ ⊂ I ∩ J (products of ideals
were defined in Exercise 3.4.C), we have that V(IJ) = V(I ∩ J) (= V(I) ∪ V(J)
by Exercise 3.4.C(c)). Also, combining this with Exercise 3.4.B, we see V(S) =

V((S)) = V(
√
(S)).

3.4.E. EXERCISE (RADICALS COMMUTE WITH FINITE INTERSECTIONS). If I1, . . . ,
In are ideals of a ring A, show that

√
∩ni=1Ii = ∩ni=1

√
Ii. We will use this property

repeatedly without referring back to this exercise.

3.4.F. EXERCISE FOR LATER USE. Show that
√
I is the intersection of all the prime

ideals containing I. (Hint: Use Theorem 3.2.12 on an appropriate ring.)

3.4.2. Examples. Let’s see how this meshes with our examples from the previous
section.

Recall that A1C, as a set, was just the “traditional” points (corresponding to
maximal ideals, in bijection with a ∈ C), and one “new” point [(0)]. The Zariski
topology on A1C is not that exciting: the open sets are the empty set, and A1C minus a
finite number of maximal ideals. (It “almost” has the cofinite topology. Notice that
the open sets are determined by their intersections with the “traditional points”.
The “new” point [(0)] comes along for the ride, which is a good sign that it is
harmless. Ignoring the “new” point, observe that the topology on A1C is a coarser
topology than the classical topology on C.)

3.4.G. EXERCISE. Describe the topological space A1k (cf. Exercise 3.2.D). (Notice
that the strange new point [(0)] is “near every other point” — every neighborhood
of every point contains [(0)]. This is typical of these new points, see Easy Exer-
cise 3.6.N.)
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The case SpecZ is similar. The topology is “almost” the cofinite topology in
the same way. The open sets are the empty set, and SpecZ minus a finite number
of “ordinary” ((p) where p is prime) primes.

3.4.3. Closed subsets of A2C. The case A2C is more interesting. You should think
through where the “one-dimensional prime ideals” fit into the picture. In Exer-
cise 3.2.E, we identified all the prime ideals of C[x, y] (i.e., the points of A2C) as the
maximal ideals [(x− a, y− b)] (where a, b ∈ C — “zero-dimensional points”), the
“one-dimensional points” [(f(x, y))] (where f(x, y) is irreducible), and the “two-
dimensional point” [(0)].

Then the closed subsets are of the following form:
(a) the entire space (the closure of the “two-dimensional point” [(0)]), and
(b) a finite number (possibly none) of “curves” (each the closure of a “one-

dimensional point” — the “one-dimensional point” along with the “zero-dimensional
points” “lying on it”) and a finite number (possibly none) of “zero-dimensional”
points (what we will soon call “closed points”, see Definition 3.6.8).

We will soon know enough to verify this using general theory, but you can
prove it yourself now, using ideas in Exercise 3.2.E. (The key idea: if f(x, y) and
g(x, y) are irreducible polynomials that are not multiples of each other, why do
their zero sets intersect in a finite number of points?)

3.4.4. Important fact: Maps of rings induce continuous maps of topological
spaces. We saw in §3.2.9 that a map of rings ϕ : B → A induces a map of sets
π : SpecA→ SpecB.

3.4.H. IMPORTANT EASY EXERCISE. By showing that closed sets pull back to
closed sets, show that π is a continuous map. Interpret Spec as a contravariant
functor Rings→ Top.

Not all continuous maps arise in this way. Consider for example the contin-
uous map on A1C that is the identity except 0 and 1 (i.e., [(x)] and [(x − 1)]) are
swapped; no polynomial can manage this marvellous feat.

In §3.2.9, we saw that SpecB/I and Spec S−1B are naturally subsets of SpecB.
It is natural to ask if the Zariski topology behaves well with respect to these inclu-
sions, and indeed it does.

3.4.I. IMPORTANT EXERCISE (CF. EXERCISE 3.2.N). Suppose that I, S ⊂ B are an
ideal and multiplicative subset respectively.
(a) Show that SpecB/I is naturally a closed subset of SpecB. If S = {1, f, f2, . . . }

(f ∈ B), show that SpecS−1B is naturally an open subset of SpecB. Show that for
arbitrary S, Spec S−1B need not be open or closed. (Hint: SpecQ ⊂ SpecZ, or
possibly Figure 3.5.)
(b) Show that the Zariski topology on SpecB/I (resp. Spec S−1B) is the subspace
topology induced by inclusion in SpecB. (Hint: compare closed subsets.)

3.4.5. In particular, if I ⊂ N is an ideal of nilpotents, the bijection SpecB/I →
SpecB (Exercise 3.2.R) is a homeomorphism. Thus nilpotents don’t affect the topo-
logical space. (The difference will be in the structure sheaf.)
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3.4.J. USEFUL EXERCISE FOR LATER. Suppose I ⊂ B is an ideal. Show that f van-
ishes on V(I) if and only if f ∈

√
I (i.e., fn ∈ I for some n ≥ 1). (Hint: Exercise 3.4.F.

If you are stuck, you will get another hint when you see Exercise 3.5.E.)

3.4.K. EASY EXERCISE (CF. EXERCISE 3.2.A). Describe the topological space Speck[x](x).

3.5 A base of the Zariski topology on SpecA: Distinguished open
sets

If f ∈ A, define the distinguished open set

D(f) := {[p] ∈ SpecA : f /∈ p}

= {[p] ∈ SpecA : f([p]) ̸= 0}.
It is the locus where f doesn’t vanish. (I often privately write this as D(f ̸= 0)
to remind myself of this. I also privately call this the “Doesn’t-vanish set” of f
in analogy with V(f) being the Vanishing set of f.) We have already seen this set
when discussing SpecAf as a subset of SpecA. For example, we have observed
that the Zariski-topology on the distinguished open set D(f) ⊂ SpecA coincides
with the Zariski topology on SpecAf (Exercise 3.4.I).

The reason these sets are important is that they form a particularly nice base
for the (Zariski) topology:

3.5.A. EASY EXERCISE. Show that the distinguished open sets form a base for the
(Zariski) topology. (Hint: Given a subset S ⊂ A, show that the complement of
V(S) is ∪f∈SD(f).)

Here are some important but not difficult exercises to give you a feel for this
concept.

3.5.B. EXERCISE. Suppose fi ∈ A as i runs over some index set J. Show that
∪i∈JD(fi) = SpecA if and only if ({fi}i∈J) = A, or equivalently and very usefully,
if there are ai (i ∈ J), all but finitely many 0, such that

∑
i∈J aifi = 1. (One of the

directions will use the fact that any proper ideal ofA is contained in some maximal
ideal.)

3.5.C. EXERCISE. Show that if SpecA is an infinite union of distinguished open
sets ∪j∈JD(fj), then in fact it is a union of a finite number of these, i.e., there is a
finite subset J ′ so that SpecA = ∪j∈J ′D(fj). (Hint: Exercise 3.5.B.)

3.5.D. EASY EXERCISE. Show that D(f) ∩D(g) = D(fg).

3.5.E. IMPORTANT EXERCISE (CF. EXERCISE 3.4.J). Show that D(f) ⊂ D(g) if and
only if fn ∈ (g) for some n ≥ 1, if and only if g is an invertible element of Af.

We will use Exercise 3.5.E often. You can solve it thinking purely algebraically,
but the following geometric interpretation may be helpful. (You should try to
draw your own picture to go with this discussion.) Inside SpecA, we have the
closed subset V(g) = SpecA/(g), where g vanishes, and its complement D(g),
where g doesn’t vanish. Then f is a function on this closed subset V(g) (or more
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precisely, on SpecA/(g)), and by assumption it vanishes at all points of the closed
subset. Now any function vanishing at every point of the spectrum of a ring must
be nilpotent (Theorem 3.2.12). In other words, there is some n such that fn = 0 in
A/(g), i.e., fn ≡ 0 (mod g) in A, i.e., fn ∈ (g).

3.5.F. EASY EXERCISE. Show that D(f) = ∅ if and only if f ∈ N.

3.6 Topological (and Noetherian) properties

Many topological notions are useful when applied to the topological space
SpecA, and later, to schemes.

3.6.1. Possible topological attributes of SpecA: connectedness, irreducibility,
quasicompactness.

3.6.2. Connectedness.
A topological space X is connected if it cannot be written as the disjoint union

of two nonempty open sets. Exercise 3.6.A below gives an example of a noncon-
nected SpecA, and the subsequent remark explains that all examples are of this
form.

3.6.A. EXERCISE. If A = A1 × A2 × · · · × An, describe a homeomorphism
SpecA1

⨿
SpecA2

⨿
· · ·
⨿

SpecAn → SpecA for which each SpecAi is mapped
onto a distinguished open subsetD(fi) of SpecA. Thus Spec

∏n
i=1Ai =

⨿n
i=1 SpecAi

as topological spaces. (Hint: reduce to n = 2 for convenience. Let f1 = (1, 0) and
f2 = (0, 1).)

3.6.3. Remark. An extension of Exercise 3.6.A (that you can prove if you wish)
is that SpecA is not connected if and only if A is isomorphic to the product of
nonzero rings A1 and A2. The key idea is to show that both conditions are equiva-
lent to there existing nonzero a1, a2 ∈ A for which a21 = a1, a22 = a2, a1 + a2 = 1,
and hence a1a2 = 0. An element a ∈ A satisfying a2 = a is called an idempotent.
This will appear as Exercise 9.5.J.

3.6.4. Irreducibility.
A topological space is said to be irreducible if it is nonempty, and it is not the

union of two proper closed subsets. In other words, a nonempty topological space
X is irreducible if whenever X = Y ∪ Zwith Y and Z closed in X, we have Y = X or
Z = X. This is a less useful notion in classical geometry — C2 is reducible (i.e., not
irreducible), but we will see that A2C is irreducible (Exercise 3.6.C).

3.6.B. EASY EXERCISE.
(a) Show that in an irreducible topological space, any nonempty open set is dense.
(For this reason, you will see that unlike in the classical topology, in the Zariski
topology, nonempty open sets are all “huge”.)
(b) If X is a topological space, and Z (with the subspace topology) is an irreducible
subset, then the closure Z in X is irreducible as well.
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3.6.C. EASY EXERCISE. If A is an integral domain, show that SpecA is irreducible.
(Hint: pay attention to the generic point [(0)].) We will generalize this in Exer-
cise 3.7.F.

3.6.D. EXERCISE. Show that an irreducible topological space is connected.

3.6.E. EXERCISE. Give (with proof!) an example of a ring A where SpecA is
connected but reducible. (Possible hint: a picture may help. The symbol “×” has
two “pieces” yet is connected.)

3.6.F. TRICKY EXERCISE.
(a) Suppose I = (wz−xy,wy−x2, xz−y2) ⊂ k[w, x, y, z]. Show that Speck[w, x, y, z]/I
is irreducible, by showing that k[w, x, y, z]/I is an integral domain. (This is hard,
so here is one of several possible hints: Show that k[w, x, y, z]/I is isomorphic to
the subring of k[a, b] generated by monomials of degree divisible by 3. There are
other approaches as well, some of which we will see later. This is an example of
a hard question: how do you tell if an ideal is prime?) We will later see this as
the cone over the twisted cubic curve (the twisted cubic curve is defined in Exer-
cise 8.2.A, and is a special case of a Veronese embedding, §8.2.6).
⋆ (b) Note that the generators of the ideal of part (a) may be rewritten as the equa-
tions ensuring that

rank
(
w x y

x y z

)
≤ 1,

i.e., as the determinants of the 2× 2 submatrices. Generalize part (a) to the ideal of
rank one 2× nmatrices. This notion will correspond to the cone (§8.2.12) over the
degree n rational normal curve (Exercise 8.2.J).

3.6.5. Quasicompactness.
A topological space X is quasicompact if given any cover X = ∪i∈IUi by open

sets, there is a finite subset S of the index set I such that X = ∪i∈SUi. Informally:
every open cover has a finite subcover. We will like this condition, because we are
afraid of infinity. Depending on your definition of “compactness”, this is the defi-
nition of compactness, minus possibly a Hausdorff condition. However, this isn’t
really the algebro-geometric analog of “compact” (we certainly wouldn’t want A1C
to be compact) — the right analog is “properness” (§10.3).

3.6.G. EXERCISE.
(a) Show that SpecA is quasicompact. (Hint: Exercise 3.5.C.)
⋆ (b) (less important) Show that in general SpecA can have nonquasicompact open
sets. Possible hint: letA = k[x1, x2, x3, . . . ] and m = (x1, x2, . . . ) ⊂ A, and consider
the complement of V(m). This example will be useful to construct other “coun-
terexamples” later, e.g., Exercises 7.1.C and 5.1.J. In Exercise 3.6.T, we will see that
such weird behavior doesn’t happen for “suitably nice” (Noetherian) rings.

3.6.H. EXERCISE.
(a) If X is a topological space that is a finite union of quasicompact spaces, show
that X is quasicompact.
(b) Show that every closed subset of a quasicompact topological space is quasicom-
pact.
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3.6.6. ⋆⋆ Fun but irrelevant remark. Exercise 3.6.A shows that
⨿n
i=1 SpecAi ∼=

Spec
∏n
i=1Ai, but this never holds if “n is infinite” and all Ai are nonzero, as

Spec of any ring is quasicompact (Exercise 3.6.G(a)). This leads to an interesting
phenomenon. We show that Spec

∏∞
i=1Ai is “strictly bigger” than

⨿∞
i=1 SpecAi

where each Ai is isomorphic to the field k. First, we have an inclusion of sets⨿∞
i=1 SpecAi ↪→ Spec

∏∞
i=1Ai, as there is a maximal ideal of

∏
Ai correspond-

ing to each i (precisely, those elements 0 in the ith component.) But there are other
maximal ideals of

∏
Ai. Hint: describe a proper ideal not contained in any of these

maximal ideals. (One idea: consider elements
∏
ai that are “eventually zero”, i.e.,

ai = 0 for i≫ 0.) This leads to the notion of ultrafilters, which are very useful, but
irrelevant to our current discussion.

3.6.7. Possible topological properties of points of SpecA.

3.6.8. Definition. A point of a topological space p ∈ X is said to be a closed point
if {p} is a closed subset. In the classical topology on Cn, all points are closed. In
SpecZ and Spec k[t], all the points are closed except for [(0)].

3.6.I. EXERCISE. Show that the closed points of SpecA correspond to the maximal
ideals. (In particular, non-empty affine schemes have closed points, as nonzero
rings have maximal ideals, §0.3.)

3.6.9. Connection to the classical theory of varieties. Hilbert’s Nullstellensatz lets us
interpret the closed points of AnC as the n-tuples of complex numbers. More gen-
erally, the closed points of Speck[x1, . . . , xn]/(f1, . . . , fr) are naturally interpreted
as those points in k

n
satisfying the equations f1 = · · · = fr = 0 (see Exercises 3.2.J

and 3.2.N(a) for example). Hence from now on we will say “closed point” instead
of “traditional point” and “non-closed point” instead of “bonus” point when dis-
cussing subsets of An

k
.

3.6.J. EXERCISE.
(a) Suppose that k is a field, and A is a finitely generated k-algebra. Show that
closed points of SpecA are dense, by showing that if f ∈ A, andD(f) is a nonempty
(distinguished) open subset of SpecA, thenD(f) contains a closed point of SpecA.
Hint: note thatAf is also a finitely generated k-algebra. Use the Nullstellensatz 3.2.5
to recognize closed points of Spec of a finitely generated k-algebra B as those for
which the residue field is a finite extension of k. Apply this to both B = A and
B = Af.
(b) Show that if A is a k-algebra that is not finitely generated the closed points
need not be dense. (Hint: Exercise 3.4.K.)

3.6.K. EXERCISE. Suppose k is an algebraically closed field, andA = k[x1, . . . , xn]/I
is a finitely generated k-algebra with N(A) = {0} (so the discussion of §3.2.13 ap-
plies). Consider the set X = SpecA as a subset of Ank . The space Ank contains
the “classical” points kn. Show that functions on X are determined by their val-
ues on the closed points (by the weak Nullstellensatz 3.2.4, the “classical” points
kn ∩ SpecA of SpecA). Hint: if f and g are different functions on X, then f − g is
nowhere zero on an open subset of X. Use Exercise 3.6.J(a).
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Once we know what a variety is (Definition 10.1.7), this will immediately im-
ply that a function on a variety over an algebraically closed field is determined by its values
on the “classical points”. (Before the advent of scheme theory, functions on varieties
— over algebraically closed fields — were thought of as functions on “classical”
points, and Exercise 3.6.K basically shows that there is no harm in thinking of “tra-
ditional” varieties as a particular flavor of schemes.)

3.6.10. Specialization and generization. Given two points x, y of a topological space
X, we say that x is a specialization of y, and y is a generization of x, if x ∈ {y}.
This (and Exercise 3.6.L) now makes precise our hand-waving about “one point
containing another”. It is of course nonsense for a point to contain another. But it
is not nonsense to say that the closure of a point contains another. For example, in
A2C = SpecC[x, y], [(y − x2)] is a generization of [(x − 2, y − 4)] = (2, 4) ∈ C2, and
(2, 4) is a specialization of [(y− x2)] (see Figure 3.8).

FIGURE 3.8. (2, 4) = [(x− 2y− 4)] is a specialization of [(y− x2)].
[(y− x2)] is a generization of (2, 4).

3.6.L. EXERCISE. If X = SpecA, show that [q] is a specialization of [p] if and only
if p ⊂ q. Hence show that V(p) = {[p]}.

3.6.11. Definition. We say that a point p ∈ X is a generic point for a closed subset
K if {p} = K.

This important notion predates Grothendieck. The early twentieth-century
Italian algebraic geometers had a notion of “generic points” of a variety, by which
they meant points with no special properties, so that anything proved of “a generic
point” was true of “almost all” the points on that variety. The modern “generic
point” has the same intuitive meaning. If something is “generically” or “mostly”
true for the points of an irreducible subset, in the sense of being true for a dense
open subset (for “almost all points”), then it is true for the generic point, and vice
versa. (This is a statement of principle, not of fact. An interesting case is “reduced-
ness”, for which this principle does not hold in general, but does hold for “reason-
able” schemes such as varieties, see Remark 5.2.2.) For example, a function has
value zero at the generic point of an integral scheme if and only if it has the value
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zero at all points. (See Exercise 5.5.C and the paragraph following it, although you
will be able to prove this yourself well before then.) You should keep an eye out
for other examples of this.

The phrase general point does not have the same meaning. The phrase “the
general point of K satisfies such-and-such a property” means “every point of some
dense open subset of X satisfies such-and-such a property”. Be careful not to
confuse “general” and “generic”. But be warned that accepted terminology does
not always follow this convention; witness “generic freeness” (see Lemma 7.4.4),
“generic flatness” (§24.5.9), and “generic smoothness” (§25.3, for example).

3.6.M. EXERCISE. Verify that [(y− x2)] ∈ A2 is a generic point for V(y− x2).

As more motivation for the terminology “generic”: we think of [(y − x2)] as
being some nonspecific point on the parabola (with the closed points (a, a2) ∈
C2, i.e., (x − a, y − a2) for a ∈ C, being “specific points”); it is “generic” in the
conventional sense of the word. We might “specialize it” to a specific point of
the parabola; hence for example (2, 4) is a specialization of [(y − x2)]. (Again, see
Figure 3.8.) To make this somewhat more precise:

3.6.N. EASY EXERCISE. Suppose p is a generic point for the closed subset K. Show
that it is “near every point q of K” (every neighborhood of q contains p), and “not
near any point r not in K” (there is a neighborhood of r not containing p). (This
idea was mentioned in §3.2.3 Example 1 and in Exercise 3.4.G.)

We will soon see (Exercise 3.7.E) that there is a natural bijection between points
of SpecA and irreducible closed subsets of SpecA, sending each point to its clo-
sure, and each irreducible closed subset to its (unique) generic point. You can
prove this now, but we will wait until we have developed some convenient termi-
nology.

3.6.12. Irreducible and connected components, and Noetherian conditions.
An irreducible component of a topological space is a maximal irreducible

subset (an irreducible subset not contained in any larger irreducible subset). irre-
ducible components are closed (as the closure of irreducible subsets are irreducible,
Exercise 3.6.B(b)), and it can be helpful to think of irreducible components of a
topological space X as maximal among the irreducible closed subsets of X. We
think of these as the “pieces of X” (see Figure 3.9).

Similarly, a subset Y of a topological space X is a connected component if it
is a maximal connected subset (a connected subset not contained in any larger
connected subset).

3.6.O. EXERCISE (EVERY TOPOLOGICAL SPACE IS THE UNION OF IRREDUCIBLE
COMPONENTS). Show that every point x of a topological space X is contained
in an irreducible component of X. Hint: Zorn’s Lemma. More precisely, consider
the partially ordered set S of irreducible closed subsets of X containing x. Show
that there exists a maximal totally ordered subset {Zα} of S . Show that ∪Zα is
irreducible.

3.6.13. Remark. Every point is contained in a connected component, and con-
nected components are always closed. You can prove this now, but we deliberately
postpone this until we need it, in an optional starred section (Exercise 9.5.H). On
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FIGURE 3.9. This closed subset of A2C has six irreducible components

the other hand, connected components need not be open, see [Stacks, tag 004T].
An example of an affine scheme with connected components that are not open is
Spec(

∏∞
1 F2).

3.6.14. In the examples we have considered, the spaces have naturally broken up
into a finite number of irreducible components. For example, the locus xy = 0

in A2C we think of as having two “pieces” — the two axes. The reason for this is
that their underlying topological spaces (as we shall soon establish) are Noether-
ian. A topological space X is called Noetherian if it satisfies the descending chain
condition for closed subsets: any sequence Z1 ⊃ Z2 ⊃ · · · ⊃ Zn ⊃ · · · of closed
subsets eventually stabilizes: there is an r such that Zr = Zr+1 = · · · . Here is a
first example (which you should work out explicitly, not using Noetherian rings).

3.6.P. EXERCISE. Show that A2C is a Noetherian topological space: any decreasing
sequence of closed subsets of A2C = SpecC[x, y] must eventually stabilize. Note
that it can take arbitrarily long to stabilize. (The closed subsets of A2C were de-
scribed in §3.4.3.) Show that C2 with the classical topology is not a Noetherian
topological space.

3.6.15. Proposition. — Suppose X is a Noetherian topological space. Then every
nonempty closed subset Z can be expressed uniquely as a finite union Z = Z1 ∪ · · · ∪ Zn
of irreducible closed subsets, none contained in any other.

Translation: any closed subset Z has a finite number of “pieces”.

Proof. The following technique is called Noetherian induction, for reasons that
will be clear. We will use it again, many times.

Consider the collection of closed subsets of X that cannot be expressed as a
finite union of irreducible closed subsets. We will show that it is empty. Otherwise,
let Y1 be one such. If Y1 properly contains another such, then choose one, and call
it Y2. If Y2 properly contains another such, then choose one, and call it Y3, and so
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on. By the descending chain condition, this must eventually stop, and we must
have some Yr that cannot be written as a finite union of irreducible closed subsets,
but every closed subset properly contained in it can be so written. But then Yr is
not itself irreducible, so we can write Yr = Y ′∪Y ′′ where Y ′ and Y ′′ are both proper
closed subsets. Both of these by hypothesis can be written as the union of a finite
number of irreducible subsets, and hence so can Yr, yielding a contradiction. Thus
each closed subset can be written as a finite union of irreducible closed subsets.
We can assume that none of these irreducible closed subsets contain any others, by
discarding some of them.

We now show uniqueness. Suppose

Z = Z1 ∪ Z2 ∪ · · · ∪ Zr = Z ′
1 ∪ Z ′

2 ∪ · · · ∪ Z ′
s

are two such representations. Then Z ′
1 ⊂ Z1 ∪ Z2 ∪ · · · ∪ Zr, so Z ′

1 = (Z1 ∩ Z ′
1) ∪

· · · ∪ (Zr ∩ Z ′
1). Now Z ′

1 is irreducible, so one of these is Z ′
1 itself, say (without

loss of generality) Z1 ∩ Z ′
1. Thus Z ′

1 ⊂ Z1. Similarly, Z1 ⊂ Z ′
a for some a; but

because Z ′
1 ⊂ Z1 ⊂ Z ′

a, and Z ′
1 is contained in no other Z ′

i, we must have a = 1,
and Z ′

1 = Z1. Thus each element of the list of Z’s is in the list of Z ′’s, and vice
versa, so they must be the same list. □

3.6.Q. EXERCISE. Show that every connected component of a topological space
X is the union of irreducible components of X. Show that any subset of X that is
simultaneously open and closed must be the union of some of the connected com-
ponents of X. If X is a Noetherian topological space, show that the union of any
subset of the connected components of X is always open and closed in X. (In par-
ticular, connected components of Noetherian topological spaces are always open,
which is not true for more general topological spaces, see Remark 3.6.13.)

3.6.16. Noetherian rings. It turns out that all of the spectra we have considered
(except in starred Exercise 3.6.G(b)) are Noetherian topological spaces, but that
isn’t true of the spectra of all rings. The key characteristic all of our examples have
had in common is that the rings were Noetherian. A ring is Noetherian if every
ascending sequence I1 ⊂ I2 ⊂ · · · of ideals eventually stabilizes: there is an r such
that Ir = Ir+1 = · · · . (This is called the ascending chain condition on ideals.)

Here are some quick facts about Noetherian rings. You should be able to prove
them all.

• Fields are Noetherian. Z is Noetherian.
• (Noetherianness is preserved by quotients.) If A is Noetherian, and I is any

ideal of A, then A/I is Noetherian.
• (Noetherianness is preserved by localization.) IfA is Noetherian, and S is any

multiplicative set, then S−1A is Noetherian.

3.6.R. IMPORTANT EXERCISE. Show that a ring A is Noetherian if and only if
every ideal of A is finitely generated.

The next fact is nontrivial.

3.6.17. The Hilbert Basis Theorem. — If A is Noetherian, then so is A[x].



126 The Rising Sea: Foundations of Algebraic Geometry

Hilbert proved this in the epochal paper [Hil] where he also proved the Hilbert
Syzygy Theorem (§15.3.2), and defined Hilbert functions and showed that they are
eventually polynomial (§18.6).

3.6.18. By the results described above, any polynomial ring over any field, or over
the integers, is Noetherian — and also any quotient or localization thereof. Hence
for example any finitely generated algebra over k or Z, or any localization thereof,
is Noetherian. Most “nice” rings are Noetherian, but not all rings are Noether-
ian: k[x1, x2, . . . ] is not, because (x1) ⊂ (x1, x2) ⊂ (x1, x2, x3) ⊂ · · · is a strictly
ascending chain of ideals (cf. Exercise 3.6.G(b)).

3.6.19. Proof of the Hilbert Basis Theorem 3.6.17. We show that any ideal I ⊂ A[x]
is finitely generated. We inductively produce a set of generators f1, . . . as follows.
For n > 0, if I ̸= (f1, . . . , fn−1), let fn be any nonzero element of I− (f1, . . . , fn−1)
of lowest degree. Thus f1 is any element of I of lowest degree, assuming I ̸= (0).
If this procedure terminates, we are done. Otherwise, let an ∈ A be the initial
coefficient of fn for n > 0. Then as A is Noetherian, (a1, a2, . . . ) = (a1, . . . , aN)

for some N. Say aN+1 =
∑N
i=1 biai. Then

fN+1 −

N∑
i=1

bifix
deg fN+1−deg fi

is an element of I that is nonzero (as fN+1 /∈ (f1, . . . , fN)), and of lower degree
than fN+1, yielding a contradiction. □

We now connect Noetherian rings and Noetherian topological spaces.

3.6.S. EXERCISE. If A is Noetherian, show that SpecA is a Noetherian topological
space. Describe a ring A such that SpecA is not a Noetherian topological space.
(Aside: if SpecA is a Noetherian topological space, A need not be Noetherian.
One example is A = k[x1, x2, x3, . . . ]/(x1, x

2
2, x

3
3, . . . ). Then SpecA has one point,

so is Noetherian. But A is not Noetherian as (x1) ⊊ (x1, x2) ⊊ (x1, x2, x3) ⊊ · · · in
A.)

3.6.T. EXERCISE (PROMISED IN EXERCISE 3.6.G(B)). Show that every open subset
of a Noetherian topological space is quasicompact. Hence ifA is Noetherian, every
open subset of SpecA is quasicompact.

3.6.20. For future use: Noetherian conditions for modules. An important related
notion is that of a Noetherian module. Although we won’t use this notion for some
time (§9.7.3), we will develop their most important properties, while Noetherian
ideas are still fresh in your mind. If A is any ring, not necessarily Noetherian,
we say an A-module is Noetherian if it satisfies the ascending chain condition
for submodules. Thus for example a ring A is Noetherian if and only if it is a
Noetherian A-module.

3.6.U. EXERCISE (CF. IMPORTANT EXERCISE 3.6.R). Show that ifM is a Noetherian
A-module, then any submodule ofM is a finitely generated A-module.

3.6.V. EXERCISE. If 0 →M ′ →M →M ′′ → 0 is exact, show that M ′ and M ′′ are
Noetherian if and only if M is Noetherian. (Hint: Given an ascending chain in M,
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we get two simultaneous ascending chains in M ′ and M ′′. Possible further hint:
prove that if

M ′ //M
ϕ //M ′′

is exact, and N ⊂ N ′ ⊂ M, and N ∩M ′ = N ′ ∩M ′ and ϕ(N) = ϕ(N ′), then
N = N ′.)

3.6.W. EXERCISE. Show that if A is a Noetherian ring, then A⊕n is a Noetherian
A-module.

3.6.X. EXERCISE. Show that ifA is a Noetherian ring andM is a finitely generated
A-module, thenM is a Noetherian module. Hence by Exercise 3.6.U, any submod-
ule of a finitely generated module over a Noetherian ring is finitely generated.

3.6.21. Why you should not worry about Noetherian hypotheses. Should you
work hard to eliminate Noetherian hypotheses? Should you worry about Noether-
ian hypotheses? Should you stay up at night thinking about non-Noetherian rings?
For the most part, the answer to these questions is “no”. Most people will never
need to worry about non-Noetherian rings, but there are reasons to be open to
them. First, they can actually come up. For example, fibered products of Noether-
ian schemes over Noetherian schemes (and even fibered products of Noetherian
points over Noetherian points!) can be non-Noetherian (Warning 9.1.4), and the
normalization of Noetherian rings can be non-Noetherian (Warning 9.7.4). You
can either work hard to show that the rings or schemes you care about don’t have
this pathology, or you can just relax and not worry about it. Second, there is often
no harm in working with schemes in general. Knowing when Noetherian condi-
tions are needed will help you remember why results are true, because you will
have some sense of where Noetherian conditions enter into arguments. Finally,
for some people, non-Noetherian rings naturally come up. For example, adeles
are not Noetherian. And many valuation rings that naturally arise in arithmetic
and tropical geometry are not Noetherian.

3.7 The function I(·), taking subsets of SpecA to ideals of A

We now introduce a notion that is in some sense “inverse” to the vanishing set
function V(·). Given a subset S ⊂ SpecA, I(S) is the set of functions vanishing on
S. In other words, I(S) =

∩
[p]∈S p ⊂ A (at least when S is nonempty).

We make three quick observations. (Do you see why they are true?)

• I(S) is clearly an ideal of A.
• I(·) is inclusion-reversing: if S1 ⊂ S2, then I(S2) ⊂ I(S1).
• I(S) = I(S).

3.7.A. EXERCISE. Let A = k[x, y]. If S = {[(y)], [(x, y − 1)]} (see Figure 3.10), then
I(S) consists of those polynomials vanishing on the y-axis, and at the point (1, 0).
Give generators for this ideal.
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FIGURE 3.10. The set S of Exercise 3.7.A, pictured as a subset of A2

3.7.B. EXERCISE. Suppose S ⊂ A3C is the union of the three axes. Give generators
for the ideal I(S). Be sure to prove it! We will see in Exercise 12.1.F that this ideal
is not generated by less than three elements.

3.7.C. EXERCISE. Show that V(I(S)) = S. Hence V(I(S)) = S for a closed set S.

Note that I(S) is always a radical ideal — if f ∈
√
I(S), then fn vanishes on S

for some n > 0, so then f vanishes on S, so f ∈ I(S).

3.7.D. EASY EXERCISE. Prove that if J ⊂ A is an ideal, then I(V(J)) =
√
J. (Huge

hint: Exercise 3.4.J.)

Exercises 3.7.C and 3.7.D show that V and I are “almost” inverse. More pre-
cisely:

3.7.1. Theorem. — V(·) and I(·) give an inclusion-reversing bijection between closed
subsets of SpecA and radical ideals of A (where a closed subset gives a radical ideal by
I(·), and a radical ideal gives a closed subset by V(·)).

Theorem 3.7.1 is sometimes called Hilbert’s Nullstellensatz, but we reserve
that name for Theorem 3.2.5.

3.7.E. IMPORTANT EXERCISE (CF. EXERCISE 3.7.F). Show that V(·) and I(·) give
a bijection between irreducible closed subsets of SpecA and prime ideals of A. From
this conclude that in SpecA there is a bijection between points of SpecA and irre-
ducible closed subsets of SpecA (where a point determines an irreducible closed
subset by taking the closure). Hence each irreducible closed subset of SpecA has pre-
cisely one generic point — any irreducible closed subset Z can be written uniquely
as {z}.

3.7.F. EXERCISE/DEFINITION. A prime ideal of a ring A is a minimal prime ideal
(or more simply, minimal prime) if it is minimal with respect to inclusion. (For
example, the only minimal prime of k[x, y] is (0).) If A is any ring, show that the
irreducible components of SpecA are in bijection with the minimal prime ideals of
A. In particular, SpecA is irreducible if and only if A has only one minimal prime
ideal; this generalizes Exercise 3.6.C.

Proposition 3.6.15, Exercise 3.6.S, and Exercise 3.7.F imply that every Noether-
ian ring has a finite number of minimal prime ideals: an algebraic fact is now
revealed to be really a “geometric” fact!

3.7.G. EXERCISE. What are the minimal prime ideals of k[x, y]/(xy) (where k is a
field)?



CHAPTER 4

The structure sheaf, and the definition of schemes in
general

4.1 The structure sheaf of an affine scheme

The final ingredient in the definition of an affine scheme is the structure sheaf
OSpecA, which we think of as the “sheaf of algebraic functions”. You should keep
in your mind the example of “algebraic functions” on Cn, which you understand
well. For example, in A2, we expect that on the open set D(xy) (away from the
two axes), (3x4 + y+ 4)/x7y3 should be an algebraic function.

These functions will have values at points, but won’t be determined by their
values at points. But like all sections of sheaves, they will be determined by their
germs (see §4.3.5).

It suffices to describe the structure sheaf as a sheaf (of rings) on the base of
distinguished open sets (Theorem 2.5.1 and Exercise 3.5.A).

4.1.1. Definition. Define OSpecA(D(f)) to be the localization of A at the multiplica-
tive set of all functions that do not vanish outside of V(f) (i.e., those g ∈ A such
that V(g) ⊂ V(f), or equivalently D(f) ⊂ D(g), cf. Exercise 3.5.E). This depends
only on D(f), and not on f itself. (Scholars of the empty set might notice that by
Exercise 3.5.F, we have that OSpecA(∅) = {0}.)

4.1.A. GREAT EXERCISE. Show that the natural map Af → OSpecA(D(f)) is an
isomorphism. (Possible hint: Exercise 3.5.E.)

If D(f ′) ⊂ D(f), define the restriction map

resD(f),D(f ′) : OSpecA(D(f))→ OSpecA(D(f ′))

in the obvious way: the latter ring is a further localization of the former ring.
The restriction maps obviously commute: this is a “presheaf on the distinguished
base”.

4.1.2. Theorem. — The data just described give a sheaf on the distinguished base, and
hence determine a sheaf on the topological space SpecA.

4.1.3. This sheaf is called the structure sheaf, and will be denoted OSpecA, or some-
times O if the subscript is clear from the context. Such a topological space, with
sheaf, will be called an affine scheme (Definition 4.3.1). The notation SpecA will
hereafter denote the data of a topological space with a structure sheaf. An im-
portant lesson of Theorem 4.1.2 is not just that OSpecA is a sheaf, but also that the
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distinguished base provides a good way of working with OSpecA. Notice also that
we have justified interpreting elements of A as functions on SpecA.

Proof. We must show the base identity and base gluability axioms hold (§2.5). We
show that they both hold for the open set that is the entire space SpecA, and leave
to you the trick which extends them to arbitrary distinguished open sets (Exer-
cises 4.1.B and 4.1.C). Suppose SpecA = ∪i∈ID(fi), or equivalently (Exercise 3.5.B)
the ideal generated by the fi is the entire ring A.

(Aside: experts familiar with the equalizer exact sequence of §2.2.7 will realize
that we are showing exactness of

(4.1.3.1) 0→ A→∏
i∈I

Afi → ∏
i ̸=j∈I

Afifj

where {fi}i∈I is a set of functions with (fi)i∈I = A. Signs are involved in the right-
hand map: the map Afi → Afifj is the “obvious one” if i < j, and negative of the
“obvious one” if i > j. Base identity corresponds to injectivity at A, and gluability
corresponds to exactness at

∏
iAfi .)

We check identity on the base. Suppose that SpecA = ∪i∈ID(fi) where i
runs over some index set I. Then there is some finite subset of I, which we name
{1, . . . , n}, such that SpecA = ∪ni=1D(fi), i.e., (f1, . . . , fn) = A (quasicompactness
of SpecA, Exercise 3.5.C). Suppose we are given s ∈ A such that resSpecA,D(fi) s =
0 in Afi for all i. We wish to show that s = 0. The fact that resSpecA,D(fi) s = 0 in
Afi implies that there is some m such that for each i ∈ {1, . . . , n}, fmi s = 0. Now
(fm1 , . . . , f

m
n ) = A (for example, from SpecA = ∪D(fi) = ∪D(fmi )), so there are

ri ∈ A with
∑n
i=1 rif

m
i = 1 in A, from which

s =
(∑

rif
m
i

)
s =
∑

ri(f
m
i s) = 0.

Thus we have checked the “base identity” axiom for SpecA.

4.1.B. EXERCISE. Make tiny changes to the above argument to show base identity
for any distinguished open D(f). (Hint: judiciously replace A by Af in the above
argument.)

We next show base gluability. (Serre has described this as a “partition of unity”
argument, and if you look at it in the right way, his insight is very enlightening.)
Suppose again ∪i∈ID(fi) = SpecA, where I is an index set (possibly horribly infi-
nite). Suppose we are given elements in each Afi that agree on the overlaps Afifj .
Note that intersections of distinguished open sets are also distinguished open sets.

Assume first that I is finite, say I = {1, . . . , n}. We have elements ai/flii ∈ Afi
agreeing on overlaps Afifj (see Figure 4.1(a)). Letting gi = flii , using D(fi) =
D(gi), we can simplify notation by considering our elements as of the form ai/gi ∈
Agi

(Figure 4.1(b)).
The fact that ai/gi and aj/gj “agree on the overlap” (i.e., in Agigj

) means that
for somemij,

(gigj)
mij(gjai − giaj) = 0

in A. By taking m = maxmij (here we use the finiteness of I), we can simplify
notation:

(gigj)
m(gjai − giaj) = 0
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FIGURE 4.1. Base gluability of the structure sheaf

for all i, j (Figure 4.1(c)). Let bi = aigmi for all i, and hi = gm+1
i (soD(hi) = D(gi)).

Then we can simplify notation even more (Figure 4.1(d)): on each D(hi), we have
a function bi/hi, and the overlap condition is

(4.1.3.2) hjbi = hibj.

Now ∪iD(hi) = SpecA, implying that 1 =
∑n
i=1 rihi for some ri ∈ A. Define

(4.1.3.3) r =
∑

ribi.

This will be the element of A that restricts to each bj/hj. Indeed, from the overlap
condition (4.1.3.2),

rhj =
∑
i

ribihj =
∑
i

rihibj = bj.

We next deal with the case where I is infinite. Choose a finite subset {1, . . . , n} ⊂
Iwith (f1, . . . , fn) = A (or equivalently, use quasicompactness of SpecA to choose
a finite subcover byD(fi)). Construct r as above, using (4.1.3.3). We will show that
for any z ∈ I − {1, . . . , n}, r restricts to the desired element az of Afz . Repeat the
entire process above with {1, . . . , n, z} in place of {1, . . . , n}, to obtain r ′ ∈ A which
restricts to ai for i ∈ {1, . . . , n, z}. Then by the base identity axiom, r ′ = r. (Note
that we use base identity to prove base gluability. This is an example of how the
identity axiom is somehow “prior” to the gluability axiom.) Hence r restricts to
az/f

lz
z as desired.

4.1.C. EXERCISE. Alter this argument appropriately to show base gluability for
any distinguished open D(f).

We have now completed the proof of Theorem 4.1.2. □
The following generalization of Theorem 4.1.2 will be essential in the defini-

tion of a quasicoherent sheaf in Chapter 13.

4.1.D. IMPORTANT EXERCISE/DEFINITION. Suppose M is an A-module. Show
that the following construction describes a sheaf M̃ on the distinguished base. De-
fine M̃(D(f)) to be the localization of M at the multiplicative set of all functions
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that do not vanish outside of V(f). Define restriction maps resD(f),D(g) in the anal-
ogous way to OSpecA. Show that this defines a sheaf on the distinguished base,
and hence a sheaf on SpecA. Then show that this is an OSpecA-module.

4.1.4. Remark. In the course of answering the previous exercise, you will show
that if (fi)i∈I = A,

0→M→∏
i∈I

Mfi → ∏
i̸=j∈I

Mfifj

(cf. (4.1.3.1)) is exact. In particular, M can be identified with a specific submodule
of Mf1 × · · · ×Mfr . Even though M → Mfi may not be an inclusion for any fi,
M → Mf1 × · · · ×Mfr is an inclusion. This will be useful later: we will want to
show that if M has some nice property, then Mf does too, which will be easy. We
will also want to show that if (f1, . . . , fn) = A, and the Mfi have this property,
then M does too. This idea will be made precise in the Affine Communication
Lemma 5.3.2.

4.1.5. ⋆ Remark. Definition 4.1.1 and Theorem 4.1.2 suggests a potentially slick
way of describing sections of OSpecA over any open subset: perhaps OSpecA(U) is
the localization of A at the multiplicative set of all functions that do not vanish at
any point of U. This is not true. A counterexample (that you will later be able to
make precise): let SpecA be two copies of A2k glued together at their origins (see
(24.4.8.1) for explicit equations) and letU be the complement of the origin(s). Then
the function which is 1 on the first copy of A2k \ {(0, 0)} and 0 on the second copy
of A2k \ {(0, 0)} is not of this form. (Follow-up question: why would this discussion
not work for two copies of A1k glued at a point?)

4.1.6. List of five recurring (counter)examples. The example of two planes meet-
ing at a point will appear many times as an example or a counterexample. This is
as good a time as any to collect a list of those examples that will repeatedly come
up (often in counterexamples). Many of these you will not have the language to
understand yet, but you can come back to this list later.

(The cone over) the quadric surface, SpecA and ProjA where A = k[w, x, y, z]/(wz −
xy): §4.4.12, Exercise 5.4.D, Exercise 5.4.I, Exercise 5.4.L, Exercise 6.5.H, §8.2.2,
§8.2.9, §9.6.2, Exercise 11.2.D, §12.1.D, Exercise 12.1.E, §12.2.14, Exercise 12.3.D,
§12.5.13, Exercise 14.2.O, Exercise 14.2.R, Exercise 14.2.U, Exercise 19.8.B, Exer-
cise 19.10.J, §19.10.7, Exercise 22.4.N, §22.4.11 .

Two planes meeting at a point: §4.1.5, Exercise 18.5.B, Exercise 18.6.U, Exercise 24.4.I,
§24.4.10, Exercise 24.6.E, Exercise 26.1.G, §26.1.6, §26.2.2, §26.2.12, §26.3.2, §26.3.4.

Affine space minus the origin: An−0; its inclusion in An; and An with doubled origin;
each with n = 1, 2, ∞: Exercise 3.6.G, §3.6.18, §4.4.1, §4.4.3, §4.4.5, Exercise 4.4.B,
Exercise 4.4.C, Exercise 5.1.J, §7.3.9, §10.1.1, Exercise 10.1.D, §10.1.8, Exercise 10.2.C,
Exercise 10.2.D, Exercise 12.7.B, Exercise 12.7.C, Exercise 18.3.A.

Infinite disjoint unions of schemes (especially
⨿

Spec k[x]/(xn)): Exercise 4.3.E, §4.4.4,
Exercise 5.2.E, Example 4 of §8.3.2, Caution/example 8.3.11, Exercise 13.3.I, §29.2.7.
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SpecQ → SpecQ: comment after Corollary 7.2.2, §7.3.10, §7.3.14, Warning 9.1.4,
Exercise 9.2.E, Exercise 9.4.C.

4.2 Visualizing schemes II: nilpotents

The price of metaphor is eternal vigilance.
— A. Rosenbluth and N. Wiener (attribution by [Leo, p. 4])

In §3.3, we discussed how to visualize the underlying set of schemes, adding
in generic points to our previous intuition of “classical” (or closed) points. Our
later discussion of the Zariski topology fit well with that picture. In our definition
of the “affine scheme” (SpecA,OSpecA), we have the additional information of
nilpotents, which are invisible on the level of points (§3.2.11), so now we figure
out to picture them. We will then readily be able to glue them together to picture
schemes in general, once we have made the appropriate definitions. As we are
building intuition, we cannot be rigorous or precise.

As motivation, note that we have incidence-reversing bijections

maximal ideals of A oo // closed points of SpecA (Exercise 3.6.I)

prime ideals of A oo // irreducible closed subsets of SpecA (Exercise 3.7.E)

radical ideals of A oo // closed subsets of SpecA (Theorem 3.7.1)

If we take the things on the right as “pictures”, our goal is to figure out how to
picture ideals that are not radical:

ideals of A oo // ???

(We will later fill this in rigorously in a different way with the notion of a closed
subscheme, the scheme-theoretic version of closed subsets, §8.1. But our goal now
is to create a picture.)

As motivation, when we see the expression, SpecC[x]/(x(x − 1)(x − 2)), we
immediately interpret it as a closed subset of A1C, namely {0, 1, 2}. In particular,
that the map C[x] → C[x]/(x(x − 1)(x − 2)) can be interpreted (via the Chinese
Remainder Theorem) as: take a function on A1, and restrict it to the three points 0,
1, and 2.

This will guide us in how to visualize a nonradical ideal. The simplest exam-
ple to consider is SpecC[x]/(x2) (Exercise 3.2.A(a)). As a subset of A1, it is just
the origin 0 = [(x)], which we are used to thinking of as SpecC[x]/(x) (i.e., corre-
sponding to the ideal (x), not (x2)). We want to enrich this picture in some way.
We should picture C[x]/(x2) in terms of the information the quotient remembers.
The image of a polynomial f(x) is the information of its value at 0, and its deriva-
tive (cf. Exercise 3.2.T). We thus picture this as being the point, plus a little bit more
— a little bit of infinitesimal “fuzz” on the point (see Figure 4.2). The sequence of



134 The Rising Sea: Foundations of Algebraic Geometry

restrictions C[x]→ C[x]/(x2)→ C[x]/(x) should be interpreted as nested pictures.

C[x] // // C[x]/(x2) // // C[x]/(x)

f(x)
� // f(0),

Similarly, C[x]/(x3) remembers even more information — the second derivative as
well. Thus we picture this as the point 0with even more fuzz.

SpecC[x]/(x)

SpecC[x] = A1C

SpecC[x]/(x3)

SpecC[x]/(x2)

FIGURE 4.2. Picturing quotients of C[x]

More subtleties arise in two dimensions (see Figure 4.3). Consider

SpecC[x, y]/(x, y)2,

which is sandwiched between two rings we know well:

C[x, y] // // C[x, y]/(x, y)2 // // C[x, y]/(x, y)

f(x, y)
� // f(0).

Again, taking the quotient by (x, y)2 remembers the first derivative, “in all di-
rections”. We picture this as fuzz around the point, in the shape of a circle (no
direction is privileged). Similarly, (x, y)3 remembers the second derivative “in all
directions” — bigger circular fuzz.

Consider instead the ideal (x2, y). What it remembers is the derivative only
in the x direction — given a polynomial, we remember its value at 0, and the
coefficient of x. We remember this by picturing the fuzz only in the x direction.

This gives us some handle on picturing more things of this sort, but now it
becomes more an art than a science. For example, SpecC[x, y]/(x2, y2) we might
picture as a fuzzy square around the origin. (Could you believe that this square is
circumscribed by the circular fuzz SpecC[x, y]/(x, y)3, and inscribed by the circu-
lar fuzz SpecC[x, y]/(x, y)2?) One feature of this example is that given two ideals I
and J of a ringA (such as C[x, y]), your fuzzy picture of SpecA/(I, J) should be the
“intersection” of your picture of SpecA/I and SpecA/J in SpecA. (You will make
this precise in Exercise 8.1.J(a).) For example, SpecC[x, y]/(x2, y2) should be the
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SpecC[x, y]/(y2)

SpecC[x, y]/(x, y)

SpecC[x, y]/(x2, y2)

SpecC[x, y]/(x, y)2SpecC[x, y]/(x2, y)

FIGURE 4.3. Picturing quotients of C[x, y]

intersection of two thickened lines. (How would you picture SpecC[x, y]/(x5, y3)?
SpecC[x, y, z]/(x3, y4, z5, (x+ y+ z)2)? SpecC[x, y]/((x, y)5, y3)?)

One final example that will motivate us in §5.5 is SpecC[x, y]/(y2, xy). Know-
ing what a polynomial in C[x, y] is modulo (y2, xy) is the same as knowing its
value on the x-axis, as well as first-order differential information around the ori-
gin. This is worth thinking through carefully: do you see how this information is
captured (however imperfectly) in Figure 4.4?

FIGURE 4.4. A picture of the scheme Speck[x, y]/(y2, xy). The
fuzz at the origin indicates where “there is nonreducedness”.

Our pictures capture useful information that you already have some intuition
for. For example, consider the intersection of the parabola y = x2 and the x-axis
(in the xy-plane), see Figure 4.5. You already have a sense that the intersection has
multiplicity two. In terms of this visualization, we interpret this as intersecting (in
SpecC[x, y]):

SpecC[x, y]/(y− x2) ∩ SpecC[x, y]/(y) = SpecC[x, y]/(y− x2, y)

= SpecC[x, y]/(y, x2)
which we interpret as the fact that the parabola and line not just meet with multi-
plicity two, but that the “multiplicity 2” part is in the direction of the x-axis. You
will make this example precise in Exercise 8.1.J(b).

4.2.1. We will later make the location of the fuzz somewhat more precise when we
discuss associated points (§5.5). We will see that in reasonable circumstances, the
fuzz is concentrated on closed subsets (Remark 13.7.2).

On a bien souvent répété que la Géométrie est l’art de bien raisonner sur des figures
mal faites; encore ces figures, pour ne pas nous tromper, doivent-elles satisfaire à certaines
conditions; les proportions peuvent être grossièrement altérées, mais les positions relatives
des diverses parties ne doivent pas être bouleversées.
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=intersect

FIGURE 4.5. The “scheme-theoretic” intersection of the parabola
y = x2 and the x-axis is a nonreduced scheme (with fuzz in the
x-direction)

It is often said that geometry is the art of reasoning well from badly made figures;
however, these figures, if they are not to deceive us, must satisfy certain conditions; the
proportions may be grossly altered, but the relative positions of the different parts must
not be upset.

— H. Poincaré, [Po1, p. 2] (see J. Stillwell’s translation [Po2, p. ix])

4.3 Definition of schemes

4.3.1. Definitions. We can now define scheme in general. First, define an isomor-
phism of ringed spaces (X,OX) and (Y,OY) as (i) a homeomorphism π : X → Y,
and (ii) an isomorphism of sheaves OX and OY , considered to be on the same
space via π. (Part (ii), more precisely, is an isomorphism OY → π∗OX of sheaves
on Y, or equivalently by adjointness, π−1OY → OX of sheaves on X.) In other
words, we have a “correspondence” of sets, topologies, and structure sheaves. An
affine scheme is a ringed space that is isomorphic to (SpecA,OSpecA) for some A.
A scheme (X,OX) is a ringed space such that any point of X has an open neigh-
borhood U such that (U,OX|U) is an affine scheme. The topology on a scheme is
called the Zariski topology. The scheme can be denoted (X,OX), although it is
often denoted X, with the structure sheaf implicit.

An isomorphism of two schemes (X,OX) and (Y,OY) is an isomorphism as
ringed spaces. Recall the definition of Γ(·, ·) in §2.2.2. If U ⊂ X is an open subset,
then the elements of Γ(U,OX) are said to be the functions onU; this generalizes in
an obvious way the definition of functions on an affine scheme, §3.2.1.

4.3.2. Remark. From the definition of the structure sheaf on an affine scheme,
several things are clear. First of all, if we are told that (X,OX) is an affine scheme,
we may recover its ring (i.e., find the ring A such that SpecA = X) by taking the
ring of global sections, as X = D(1), so:

Γ(X,OX) = Γ(D(1),OSpecA) as D(1) = SpecA
= A.
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(You can verify that we get more, and can “recognize X as the scheme SpecA”: we
get an isomorphism π : (Spec Γ(X,OX),OSpec Γ(X,OX))→ (X,OX). For example, if m
is a maximal ideal of Γ(X,OX), {π([m])} = V(m).) The following exercise will give
you a chance to make these ideas rigorous — they are subtler than they appear.

4.3.A. ENLIGHTENING EXERCISE (WHICH CAN BE STRANGELY CONFUSING). De-
scribe a bijection between the isomorphisms SpecA → SpecA ′ and the ring iso-
morphisms A ′ → A. Hint: the hardest part is to show that if an isomorphism
π : SpecA→ SpecA ′ induces an isomorphism π♯ : A ′ → A, which in turn induces
an isomorphism ρ : SpecA → SpecA ′, then π = ρ. First show this on the level
of points; this is (surprisingly) the trickiest part. Then show π = ρ as maps of
topological spaces. Finally, to show π = ρ on the level of structure sheaves, use
the distinguished base. Feel free to use insights from later in this section, but be
careful to avoid circular arguments. Even struggling with this exercise and failing
(until reading later sections) will be helpful.

More generally, given f ∈ A, Γ(D(f),OSpecA) ∼= Af. Thus under the natural
inclusion of sets SpecAf ↪→ SpecA, the Zariski topology on SpecA restricts to
give the Zariski topology on SpecAf (Exercise 3.4.I), and the structure sheaf of
SpecA restricts to the structure sheaf of SpecAf, as the next exercise shows.

4.3.B. IMPORTANT BUT EASY EXERCISE. Suppose f ∈ A. Show that under the
identification ofD(f) in SpecAwith SpecAf (§3.5), there is a natural isomorphism
of ringed spaces (D(f),OSpecA|D(f)) ∼= (SpecAf,OSpecAf

). Hint: notice that distin-
guished open sets of SpecAf are already distinguished open sets in SpecA.

4.3.C. EASY EXERCISE. If X is a scheme, and U is any open subset, prove that
(U,OX|U) is also a scheme.

4.3.3. Definitions. We say (U,OX|U) is an open subscheme of X. If U is also an
affine scheme, we often say U is an affine open subset, or an affine open sub-
scheme, or sometimes informally just an affine open. For example, D(f) is an
affine open subscheme of SpecA. (Unimportant remark: it is not true that every
affine open subscheme of SpecA is of the formD(f); see §19.11.10 for an example.)

4.3.D. EASY EXERCISE. Show that if X is a scheme, then the affine open sets form
a base for the Zariski topology.

4.3.E. EASY EXERCISE. The disjoint union of schemes is defined as you would
expect: it is the disjoint union of sets, with the expected topology (thus it is the dis-
joint union of topological spaces), with the expected sheaf. Once we know what
morphisms are, it will be immediate (Exercise 9.1.A) that (just as for sets and topo-
logical spaces) disjoint union is the coproduct in the category of schemes.
(a) Show that the disjoint union of a finite number of affine schemes is also an affine
scheme. (Hint: Exercise 3.6.A.)
(b) (a first example of a non-affine scheme) Show that an infinite disjoint union of
(nonempty) affine schemes is not an affine scheme. (Hint: affine schemes are qua-
sicompact, Exercise 3.6.G(a). This is basically answered in Remark 3.6.6.)
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4.3.4. Remark: A first glimpse of closed subschemes. Open subsets of a scheme come
with a natural scheme structure (Definition 4.3.3). For comparison, closed subsets
can have many “natural” scheme structures. We will discuss this later (in §8.1), but
for now, it suffices for you to know that a closed subscheme of X is, informally, a
particular kind of scheme structure on a closed subset ofX. As an example: if I ⊂ A
is an ideal, then SpecA/I endows the closed subset V(I) ⊂ SpecA with a scheme
structure; but note that there can be different ideals with the same vanishing set
(for example (x) and (x2) in k[x]).

4.3.5. Stalks of the structure sheaf: germs, values at a point, and the residue field
of a point. Like every sheaf, the structure sheaf has stalks, and we shouldn’t be
surprised if they are interesting from an algebraic point of view. In fact, we have
seen them before.

4.3.F. IMPORTANT EASY EXERCISE. Show that the stalk of OSpecA at the point [p] is
the local ring Ap.

Essentially the same argument will show that the stalk of the sheaf M̃ (defined
in Exercise 4.1.D) at [p] isMp. Here is an interesting consequence, or if you prefer, a
geometric interpretation of an algebraic fact. A section is determined by its germs
(Exercise 2.4.A), meaning that M → ∏pMp is an inclusion. So for example an
A-module is zero if and only if all its localizations at prime ideals are zero.

4.3.6. Definition. We say a ringed space is a locally ringed space if its stalks
are local rings. Thus Exercise 4.3.F shows that schemes are locally ringed spaces.
Manifolds are another example of locally ringed spaces, see §2.1.1. In both cases,
taking quotient by the maximal ideal may be interpreted as evaluating at the point.
The maximal ideal of the local ring OX,p is denoted mX,p or mp, and the residue
field OX,p/mp is denoted κ(p). Functions on an open subset U of a locally ringed
space have values at each point of U. The value at p of such a function lies in
κ(p). As usual, we say that a function vanishes at a point p if its value at p is
0. (This generalizes our notion of the value of a function on SpecA, defined in
§3.2.1.) Notice that we can’t even make sense of the phrase of “function vanishing”
on ringed spaces in general.

4.3.G. USEFUL EXERCISE.
(a) If f is a function on a locally ringed space X, show that the subset of X where f
vanishes is closed. (Hint: show that if f is a function on a ringed space X, show that
the subset of X where the germ of f is invertible is open.)
(b) Show that if f is a function on a locally ringed space that vanishes nowhere,
then f is invertible.

Consider a point [p] of an affine scheme SpecA. (Of course, any point of a
scheme can be interpreted in this way, as each point has an affine open neigh-
borhood.) The residue field at [p] is Ap/pAp, which is isomorphic to K(A/p), the
fraction field of the quotient. It is useful to note that localization at p and taking
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quotient by p “commute”, i.e., the following diagram commutes.

(4.3.6.1) Ap

quotient

''OO
OOO

OOO
OOO

OO

A

localize
>>}}}}}}}}

quotient   A
AA

AA
AA

A Ap/pAp = K(A/p)

A/p

localize, i.e., K(·)

77oooooooooooo

For example, consider the scheme A2k = Speck[x, y], where k is a field of char-
acteristic not 2. Then (x2 + y2)/x(y2 − x5) is a function away from the y-axis
and the curve y2 − x5. Its value at (2, 4) (by which we mean [(x − 2, y − 4)]) is
(22 + 42)/(2(42 − 25)), as

x2 + y2

x(y2 − x5)
≡ 22 + 42

2(42 − 25)

in the residue field — check this if it seems mysterious. And its value at [(y)], the
generic point of the x-axis, is x2

−x6
= −1/x4, which we see by setting y to 0. This

is indeed an element of the fraction field of k[x, y]/(y), i.e., k(x). (If you think
you care only about algebraically closed fields, let this example be a first warning:
Ap/pAp won’t be algebraically closed in general, even if A is a finitely generated
C-algebra!)

If anything makes you nervous, you should make up an example to make you
feel better. Here is one: 27/4 is a function on SpecZ − {[(2)], [(7)]} or indeed on an
even bigger open set. What is its value at [(5)]? Answer: 2/(−1) ≡ −2 (mod 5).
What is its value at the generic point [(0)]? Answer: 27/4. Where does it vanish?
At [(3)].

4.3.7. Stray definition: the fiber of an OX-module at a point. If F is an OX-module on
a scheme X (or more generally, a locally ringed space), define the fiber (or fibre) of
F at a point p ∈ X by

F |p := Fp ⊗OX,p
κ(p).

For example, OX|p is κ(p). (This notion will start to come into play in §13.7.)

4.4 Three examples

We now give three extended examples. Our short-term goal is to see that we
can really work with the structure sheaf, and can compute the ring of sections of
interesting open sets that aren’t just distinguished open sets of affine schemes. Our
long-term goal is to meet interesting examples that will come up repeatedly in the
future.

4.4.1. First example: The plane minus the origin. This example will show you
that the distinguished base is something that you can work with. Let A = k[x, y],
so SpecA = A2k. Let’s work out the space of functions on the open set U = A2 −
{(0, 0)} = A2 − {[(x, y)]}.
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It is not immediately obvious whether this is a distinguished open set. (In fact
it is not — you may be able to figure out why within a few paragraphs, if you
can’t right now. It is not enough to show that (x, y) is not a principal ideal.) But
in any case, we can describe it as the union of two things which are distinguished
open sets: U = D(x) ∪ D(y). We will find the functions on U by gluing together
functions on D(x) and D(y).

The functions onD(x) are, by Definition 4.1.1, Ax = k[x, y, 1/x]. The functions
on D(y) are Ay = k[x, y, 1/y]. Note that A injects into its localizations (if 0 is
not inverted), as it is an integral domain (Exercise 1.3.C), so A injects into both
Ax and Ay, and both inject into Axy (and indeed k(x, y) = K(A)). So we are
looking for functions on D(x) and D(y) that agree on D(x) ∩ D(y) = D(xy), i.e.,
we are interpreting Ax ∩Ay in Axy (or in k(x, y)). Clearly those rational functions
with only powers of x in the denominator, and also with only powers of y in the
denominator, are the polynomials. Translation: Ax ∩Ay = A. Thus we conclude:

(4.4.1.1) Γ(U,OA2) ≡ k[x, y].

In other words, we get no extra functions by removing the origin. Notice how easy
that was to calculate!

4.4.2. Aside. Notice that any function on A2− {(0, 0)} extends over all of A2. This is
an analog of Hartogs’s Lemma in complex geometry: you can extend a holomorphic
function defined on the complement of a set of codimension at least two on a com-
plex manifold over the missing set. This will work more generally in the algebraic
setting: you can extend over points in codimension at least 2 not only if they are
“smooth”, but also if they are mildly singular — what we will call normal. We will
make this precise in §11.3.11. This fact will be very useful for us.

4.4.3. We now show an interesting fact: (U,OA2 |U) is a scheme, but it is not an
affine scheme. (This is confusing, so you will have to pay attention.) Here’s
why: otherwise, if (U,OA2 |U) = (SpecA,OSpecA), then we can recoverA by taking
global sections:

A = Γ(U,OA2 |U),

which we have already identified in (4.4.1.1) as k[x, y]. So if U is affine, then
U ∼= A2k. But this bijection between prime ideals in a ring and points of the spec-
trum is more constructive than that: given the prime ideal I, you can recover the point
as the generic point of the closed subset cut out by I, i.e., V(I), and given the point p, you
can recover the ideal as those functions vanishing at p, i.e., I(p). In particular, the prime
ideal (x, y) of A should cut out a point of SpecA. But on U, V(x)∩V(y) = ∅. Con-
clusion: U is not an affine scheme. (If you are ever looking for a counterexample
to something, and you are expecting one involving a non-affine scheme, keep this
example in mind!)

4.4.4. Gluing two copies of A1 together in two different ways. We have now
seen two examples of non-affine schemes: an infinite disjoint union of nonempty
schemes (Exercise 4.3.E) and A2 − {(0, 0)}. I want to give you two more examples.
They are important because they are the first examples of fundamental behavior,
the first pathological, and the second central.

First, I need to tell you how to glue two schemes together. Before that, you
should review how to glue topological spaces together along isomorphic open
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sets. Given two topological spaces X and Y, and open subsets U ⊂ X and V ⊂ Y

along with a homeomorphism U oo ∼ // V , we can create a new topological space

W, that we think of as gluing X and Y together along U oo ∼ // V . It is the quotient
of the disjoint union X

⨿
Y by the equivalence relation U ∼ V , where the quotient

is given the quotient topology. Then X and Y are naturally (identified with) open
subsets of W, and indeed cover W. Can you restate this cleanly with an arbitrary
(not necessarily finite) number of topological spaces?

Now that we have discussed gluing topological spaces, let’s glue schemes to-
gether. (This applies without change more generally to ringed spaces.) Suppose
you have two schemes (X,OX) and (Y,OY), and open subsets U ⊂ X and V ⊂ Y,

along with a homeomorphism π : U
∼ // V , and an isomorphism of structure

sheaves OV
∼ // π∗OU (i.e., an isomorphism of schemes (U,OX|U) ∼= (V,OY |V)).

Then we can glue these together to get a single scheme. Reason: let W be X and
Y glued together using the isomorphism U ∼= V . Then Exercise 2.5.D shows that
the structure sheaves can be glued together to get a sheaf of rings. Note that this
is indeed a scheme: any point has an open neighborhood that is an affine scheme.
(Do you see why?)

4.4.A. ESSENTIAL EXERCISE (CF. EXERCISE 2.5.D). Show that you can glue an
arbitrary collection of schemes together. Suppose we are given:

• schemes Xi (as i runs over some index set I, not necessarily finite),
• open subschemes Xij ⊂ Xi with Xii = Xi,
• isomorphisms fij : Xij → Xji with fii the identity

such that

• (the cocycle condition) the isomorphisms “agree on triple intersections”,
i.e., fik|Xij∩Xik

= fjk|Xji∩Xjk
◦ fij|Xij∩Xik

(so implicitly, to make sense of
the right side, fij(Xik ∩ Xij) ⊂ Xjk).

(The cocycle condition ensures that fij and fji are inverses. In fact, the hypothesis
that fii is the identity also follows from the cocycle condition.) Show that there is a
unique scheme X (up to unique isomorphism) along with open subsets isomorphic
to the Xi respecting this gluing data in the obvious sense. (Hint: what is X as a set?
What is the topology on this set? In terms of your description of the open sets of
X, what are the sections of this sheaf over each open set?)

I will now give you two non-affine schemes. Both are handy to know. In both
cases, I will glue together two copies of the affine line A1k. Let X = Speck[t], and
Y = Spec k[u]. Let U = D(t) = Spec k[t, 1/t] ⊂ X and V = D(u) = Spec k[u, 1/u] ⊂
Y. We will get both examples by gluing X and Y together along U and V . The
difference will be in how we glue.

4.4.5. Second example: the affine line with the doubled origin. Consider the
isomorphism U ∼= V via the isomorphism k[t, 1/t] ∼= k[u, 1/u] given by t ↔ u (cf.
Exercise 4.3.A). The resulting scheme is called the affine line with doubled origin.
Figure 4.6 is a picture of it.

As the picture suggests, intuitively this is an analog of a failure of Hausdorffness.
Now A1 itself is not Hausdorff, so we can’t say that it is a failure of Hausdorffness.
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FIGURE 4.6. The affine line with doubled origin

We see this as weird and bad, so we will want to make a definition that will pre-
vent this from happening. This will be the notion of separatedness (to be discussed
in Chapter 10).(In fact, in some sense, separatedness is the right definition of Haus-
dorfness!) This will answer other of our prayers as well. For example, on a sep-
arated scheme, the “affine base of the Zariski topology” is nice — the intersection
of two affine open sets will be affine (Proposition 10.1.8).

4.4.B. EXERCISE. Show that the affine line with doubled origin is not affine. Hint:
calculate the ring of global sections, and look back at the argument for A2− {(0, 0)}.

4.4.C. EASY EXERCISE. Do the same construction with A1 replaced by A2. You will
have defined the affine plane with doubled origin. Describe two affine open sub-
sets of this scheme whose intersection is not an affine open subset. (An “infinite-
dimensional” version comes up in Exercise 5.1.J.)

4.4.6. Third example: the projective line. Consider the isomorphism U ∼= V via
the isomorphism k[t, 1/t] ∼= k[u, 1/u] given by t↔ 1/u. Figure 4.7 is a suggestive
picture of this gluing. The resulting scheme is called the projective line over the
field k, and is denoted P1k.

FIGURE 4.7. Gluing two affine lines together to get P1

Notice how the points glue. Let me assume that k is algebraically closed for
convenience. (You can think about how this changes otherwise.) On the first affine
line, we have the closed (“traditional”) points [(t − a)], which we think of as “a
on the t-line”, and we have the generic point [(0)]. On the second affine line, we
have closed points that are “b on the u-line”, and the generic point. Then a on
the t-line is glued to 1/a on the u-line (if a ̸= 0 of course), and the generic point
is glued to the generic point (the ideal (0) of k[t] becomes the ideal (0) of k[t, 1/t]
upon localization, and the ideal (0) of k[u] becomes the ideal (0) of k[u, 1/u]. And
(0) in k[t, 1/t] is (0) in k[u, 1/u] under the isomorphism t↔ 1/u).
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4.4.7. If k is algebraically closed, we can interpret the closed points of P1k in the
following way, which may make this sound closer to the way you have seen pro-
jective space defined earlier. The points are of the form [a, b], where a and b are
not both zero, and [a, b] is identified with [ac, bc] where c ∈ k×. Then if b ̸= 0, this
is identified with a/b on the t-line, and if a ̸= 0, this is identified with b/a on the
u-line.

4.4.8. Proposition. — P1k is not affine.

Proof. We do this by calculating the ring of global sections. The global sections
correspond to sections over X and sections over Y that agree on the overlap. A
section on X is a polynomial f(t). A section on Y is a polynomial g(u). If we restrict
f(t) to the overlap, we get something we can still call f(t); and similarly for g(u).
Now we want them to be equal: f(t) = g(1/t). But the only polynomials in t that
are at the same time polynomials in 1/t are the constants k. Thus Γ(P1,OP1) = k.
If P1 were affine, then it would be Spec Γ(P1,OP1) = Spec k, i.e., one point. But it
isn’t — it has lots of points. □

We have proved an analog of an important theorem: the only holomorphic
functions on CP1 are the constants! (See §10.3.7 for a serious yet easy generaliza-
tion.)

4.4.9. Important Example: Projective space. We now make a preliminary defi-
nition of projective n-space over a field k, denoted Pnk , by gluing together n + 1
open sets each isomorphic to Ank . Judicious choice of notation for these open sets
will make our life easier. Our motivation is as follows. In the construction of P1
above, we thought of points of projective space as [x0, x1], where (x0, x1) are only
determined up to scalars, i.e., (x0, x1) is considered the same as (λx0, λx1). Then
the first patch can be interpreted by taking the locus where x0 ̸= 0, and then we
consider the points [1, t], and we think of t as x1/x0; even though x0 and x1 are not
well-defined, x1/x0 is. The second corresponds to where x1 ̸= 0, and we consider
the points [u, 1], and we think of u as x0/x1. It will be useful to instead use the
notation x1/0 for t and x0/1 for u.

For Pn, we glue together n + 1 open sets, one for each of i = 0, . . . , n. The ith
open set Ui will have coordinates x0/i, . . . , x(i−1)/i, x(i+1)/i, . . . , xn/i. It will be
convenient to write this as

(4.4.9.1) Speck[x0/i, x1/i, . . . , xn/i]/(xi/i − 1)

(so we have introduced a “dummy variable” xi/i which we immediately set to
1). We glue the distinguished open set D(xj/i) of Ui to the distinguished open set
D(xi/j) of Uj, by identifying these two schemes by describing the identification of
rings

Spec k[x0/i, x1/i, . . . , xn/i, 1/xj/i]/(xi/i − 1) ∼=

Speck[x0/j, x1/j, . . . , xn/j, 1/xi/j]/(xj/j − 1)

via xk/i = xk/j/xi/j and xk/j = xk/i/xj/i (which implies xi/jxj/i = 1). We need to
check that this gluing information agrees over triple overlaps.

4.4.D. EXERCISE. Check this, as painlessly as possible. (Possible hint: the triple
intersection is affine; describe the corresponding ring.)
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4.4.10. Definition: PnA. Note that our definition does not use the fact that k is a
field. Hence we may as well define PnA for any ring A. This will be useful later.

4.4.E. EXERCISE. Show that the only functions on Pnk are constants (Γ(Pnk ,O) ∼= k),
and hence that Pnk is not affine if n > 0. Hint: you might fear that you will need
some delicate interplay among all of your affine open sets, but you will only need
two of your open sets to see this. There is even some geometric intuition behind
this: the complement of the union of two open sets has codimension 2. But “Al-
gebraic Hartogs’s Lemma” (discussed informally in §4.4.2, and to be stated rigor-
ously in Theorem 11.3.11) says that any function defined on this union extends
to be a function on all of projective space. Because we are expecting to see only
constants as functions on all of projective space, we should already see this for this
union of our two affine open sets.

4.4.F. EXERCISE (GENERALIZING §4.4.7). Show that if k is algebraically closed,
the closed points of Pnk may be interpreted in the traditional way: the points are
of the form [a0, . . . , an], where the ai are not all zero, and [a0, . . . , an] is identified
with [λa0, . . . , λan] where λ ∈ k×.

We will later give other definitions of projective space (Definition 4.5.8, §16.4.2).
Our first definition here will often be handy for computing things. But there is
something unnatural about it — projective space is highly symmetric, and that
isn’t clear from our current definition. Furthermore, as noted by Herman Weyl
[Wey, p. 90], “The introduction of numbers as coordinates is an act of violence.”

4.4.11. Fun aside: The Chinese Remainder Theorem is a geometric fact. The
Chinese Remainder Theorem is embedded in what we have done. We will see this
in a single example, but you should then figure out the general statement. The
Chinese Remainder Theorem says that knowing an integer modulo 60 is the same
as knowing an integer modulo 3, 4, and 5. Here is how to see this in the language
of schemes. What is SpecZ/(60)? What are the prime ideals of this ring? Answer:
those prime ideals containing (60), i.e., those primes dividing 60, i.e., (2), (3), and
(5). Figure 4.8 is a sketch of SpecZ/(60). They are all closed points, as these are all
maximal ideals, so the topology is the discrete topology. What are the stalks? You
can check that they are Z/4, Z/3, and Z/5. The nilpotents “at (2)” are indicated by
the “fuzz” on that point. (We discussed visualizing nilpotents with “infinitesimal
fuzz” in §4.2.) So what are global sections on this scheme? They are sections on
this open set (2), this other open set (3), and this third open set (5). In other words,
we have a natural isomorphism of rings

Z/60 // Z/4× Z/3× Z/5.

[(5)][(2)] [(3)]

FIGURE 4.8. A picture of the scheme SpecZ/(60)
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4.4.12. ⋆ Example. Here is an example of a function on an open subset of a scheme
with some surprising behavior. On X = Speck[w, x, y, z]/(wz − xy), consider the
open subset D(y) ∪ D(w). Clearly the function z/y on D(y) agrees with x/w on
D(w) on the overlapD(y)∩D(w). Hence they glue together to give a section. You
may have seen this before when thinking about analytic continuation in complex
geometry — we have a “holomorphic” function which has the description z/y on
an open set, and this description breaks down elsewhere, but you can still “analyt-
ically continue” it by giving the function a different definition on different parts of
the space.

Follow-up for curious experts. This function has no “single description” as a
well-defined expression in terms of w, x, y, z! There is a lot of interesting geom-
etry here, and this scheme will be a constant source of (counter)examples for us
(look in the index under “cone over smooth quadric surface”). Here is a glimpse,
in terms of words we have not yet defined. The space Speck[w, x, y, z] is A4, and
is, not surprisingly, 4-dimensional. We are working with the subset X, which is a
hypersurface, and is 3-dimensional. It is a cone over a smooth quadric surface in
P3 (flip to Figure 8.2). The open subset D(y) ⊂ X is X minus some hypersurface,
so we are throwing away a codimension 1 locus. D(w) involves throwing away
another codimension 1 locus. You might think that the intersection of these two
discarded loci is then codimension 2, and that failure of extending this weird func-
tion to a global polynomial comes because of a failure of our Hartogs’s Lemma-
type theorem. But that’s not true — V(y) ∩ V(w) is in fact codimension 1. Here
is what is actually going on. The space V(y) is obtained by throwing away the
(cone over the) union of two lines ℓ and m1, one in each “ruling” of the surface,
and V(w) also involves throwing away the (cone over the) union of two lines ℓ
and m2. The intersection is the (cone over the) line ℓ, which is a codimension 1
set. Remarkably, despite being “pure codimension 1” the cone over ℓ is not cut out
even set-theoretically by a single equation (see Exercise 14.2.R). This means that
any expression f(w, x, y, z)/g(w, x, y, z) for our function cannot correctly describe
our function onD(y)∪D(w) — at some point ofD(y)∪D(w) it must be 0/0. Here’s
why. Our function can’t be defined on V(y) ∩ V(w), so g must vanish here. But g
can’t vanish just on the cone over ℓ— it must vanish elsewhere too.

4.5 Projective schemes, and the Proj construction

Projective schemes are important for a number of reasons. Here are a few.
Schemes that were of “classical interest” in geometry — and those that you would
have cared about before knowing about schemes — are all projective or an open
subset thereof (basically, quasiprojective, see §4.5.9). Moreover, most “schemes of
interest” tend to be projective or quasiprojective. In fact, it is very hard to even
give an example of a scheme satisfying basic properties — for example, finite type
and “Hausdorff” (“separated”) over a field — that is provably not quasiprojective.
For complex geometers: it is hard to find a compact complex variety that is prov-
ably not projective (see Remark 10.3.6), and it is quite hard to come up with a
complex variety that is provably not an open subset of a projective variety. So pro-
jective schemes are really ubiquitous. Also, the notion of “projective k-scheme” is
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a good approximation of the algebro-geometric version of compactness (“proper-
ness”, see §10.3).

Finally, although projective schemes may be obtained by gluing together affine
schemes, and we know that keeping track of gluing can be annoying, there is a
simple means of dealing with them without worrying about gluing. Just as there
is a rough dictionary between rings and affine schemes, we will have a (slightly
looser) analogous dictionary between graded rings and projective schemes. Just
as one can work with affine schemes by instead working with rings, one can work
with projective schemes by instead working with graded rings.

4.5.1. Motivation from classical geometry.
For geometric intuition, we recall how one thinks of projective space “classi-

cally” (in the classical topology, over the real numbers). Pn can be interpreted as
the lines through the origin in Rn+1. Thus subsets of Pn correspond to unions of
lines through the origin of Rn+1, and closed subsets correspond to such unions
which are closed. (The same is not true with “closed” replaced by “open”!)

One often pictures Pn as being the “points at infinite distance” in Rn+1, where
the points infinitely far in one direction are associated with the points infinitely far
in the opposite direction. We can make this more precise using the decomposition

Pn+1 = Rn+1
⨿

Pn

by which we mean that there is an open subset in Pn+1 identified with Rn+1 (the
points with last “projective coordinate” nonzero), and the complementary closed
subset identified with Pn (the points with last “projective coordinate” zero). (The
phrase “projective coordinate” will be formally defined in §4.5.8, but we will use
it even before then, in Exercises 4.5.A and 4.5.B.)

Then for example any equation cutting out some set V of points in Pn will also
cut out some set of points in Rn+1 that will be a closed union of lines. We call this
the affine cone of V . These equations will cut out some union of P1’s in Pn+1, and
we call this the projective cone of V . The projective cone is the disjoint union of the
affine cone and V . For example, the affine cone over x2 + y2 = z2 in P2 is just
the “classical” picture of a cone in R3, see Figure 4.9. We will make this analogy
precise in our algebraic setting in §8.2.12.

x2 + y2 = z2 in P2

affine cone: x2 + y2 = z2 in R3
projective cone in P3

FIGURE 4.9. The affine and projective cone of x2 + y2 = z2 in
classical geometry
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4.5.2. Projective schemes, a first description.
We now describe a construction of projective schemes, which will help moti-

vate the Proj construction. We begin by giving an algebraic interpretation of the
cone just described. We switch coordinates from x, y, z to x0, x1, x2 in order to use
the notation of §4.4.9.

4.5.A. EXERCISE (WORTH DOING BEFORE READING THE REST OF THIS SECTION).
Consider P2k, with projective coordinates x0, x1, and x2. (The terminology “projec-
tive coordinate” will not be formally defined until §4.5.8, but you should be able to
solve this problem anyway.) Think through how to define a scheme that should be
interpreted as x20+x

2
1−x

2
2 = 0 “in P2k”. Hint: in the affine open subset correspond-

ing to x2 ̸= 0, it should (in the language of 4.4.9) be cut out by x20/2 + x
2
1/2 − 1 = 0,

i.e., it should “be” the scheme Spec k[x0/2, x1/2]/(x20/2 + x
2
1/2 − 1). You can simi-

larly guess what it should be on the other two standard open sets, and show that
the three schemes glue together.

4.5.3. Remark: Degree d hypersurfaces in Pn. We informally observe that degree
d homogeneous polynomials in n + 1 variables over a field form a vector space
of dimension

(
n+d
d

)
. (This is essentially the content of Exercise 8.2.K and Exer-

cise 14.1.C.) It is almost true that two polynomials cut out the same subset of Pnk if
one is a nonzero multiple of the other. Unfortunately, the examples of x2y = 0 and
xy2 = 0 show that this isn’t quite right. You will later be able to check that two
polynomials cut out the same closed subscheme (whatever that means) if and only if
one is a nonzero multiple of the other. (This is some evidence that the notion of a
“closed subscheme” is better than that of a “closed subset”.) The zero polynomial
doesn’t really cut out a hypersurface in any reasonable sense of the word. Thus
we informally imagine that “degree d hypersurfaces in Pn are parametrized by
P(

n+d
d )−1”. This intuition will come up repeatedly (in special cases), and we will

give it some precise meaning in §28.3.5. (We will properly define hypersurfaces in
§8.2.2, once we have the language of closed subschemes. At that time we will also
define line, hyperplane, quadric hypersurfaces, conic curves, and other wondrous
notions.)

4.5.B. EXERCISE. More generally, consider PnA, with projective coordinates x0,
. . . , xn. Given a collection of homogeneous polynomials fi ∈ A[x0, . . . , xn], make
sense of the scheme “cut out in PnA by the fi.” (This will later be made precise as
an example of a “vanishing scheme”, see Exercise 4.5.P.) Hint: you will be able to
piggyback on Exercise 4.4.D to make this quite straightforward.

This can be taken as the definition of a projective A-scheme, but we will wait
until §4.5.9 to state it a little better.

4.5.4. Preliminaries on graded rings.
The Proj construction produces a scheme out of a graded ring. We now give

some background on graded rings.

4.5.5. Z-graded rings. A Z-graded ring is a ring S• = ⊕n∈ZSn (the subscript is
called the grading), where multiplication respects the grading, i.e., sends Sm × Sn
to Sm+n. Clearly S0 is a subring, each Sn is an S0-module, and S• is a S0-algebra.
Suppose for the remainder of §4.5.5 that S• is a Z-graded ring. Those elements of
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some Sn are called homogeneous elements of S•; nonzero homogeneous elements
have an obvious degree. An ideal I of S• is a homogeneous ideal (or a graded
ideal, although we won’t use this terminology) if it is generated by homogeneous
elements.

4.5.C. EXERCISE.
(a) Show that an ideal I is homogeneous if and only if it contains the degree n piece
of each of its elements for each n. (Hence I can be decomposed into homogeneous
pieces, I = ⊕In, and S•/I has a natural Z-grading. This is the reason for the name
homogeneous ideal.)
(b) Show that the set of homogeneous ideals of a given Z-graded ring S• is closed
under sum, product, intersection, and radical.
(c) Show that a homogeneous ideal I ⊂ S• is prime if I ̸= S•, and if for any homoge-
neous a, b ∈ S•, if ab ∈ I, then a ∈ I or b ∈ I.

If T is a multiplicative subset of S• containing only homogeneous elements,
then T−1S• has a natural structure as a Z-graded ring.

(Everything in §4.5.5 can be generalized: Z can be replaced by an arbitrary
abelian group.)

4.5.6. Z≥0-graded rings, graded ring over A, and finitely generated graded rings. A
Z≥0-graded ring is a Z-graded ring with no elements of negative degree.

For the remainder of the book, graded ring will refer to a Z≥0-graded ring.
Warning: this convention is nonstandard (for good reason).

From now on, unless otherwise stated, S• is assumed to be a graded ring. Fix
a ring A, which we call the base ring. If S0 = A, we say that S• is a graded ring
over A. A key example is A[x0, . . . , xn], or more generally A[x0, . . . , xn]/I where
I is a homogeneous ideal with I ∩ S0 = 0 (cf. Exercise 4.5.B). Here we take the
conventional grading on A[x0, . . . , xn], where each xi has weight 1.

The subset S+ := ⊕i>0Si ⊂ S• is an ideal, called the irrelevant ideal. The rea-
son for the name “irrelevant” will be clearer in a few paragraphs. If the irrelevant
ideal S+ is a finitely generated ideal, we say that S• is a finitely generated graded
ring overA. If S• is generated by S1 as anA-algebra, we say that S• is generated in
degree 1. (We will later find it useful to interpret “S• is generated in degree 1” as
“the natural map Sym•

S1 → S• is a surjection”. The symmetric algebra construction
will be briefly discussed in §13.5.3.)

4.5.D. EXERCISE.
(a) Show that a graded ring S• over A is a finitely generated graded ring (over
A) if and only if S• is a finitely generated graded A-algebra, i.e., generated over
A = S0 by a finite number of homogeneous elements of positive degree. (Hint
for the forward implication: show that the generators of S+ as an ideal are also
generators of S• as an algebra.)
(b) Show that a graded ring S• over A is Noetherian if and only if A = S0 is
Noetherian and S• is a finitely generated graded ring.

4.5.7. The Proj construction.
We now define a scheme ProjS•, where S• is a (Z≥0-)graded ring. Here are two

examples, to provide a light at the end of the tunnel. If S• = A[x0, . . . , xn], we will
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recover PnA; and if S• = A[x0, . . . , xn]/(f(x0, . . . , xn)) where f is homogeneous, we
will construct something “cut out in PnA by the equation f = 0” (cf. Exercise 4.5.B).

As we did with Spec of a ring, we will build ProjS• first as a set, then as a
topological space, and finally as a ringed space. In our preliminary definition of
PnA, we glued together n+ 1well-chosen affine pieces, but we don’t want to make
any choices, so we do this by simultaneously considering “all possible” affine open
sets. Our affine building blocks will be as follows. For each homogeneous f ∈ S+,
note that the localization (S•)f is naturally a Z-graded ring, where deg(1/f) =
−deg f. Consider

(4.5.7.1) Spec((S•)f)0.

where ((S•)f)0 means the 0-graded piece of the graded ring (S•)f. (These will be
our affine building blocks, as f varies over the homogeneous elements of S+.) The
notation ((S•)f)0 is admittedly horrible — the first and third subscripts refer to the
grading, and the second refers to localization. As motivation for considering this
construction: applying this to S• = k[x0, . . . , xn], with f = xi, we obtain the ring
appearing in (4.4.9.1):

k[x0/i, x1/i, . . . , xn/i]/(xi/i − 1).

(Before we begin the construction: another possible way of defining ProjS• is
by gluing together affines of this form, by jumping straight to Exercises 4.5.K and
4.5.L. If you prefer that, by all means do so.)

The points of ProjS• are the set of homogeneous prime ideals of S• not contain-
ing the irrelevant ideal S+ (the “relevant prime ideals”).

4.5.E. IMPORTANT AND TRICKY EXERCISE. Suppose f ∈ S+ is homogeneous.
(a) Give a bijection between the prime ideals of ((S•)f)0 and the homogeneous
prime ideals of (S•)f. Hint: Avoid notational confusion by proving instead that if
A is a Z-graded ring with a homogeneous invertible element f in positive degree,
then there is a bijection between prime ideals ofA0 and homogeneous prime ideals
of A. Using the ring map A0 → A, from each homogeneous prime ideal of A we
find a prime ideal of A0. The reverse direction is the harder one. Given a prime
ideal P0 ⊂ A0, define P ⊂ A (a priori only a subset) as ⊕Qi, where Qi ⊂ Ai, and
a ∈ Qi if and only if adeg f/fi ∈ P0. Note that Q0 = P0. Show that a ∈ Qi if and
only if a2 ∈ Q2i; show that if a1, a2 ∈ Qi then a21 + 2a1a2 + a

2
2 ∈ Q2i and hence

a1 + a2 ∈ Qi; then show that P is a homogeneous ideal of A; then show that P is
prime.
(b) Interpret the set of prime ideals of ((S•)f)0 as a subset of ProjS•.

The correspondence of the points of ProjS• with homogeneous prime ideals
helps us picture ProjS•. For example, if S• = k[x, y, z] with the usual grading, then
we picture the homogeneous prime ideal (z2 − x2 − y2) first as a subset of SpecS•;
it is a cone (see Figure 4.9). As in §4.5.1, we picture P2k as the “plane at infinity”.
Thus we picture this equation as cutting out a conic “at infinity” (in ProjS•). We
will make this intuition somewhat more precise in §8.2.12.

Motivated by the affine case, if T is a set of homogeneous elements of S• of pos-
itive degree, define the (projective) vanishing set of T , V(T) ⊂ ProjS•, to be those
homogeneous prime ideals containing T but not S+. Define V(f) if f is a homoge-
neous element of positive degree, and V(I) if I is a homogeneous ideal contained
in S+, in the obvious way. LetD(f) := ProjS• \ V(f) (the projective distinguished
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open set) be the complement ofV(f). Once we define a scheme structure on ProjS•,
we will (without comment) use D(f) to refer to the open subscheme, not just the
open subset. (These definitions can certainly be extended to remove the positive
degree hypotheses. For example, the definition of V(T) makes sense for any sub-
set T of S•, and the definition of D(f) makes sense even if f has degree 0. In what
follows, we deliberately stick to these narrower definitions. For example, we will
want the D(f) to form an affine cover, and if f has degree 0, then D(f) needn’t be
affine.)

4.5.F. EXERCISE. Show that D(f) “is” (or more precisely, “corresponds to”) the
subset Spec((S•)f)0 you described in Exercise 4.5.E(b). For example, in §4.4.9, the
D(xi) are the standard open sets covering projective space.

As in the affine case, the V(I)’s satisfy the axioms of the closed set of a topol-
ogy, and we call this the Zariski topology on ProjS•. (Other definitions given in
the literature may look superficially different, but can be easily shown to be the
same.) Many statements about the Zariski topology on Spec of a ring carry over
to this situation with little extra work. Clearly D(f) ∩D(g) = D(fg), by the same
immediate argument as in the affine case (Exercise 3.5.D).

4.5.G. EASY EXERCISE. Verify that the projective distinguished open sets D(f)
(as f runs through the homogeneous elements of S+) form a base of the Zariski
topology.

4.5.H. EXERCISE. Fix a graded ring S•.
(a) Suppose I is any homogeneous ideal of S• contained in S+, and f is a homoge-
neous element of positive degree. Show that f vanishes on V(I) (i.e., V(I) ⊂ V(f))
if and only if fn ∈ I for some n. (Hint: Mimic the affine case; see Exercise 3.4.J.) In
particular, as in the affine case (Exercise 3.5.E), if D(f) ⊂ D(g), then fn ∈ (g) for
some n, and vice versa. (Here g is also homogeneous of positive degree.)
(b) If Z ⊂ ProjS•, define I(Z) ⊂ S+. Show that it is a homogeneous ideal of S•. For
any two subsets, show that I(Z1 ∪ Z2) = I(Z1) ∩ I(Z2).
(c) For any subset Z ⊂ ProjS•, show that V(I(Z)) = Z.

4.5.I. EXERCISE (CF. EXERCISE 3.5.B). Fix a graded ring S•, and a homogeneous
ideal I. Show that the following are equivalent.

(a) V(I) = ∅.
(b) For any fi (as i runs through some index set) generating I, ∪D(fi) =

ProjS•.
(c)

√
I ⊃ S+.

This is more motivation for the ideal S+ being “irrelevant”: any ideal whose radi-
cal contains it is “geometrically irrelevant”.

We now construct ProjS• as a scheme.

4.5.J. EXERCISE. Suppose some homogeneous f ∈ S+ is given. Via the inclusion

D(f) = Spec((S•)f)0 ↪→ ProjS•

of Exercise 4.5.F, show that the Zariski topology on ProjS• restricts to the Zariski
topology on Spec((S•)f)0.
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Now that we have defined ProjS• as a topological space, we are ready to de-
fine the structure sheaf. OnD(f), we wish it to be the structure sheaf of Spec((S•)f)0.
We will glue these sheaves together using Exercise 2.5.D on gluing sheaves.

4.5.K. EXERCISE. If f, g ∈ S+ are homogeneous and nonzero, describe an isomor-
phism between Spec((S•)fg)0 and the distinguished open subset D(gdeg f/fdegg)
of Spec((S•)f)0.

Similarly, Spec((S•)fg)0 is identified with a distinguished open subset of Spec((S•)g)0.
We then glue the various Spec((S•)f)0 (as f varies) altogether, using these pairwise
gluings.

4.5.L. EXERCISE. By checking that these gluings behave well on triple overlaps
(see Exercise 2.5.D), finish the definition of the scheme ProjS•.

4.5.M. EXERCISE. (Some will find this essential, others will prefer to ignore it.)
(Re)interpret the structure sheaf of ProjS• in terms of compatible germs.

4.5.8. Definition. We (re)define projective space (over a ringA) by PnA := ProjA[x0, . . . , xn].
This definition involves no messy gluing, or special choice of patches. Note that
the variables x0, . . . , xn, which we call the projective coordinates on PnA, are part
of the definition. (They may have other names than x’s, depending on the context.)

4.5.N. EXERCISE. Check that this agrees with our earlier construction of PnA
(§4.4.9). (How do you know that the D(xi) cover ProjA[x0, . . . , xn]?)

Notice that with our old definition of projective space, it would have been a
nontrivial exercise to show that D(x2 + y2 − z2) ⊂ P2k (the complement of a plane
conic) is affine; with our new perspective, it is immediate — it is Spec(k[x, y, z](x2+y2−z2))0.

4.5.O. EXERCISE. Suppose that k is an algebraically closed field. We know
from Exercise 4.4.F that the closed points of Pnk , as defined in §4.4.9, are in bijec-
tion with the points of “classical” projective space. By Exercise 4.5.N, the scheme
Pnk as defined in §4.4.9 is isomorphic to Projk[x0, . . . , xn]. Therefore, each point
[a0, . . . , an] of classical projective space corresponds to a homogeneous prime
ideal of k[x0, . . . , xn]. Which homogeneous prime ideal is it?

We now figure out the “right definition” of the vanishing scheme, in analogy
with the vanishing set V(·) defined at the start of §3.4. You will be defining a closed
subscheme (mentioned in Remark 4.3.4, and to be properly defined in §8.1).

4.5.P. EXERCISE. If S• is generated in degree 1, and f ∈ S+ is homogeneous,
explain how to define V(f) “in” ProjS•, the vanishing scheme of f. (Warning: f
in general isn’t a function on ProjS•. We will later interpret it as something close:
a section of a line bundle, see for example §14.1.2.) Hence define V(I) for any
homogeneous ideal I of S+. (Another solution in more general circumstances will
be given in Exercise 13.1.I.)

4.5.9. Projective and quasiprojective schemes.
We call a scheme of the form (i.e., isomorphic to) ProjS•, where S• is a finitely

generated graded ring over A, a projective scheme over A, or a projective A-
scheme. A quasiprojective A-scheme is a quasicompact open subscheme of a
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projective A-scheme. The “A” is omitted if it is clear from the context; often A is
a field.

4.5.10. Unimportant remarks. (i) Note that ProjS• makes sense even when S• is not
finitely generated. This can be useful. For example, you will later be able to do
Exercise 6.4.D without worrying about Exercise 6.4.H.

(ii) The quasicompact requirement in the definition of quasiprojectivity is of
course redundant in the Noetherian case (cf. Exercise 3.6.T), which is all that mat-
ters to most.

4.5.11. Silly example. Note that P0A = ProjA[T ] ∼= SpecA. Thus “SpecA is a
projective A-scheme”.

4.5.12. Example: projectivization of a vector space PV . We can make this def-
inition of projective space even more choice-free as follows. Let V be an (n + 1)-
dimensional vector space over k. (Here k can be replaced by any ring A as usual.)
Define

Sym•
V∨ = k⊕ V∨ ⊕ Sym2

V∨ ⊕ · · · .
(The reason for the dual is explained by the next exercise. For a reminder of the def-
inition of Sym, flip to §13.5.3.) If for example V is the dual of the vector space with
basis associated to x0, . . . , xn, we would have Sym•

V∨ = k[x0, . . . , xn]. Then we
can define PV := Proj(Sym•

V∨). In this language, we have an interpretation for
x0, . . . , xn: they are linear functionals on the underlying vector space V . (Warning:
some authors use the definition PV = Proj(Sym•

V), so be cautious.)

4.5.Q. UNIMPORTANT EXERCISE. Suppose k is algebraically closed. Describe a
natural bijection between one-dimensional subspaces of V and the closed points
of PV . Thus this construction canonically (in a basis-free manner) describes the
one-dimensional subspaces of the vector space V .

Unimportant remark: you may be surprised at the appearance of the dual in
the definition of PV . This is partially explained by the previous exercise. Most
normal (traditional) people define the projectivization of a vector space V to be
the space of one-dimensional subspaces of V . Grothendieck considered the projec-
tivization to be the space of one-dimensional quotients. One motivation for this is
that it gets rid of the annoying dual in the definition above. There are better rea-
sons, that we won’t go into here. In a nutshell, quotients tend to be better-behaved
than subobjects for coherent sheaves, which generalize the notion of vector bun-
dle. (Coherent sheaves are discussed in Chapter 13.)

On another note related to Exercise 4.5.Q: you can also describe a natural bijec-
tion between points of V and the closed points of Spec(Sym•

V∨). This construc-
tion respects the affine/projective cone picture of §8.2.12.

4.5.13. The Grassmannian. At this point, we could describe the fundamental geo-
metric object known as the Grassmannian, and give the “wrong” (but correct) defi-
nition of it. We will instead wait until §6.7 to give the wrong definition, when we
will know enough to sense that something is amiss. The right definition will be
given in §16.7.



CHAPTER 5

Some properties of schemes

5.1 Topological properties

We will now define some useful properties of schemes. As you see each exam-
ple, you should try these out in specific examples of your choice, such as particular
schemes of the form SpecC[x1 . . . , xn]/(f1, . . . , fr).

The definitions of connected, connected component, (ir)reducible, irreducible com-
ponent, quasicompact, generization, specialization, generic point, Noetherian topological
space, and closed point, were given in §3.6. You should have pictures in your mind
of each of these notions.

Exercise 3.6.C shows that An is irreducible (it was easy). This argument “be-
haves well under gluing”, yielding:

5.1.A. EASY EXERCISE. Show that Pnk is irreducible.

5.1.B. EXERCISE. Exercise 3.7.E showed that there is a bijection between irre-
ducible closed subsets and points for affine schemes (the map sending a point p to
the closed subset {p} is a bijection). Show that this is true of schemes in general.

5.1.C. EASY EXERCISE. Prove that if X is a scheme that has a finite cover X =
∪ni=1 SpecAi where Ai is Noetherian, then X is a Noetherian topological space
(§3.6.14). (We will soon call a scheme with such a cover a Noetherian scheme, §5.3.4.)
Hint: show that a topological space that is a finite union of Noetherian subspaces
is itself Noetherian.

Thus Pnk and PnZ are Noetherian topological spaces: we built them by gluing
together a finite number of spectra of Noetherian rings.

5.1.D. EASY EXERCISE. Show that a scheme X is quasicompact if and only if it can
be written as a finite union of affine open subschemes. (Hence PnA is quasicompact
for any ring A.)

5.1.E. IMPORTANT EXERCISE: QUASICOMPACT SCHEMES HAVE CLOSED POINTS.
Show that if X is a quasicompact scheme, then every point has a closed point in its
closure. Show that every nonempty closed subset of X contains a closed point of
X. In particular, every nonempty quasicompact scheme has a closed point. (Warn-
ing: there exist nonempty schemes with no closed points — see for example [Liu,
Exer. 3.27], or [Schw], or Hochster’s thesis [Ho1, Ho2] — so your argument had
better use the quasicompactness hypothesis!)

153
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This exercise will often be used in the following way. If there is some prop-
erty P of points of a scheme that is “open” (if a point p has P, then there is some
open neighborhood U of p such that all the points in U have P), then to check if
all points of a quasicompact scheme have P, it suffices to check only the closed
points. (A first example of this philosophy is Exercise 5.2.D.) This provides a con-
nection between schemes and the classical theory of varieties — the points of tra-
ditional varieties are the closed points of the corresponding schemes (essentially
by the Nullstellensatz, see §3.6.9 and Exercise 5.3.F). In many good situations, the
closed points are dense (such as for varieties, see §3.6.9 and Exercise 5.3.F again),
but this is not true in some fundamental cases (see Exercise 3.6.J(b)).

5.1.1. Quasiseparated schemes. Quasiseparatedness is a weird notion that comes
in handy for certain people. (Warning: we will later realize that this is really a
property of morphisms, not of schemes §7.3.1.) Most people, however, can ignore
this notion, as the schemes they will encounter in real life will all have this prop-
erty. A topological space is quasiseparated if the intersection of any two quasi-
compact open subsets is quasicompact. (The motivation for the “separatedness”
in the name is that it is a weakened version of separated, for which the intersection
of any two affine open sets is affine, see Proposition 10.1.8.)

5.1.F. SHORT EXERCISE. Show that a scheme is quasiseparated if and only if the
intersection of any two affine open subsets is a finite union of affine open subsets.

5.1.G. EXERCISE. Show that affine schemes are quasiseparated. (Possible hint:
Exercise 5.1.F.)

We will see that quasiseparatedness will be a useful hypothesis in theorems (in
conjunction with quasicompactness), and that various interesting kinds of schemes
(affine, locally Noetherian, separated, see Exercises 5.1.G, 5.3.A, and 10.1.H respec-
tively) are quasiseparated, and this will allow us to state theorems more succinctly
(e.g., “if X is quasicompact and quasiseparated” rather than “if X is quasicompact,
and either this or that or the other thing hold”).

“Quasicompact and quasiseparated” means something concrete:

5.1.H. EXERCISE. Show that a scheme X is quasicompact and quasiseparated if
and only if X can be covered by a finite number of affine open subsets, any two of
which have intersection also covered by a finite number of affine open subsets.

So when you see “quasicompact and quasiseparated” as hypotheses in a the-
orem, you should take this as a clue that you will use this interpretation, and that
finiteness will be used in an essential way.

5.1.I. EASY EXERCISE. Show that all projective A-schemes are quasicompact and
quasiseparated. (Hint: use the fact that the graded ring in the definition is finitely
generated — those finite number of generators will lead you to a covering set.)

5.1.J. EXERCISE (A NONQUASISEPARATED SCHEME). Let X = Spec k[x1, x2, . . . ],
and let U be X − [m] where m is the maximal ideal (x1, x2, . . . ). Take two copies
of X, glued along U (“affine ∞-space with a doubled origin”, see Example 4.4.5
and Exercise 4.4.C for “finite-dimensional” versions). Show that the result is not
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quasiseparated. Hint: This “open embedding” U ⊂ X came up earlier in Exer-
cise 3.6.G(b) as an example of a nonquasicompact open subset of an affine scheme.

5.1.2. Dimension. One very important topological notion is dimension. (It is
amazing that this is a topological idea.) But despite being intuitively fundamental,
it is more difficult, so we postpone it until Chapter 11.

5.2 Reducedness and integrality

Recall that one of the alarming things about schemes is that functions are not deter-
mined by their values at points, and that was because of the presence of nilpotents
(§3.2.11).

5.2.1. Definition. Recall that a ring is said to be reduced if it has no nonzero nilpo-
tents (§3.2.13). We say that a scheme X is reduced if OX(U) is reduced for every
open set U of X.

5.2.A. EXERCISE (REDUCEDNESS IS A stalk-local PROPERTY, I.E., CAN BE CHECKED
AT STALKS). Show that a scheme is reduced if and only if none of the stalks
have nonzero nilpotents. Hence show that if f and g are two functions (global
sections of OX) on a reduced scheme that agree at all points, then f = g. (Two
hints: OX(U) ↪→∏p∈UOX,p from Exercise 2.4.A, and the nilradical is intersection
of all prime ideals from Theorem 3.2.12.)

5.2.B. EXERCISE. If A is a reduced ring, show that SpecA is reduced. Show that
Ank and Pnk are reduced.

The scheme Speck[x, y]/(y2, xy) is nonreduced. When we sketched it in Fig-
ure 4.4, we indicated that the fuzz represented nonreducedness at the origin. The
following exercise is a first stab at making this precise.

5.2.C. EXERCISE. Show that
(
k[x, y]/(y2, xy)

)
x

has no nonzero nilpotent elements.
(Possible hint: show that it is isomorphic to another ring, by considering the geo-
metric picture. Exercise 3.2.L may give another hint.) Show that the only point of
Spec k[x, y]/(y2, xy) with a nonreduced stalk is the origin.

5.2.D. UNIMPORTANT EXERCISE. If X is a quasicompact scheme, show that it suf-
fices to check reducedness at closed points. Hint: Do not try to show that reduced-
ness is an open condition (see Remark 5.2.2). Instead show that any nonreduced
point has a nonreduced closed point in its closure, using Exercise 5.1.E. (This result
is interesting, but we won’t use it.)

5.2.2. ⋆ Remark. Reducedness is not in general an open condition. You may be
able to identify the underlying topological space of

X = SpecC[x, y1, y2, . . . ]/(y21, y22, y23, . . . , (x− 1)y1, (x− 2)y2, (x− 3)y3, · · · )

with that of SpecC[x], and then to show that the nonreduced points of X are pre-
cisely the closed points corresponding to the positive integers. The complement of
this set is not Zariski open. (This ring will come up again in §5.5, in the paragraph
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after the statement of property (B).) However, we will see in Remark 5.5.5 (and
again in Remark 13.7.2) that if X is a locally Noetherian scheme, then the reduced
locus is indeed open.

5.2.3. ⋆ Warning for experts. If a scheme X is reduced, then from the definition of
reducedness, its ring of global sections is reduced. However, the converse is not
true. You already know enough to verify that if X is the scheme cut out by x2 = 0
in P2k, then Γ(X,OX) ∼= k, and that X is nonreduced. (This example will come up
again in §18.1.6.)

5.2.E. EXERCISE. Suppose X is quasicompact, and f is a function that vanishes
at all points of X. Show that there is some n such that fn = 0. Show that this
may fail if X is not quasicompact. (This exercise is less important, but shows why
we like quasicompactness, and gives a standard pathology when quasicompact-
ness doesn’t hold.) Hint: take an infinite disjoint union of SpecAn with An :=
k[ϵ]/(ϵn). This scheme arises again in §8.3.2 (see Figure 8.4 for a picture) and in
Caution/Example 8.3.11.

5.2.4. Definition. A scheme X is integral if it is nonempty, and OX(U) is an integral
domain for every nonempty open subset U of X.

5.2.F. IMPORTANT EXERCISE. Show that a scheme X is integral if and only if it
is irreducible and reduced. (Thus we picture integral schemes as: “one piece, no
fuzz”. Possible hint: Exercise 4.3.G.)

5.2.G. EXERCISE. Show that an affine scheme SpecA is integral if and only if A is
an integral domain.

5.2.H. EXERCISE. Suppose X is an integral scheme. Then X (being irreducible)
has a generic point η. Suppose SpecA is any nonempty affine open subset of
X. Show that the stalk at η, OX,η is naturally identified with K(A), the fraction
field of A. This is called the function field K(X) of X. It can be computed on any
nonempty open set of X, as any such open set contains the generic point. The
reason for the name: we will soon think of this as the field of rational functions on
X (Definition 5.5.6 and Exercise 5.5.Q).

5.2.I. EXERCISE. Suppose X is an integral scheme. Show that the restriction maps
resU,V : OX(U) → OX(V) are inclusions so long as V ̸= ∅. Suppose SpecA is any
nonempty affine open subset of X (so A is an integral domain). Show that the
natural map OX(U)→ OX,η = K(A) (where U is any nonempty open subset) is an
inclusion.

Thus irreducible varieties (an important example of integral schemes defined
later) have the convenient property that sections over different open sets can be
considered subsets of the same ring. In particular, restriction maps (except to the
empty set) are always inclusions, and gluing is easy: functions fi on a cover Ui
of U (as i runs over an index set) glue if and only if they are the same element of
K(X). This is one reason why (irreducible) varieties are usually introduced before
schemes.
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5.2.5. Caution. Integrality is not stalk-local (the disjoint union of two integral
schemes is not integral, as SpecA

⨿
SpecB = Spec(A× B) by Exercise 3.6.A), but

it almost is, see Exercise 5.3.C.

5.3 Properties of schemes that can be checked “affine-locally”

This section is intended to address something tricky in the definition of schemes.
We have defined a scheme as a topological space with a sheaf of rings, that can be
covered by affine schemes. Hence we have all of the affine open sets in the cover,
but we don’t know how to communicate between any two of them. Somewhat
more explicitly, if I have an affine cover, and you have an affine cover, and we
want to compare them, and I calculate something on my cover, there should be
some way of us getting together, and figuring out how to translate my calcula-
tion over to your cover. The Affine Communication Lemma 5.3.2 will provide a
convenient machine for doing this.

Thanks to this lemma, we can define a host of important properties of schemes.
All of these are “affine-local”, in that they can be checked on any affine cover, i.e.,
a covering by open affine sets. (We state this more formally after the statement of
the Affine Communication Lemma.) We like such properties because we can check
them using any affine cover we like. If the scheme in question is quasicompact,
then we need only check a finite number of affine open sets.

5.3.1. Proposition. — Suppose SpecA and SpecB are affine open subschemes of a
scheme X. Then SpecA ∩ SpecB is the union of open sets that are simultaneously distin-
guished open subschemes of SpecA and SpecB.

[p]

SpecA SpecBSpecAf

SpecBg

FIGURE 5.1. A trick to show that the intersection of two affine
open sets may be covered by open sets that are simultaneously
distinguished in both affine open sets

Proof. (See Figure 5.1.) Given any point p ∈ SpecA ∩ SpecB, we produce an open
neighborhood of p in SpecA∩ SpecB that is simultaneously distinguished in both
SpecA and SpecB. Let SpecAf be a distinguished open subset of SpecA contained
in SpecA ∩ SpecB and containing p. Let SpecBg be a distinguished open subset
of SpecB contained in SpecAf and containing p. Then g ∈ Γ(SpecB,OX) restricts
to an element g ′ ∈ Γ(SpecAf,OX) = Af. The points of SpecAf where g vanishes
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are precisely the points of SpecAf where g ′ vanishes, so

SpecBg = SpecAf \ {[p] : g ′ ∈ p}

= Spec(Af)g ′ .

If g ′ = g ′′/fn (g ′′ ∈ A) then Spec(Af)g ′ = SpecAfg ′′ , and we are done. □
The following easy result will be crucial for us.

5.3.2. Affine Communication Lemma. — Let P be some property enjoyed by some
affine open subsets of a scheme X, such that

(i) if an affine open subset SpecA ↪→ X has property P then for any f ∈ A,
SpecAf ↪→ X does too.

(ii) if (f1, . . . , fn) = A, and SpecAfi ↪→ X has P for all i, then so does SpecA ↪→
X.

Suppose that X = ∪i∈I SpecAi where SpecAi has property P. Then every affine open
subset of X has P too.

We say such a property is affine-local: a property is affine-local if we can check
it on any affine cover. (For example, reducedness is an affine-local property. Do
you understand why?) Note that if U is an open subscheme of X, then U inherits
any affine-local property of X. Note also that any property that is stalk-local (a
scheme has property P if and only if all its stalks have property Q) is necessarily
affine-local (a scheme has property P if and only if all of its affine open sets have
property R, where an affine scheme has property R if and only if all its stalks have
property Q). But it is sometimes not so obvious what the right definition of Q is;
see for example the discussion of normality in the next section.

Proof. Let SpecA be an affine subscheme of X. Cover SpecA with a finite num-
ber of distinguished open sets SpecAgj

, each of which is distinguished in some
SpecAi. This is possible by Proposition 5.3.1 and the quasicompactness of SpecA
(Exercise 3.6.G(a)). By (i), each SpecAgj

has P. By (ii), SpecA has P. □
By choosing property P appropriately, we define some important properties

of schemes.

5.3.3. Proposition. — Suppose A is a ring, and (f1, . . . , fn) = A.
(a) If A is a Noetherian ring, then so is Afi . If each Afi is Noetherian, then so is A.
(b) Suppose B is a ring, and A is a B-algebra. (Hence Ag is a B-algebra for all

g ∈ A.) If A is a finitely generated B-algebra, then so is Afi . If each Afi is a
finitely generated B-algebra, then so is A.

We will prove these shortly (§5.3.9). But let’s first motivate you to read the
proof by giving some interesting definitions and results assuming Proposition 5.3.3
is true.

5.3.4. Important Definition. Suppose X is a scheme. If X can be covered by affine
open sets SpecA where A is Noetherian, we say that X is a locally Noetherian
scheme. If in additionX is quasicompact, or equivalently can be covered by finitely
many such affine open sets, we say that X is a Noetherian scheme. (We will see a
number of definitions of the form “if X has this property, we say that it is locallyQ;
if further X is quasicompact, we say that it isQ.”) By Exercise 5.1.C, the underlying
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topological space of a Noetherian scheme is Noetherian. Hence by Exercise 3.6.T,
all open subsets of a Noetherian scheme are quasicompact.

5.3.A. EXERCISE. Show that locally Noetherian schemes are quasiseparated.

5.3.B. EXERCISE. Show that a Noetherian scheme has a finite number of irre-
ducible components. (Hint: Proposition 3.6.15.) Show that a Noetherian scheme
has a finite number of connected components, each a finite union of irreducible
components.

5.3.C. EXERCISE. Show that a Noetherian scheme X is integral if and only if
X is nonempty and connected and all stalks OX,p are integral domains. Thus in
“good situations”, integrality is the union of local (stalks are integral domains) and
global (connected) conditions. Hint: Recall that integral = irreducible + reduced
(Exercise 5.2.F). If a scheme’s stalks are integral domains, then it is reduced (re-
ducedness is a stalk-local condition, Exercise 5.2.A). If a scheme X has underlying
topological space that is Noetherian, then X has finitely many irreducible compo-
nents (by the previous exercise); if two of them meet at a point p, then OX,p is
not an integral domain. (You can readily extend this from Noetherian schemes to
locally Noetherian schemes, by showing that a connected scheme is irreducible if
and only if it is nonempty and has a cover by open irreducible subsets. But some
Noetherian hypotheses are necessary, see [Stacks, tag 0568].

5.3.5. Unimportant caution. The ring of sections of a Noetherian scheme need not
be Noetherian, see Exercise 19.11.H.

5.3.6. Schemes over a given field k, or more generally over a given ring A (A-
schemes). You may be particularly interested in working over a particular field,
such as C or Q, or over a ring such as Z. Motivated by this, we define the notion
of A-scheme, or scheme over A, where A is a ring, as a scheme where all the
rings of sections of the structure sheaf (over all open sets) are A-algebras, and
all restriction maps are maps of A-algebras. (Like some earlier notions such as
quasiseparatedness, this will later in Exercise 6.3.G be properly understood as a
“relative notion”; it is the data of a morphism X → SpecA.) Suppose now X is an
A-scheme. If X can be covered by affine open sets SpecBi where each Bi is a finitely
generated A-algebra, we say that X is locally of finite type over A, or that it is a
locally finite typeA-scheme. (This is admittedly cumbersome terminology; it will
make more sense later, once we know about morphisms in §7.3.12.) If furthermore
X is quasicompact, X is (of) finite type over A, or a finite type A-scheme. Note
that a scheme locally of finite type over k or Z (or indeed any Noetherian ring) is
locally Noetherian, and similarly a scheme of finite type over any Noetherian ring
is Noetherian. As our key “geometric” examples: (i) SpecC[x1, . . . , xn]/I is a finite
type C-scheme; and (ii) PnC is a finite type C-scheme. (The field C may be replaced
by an arbitrary ring A.)

5.3.D. EXERCISE.
(a) (quasiprojective implies finite type) If X is a quasiprojective A-scheme (Defini-
tion 4.5.9), show that X is of finite type over A. If A is furthermore assumed to
be Noetherian, show that X is a Noetherian scheme, and hence has a finite number
of irreducible components.
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(b) Suppose U is an open subscheme of a projective A-scheme. Show that U is
locally of finite type over A. If A is Noetherian, show that U is quasicompact, and
hence quasiprojective over A, and hence by (a) of finite type over A. Show this
need not be true if A is not Noetherian. Better: give an example of an open sub-
scheme of a projective A-scheme that is not quasicompact, necessarily for some
non-Noetherian A. (Hint: Silly example 4.5.11.)

5.3.7. Varieties. We now make a connection to the classical language of varieties.
An affine scheme that is reduced and of finite type over k is said to be an affine
variety (over k), or an affine k-variety. A reduced (quasi)projective k-scheme is
a (quasi)projective variety (over k), or a (quasi)projective k-variety. (Warning:
in the literature, it is sometimes also assumed in the definition of variety that the
scheme is irreducible, or that k is algebraically closed.)

5.3.E. EXERCISE.
(a) Show that Speck[x1, . . . , xn]/I is an affine k-variety if and only if I ⊂ k[x1, . . . , xn]
is a radical ideal.
(b) Suppose I ⊂ k[x0, . . . , xn] is a radical graded ideal. Show that Projk[x0, . . . , xn]/I
is a projective k-variety. (Caution: The example of I = (x20, x0x1, . . . , x0xn) shows
that Projk[x0, . . . , xn]/I can be a projective k-variety without I being radical.)

We will not define varieties in general until §10.1.7; we will need the notion of
separatedness first, to exclude abominations like the line with the doubled origin
(Example 4.4.5). But many of the statements we will make in this section about
affine k-varieties will automatically apply more generally to k-varieties.

5.3.F. EXERCISE. Show that a point of a locally finite type k-scheme is a closed
point if and only if the residue field of the stalk of the structure sheaf at that point
is a finite extension of k. Show that the closed points are dense on such a scheme
(even though it needn’t be quasicompact, cf. Exercise 5.1.E). Hint: §3.6.9. (Warn-
ing: closed points need not be dense even on quite reasonable schemes, see Exer-
cise 3.6.J(b).)

5.3.8. Definition. The degree of a closed point p of a locally finite type k-scheme
(e.g., a variety over k) is the degree of the field extension κ(p)/k. For example,
in A1k = Speck[t], the point [(p(t))] (p(t) ∈ k[t] irreducible) is degp(t). If k is
algebraically closed, the degree of every closed point is 1.

5.3.G. ⋆⋆ EXERCISE (analytification OF COMPLEX VARIETIES). (Warning: Any
discussion of analytification will be only for readers who are familiar with the no-
tion of complex analytic varieties, or willing to develop it on their own in parallel
with our development of schemes.) Suppose X is a reduced, finite type C-scheme.
Define the corresponding complex analytic prevariety Xan. (The definition of an
analytic prevariety is the same as the definition of a variety without the Haus-
dorff condition.) Caution: your definition should not depend on a choice of an
affine cover of X. (Hint: First explain how to analytify reduced finite type affine
C-schemes. Then glue.) Give a bijection between the closed points of X and the
points of Xan, using the weak Nullstellensatz 3.2.4. (In fact one may construct a
continuous map of sets Xan → X generalizing Exercise 3.2.I.) In Exercise 6.3.N, we
will see that analytification can be made into a functor. As mentioned there, two
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nonisomorphic complex varieties can have isomorphic analytifications, but not if
they are compact.

5.3.9. Proof of Proposition 5.3.3. We divide each part into (i) and (ii) following the
statement of the Affine Communication Lemma 5.3.2.

Proof of Proposition 5.3.3(a). (i) If I1 ⊊ I2 ⊊ I3 ⊊ · · · is a strictly increasing chain
of ideals of Af, then we can verify that J1 ⊊ J2 ⊊ J3 ⊊ · · · is a strictly increasing
chain of ideals of A, where

Jj = {r ∈ A : r ∈ Ij}

where r ∈ Ij means “the image of r in Af lies in Ij”. (We think of this as Ij ∩ A,
except in general A needn’t inject into Afi .) Clearly Jj is an ideal of A. If x/fn ∈
Ij+1 \ Ij where x ∈ A, then x ∈ Jj+1, and x /∈ Jj (or else x(1/f)n ∈ Ij as well).

(ii) Suppose I1 ⊊ I2 ⊊ I3 ⊊ · · · is a strictly increasing chain of ideals of A.
Then for each 1 ≤ i ≤ n,

Ii,1 ⊂ Ii,2 ⊂ Ii,3 ⊂ · · ·
is an increasing chain of ideals in Afi , where Ii,j = Ij ⊗A Afi . It remains to show
that for each j, Ii,j ⊊ Ii,j+1 for some i; the result will then follow.

5.3.H. EXERCISE. Finish the proof of Proposition 5.3.3(a). (Hint: A ↪→ ∏Afi by
(4.1.3.1).)

Proof of Proposition 5.3.3(b). Part (i) is clear: if A is generated over B by r1, . . . ,
rn, then Af is generated over B by r1, . . . , rn, 1/f.

(ii) Here is the idea. As the fi generate A, we can write 1 =
∑
cifi for ci ∈ A.

We have generators of Afi : rij/f
kj

i , where rij ∈ A. I claim that {fi}i ∪ {ci} ∪ {rij}ij
generate A as a B-algebra. Here is why. Suppose you have any r ∈ A. Then in
Afi , we can write r as some polynomial in the rij’s and fi, divided by some huge
power of fi. So “in each Afi , we have described r in the desired way”, except for
this annoying denominator. Now use a “partition of unity” type argument as in
the proof of Theorem 4.1.2 to combine all of these into a single expression, killing
the denominator. Show that the resulting expression you build still agrees with
r in each of the Afi . Thus it is indeed r (by the identity axiom for the structure
sheaf).

5.3.I. EXERCISE. Make this argument precise.

This concludes the proof of Proposition 5.3.3. □

5.4 Normality and factoriality

5.4.1. Normality.
We can now define a property of schemes that says that they are “not too

far from smooth”, called normality, which will come in very handy. We will see
later that “locally Noetherian normal schemes satisfy Hartogs’s Lemma” (Alge-
braic Hartogs’s Lemma 11.3.11 for Noetherian normal schemes): functions defined
away from a set of codimension 2 extend over that set. (We saw a first glimpse of
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this in §4.4.2.) As a consequence, rational functions that have no poles (certain sets
of codimension one where the function isn’t defined) are defined everywhere. We
need definitions of dimension and poles to make this precise. See §12.8.7 and
§26.3.5 for the fact that “smoothness” (really, “regularity”) implies normality.

Recall that an integral domain A is integrally closed if the only zeros in K(A)
to any monic polynomial in A[x] must lie in A itself. The basic example is Z (see
Exercise 5.4.F for a reason). We say a scheme X is normal if all of its stalks OX,p are
normal, i.e., are integral domains, and integrally closed in their fraction fields. (So
by definition, normality is a stalk-local property.) As reducedness is a stalk-local
property (Exercise 5.2.A), normal schemes are reduced.

5.4.A. EXERCISE. Show that integrally closed domains behave well under local-
ization: if A is an integrally closed domain, and S is a multiplicative subset not
containing 0, show that S−1A is an integrally closed domain. (Hint: assume that
xn + an−1x

n−1 + · · · + a0 = 0 where ai ∈ S−1A has a root in the fraction field.
Turn this into another equation in A[x] that also has a root in the fraction field.)

It is no fun checking normality at every single point of a scheme. Thanks
to this exercise, we know that if A is an integrally closed domain, then SpecA
is normal. Also, for quasicompact schemes, normality can be checked at closed
points, thanks to this exercise, and the fact that for such schemes, any point is a
generization of a closed point (see Exercise 5.1.E).

It is not true that normal schemes are integral. For example, the disjoint
union of two normal schemes is normal. Thus Speck

⨿
Speck ∼= Spec(k × k) ∼=

Spec k[x]/(x(x − 1)) is normal, but its ring of global sections is not an integral do-
main.

5.4.B. UNIMPORTANT EXERCISE. Show that a Noetherian scheme is normal if and
only if it is the finite disjoint union of integral Noetherian normal schemes. (Hint:
Exercise 5.3.C.)

We are close to proving a useful result in commutative algebra, so we may as
well go all the way.

5.4.2. Proposition. — If A is an integral domain, then the following are equivalent.

(i) A is integrally closed.
(ii) Ap is integrally closed for all prime ideals p ⊂ A.

(iii) Am is integrally closed for all maximal ideals m ⊂ A.

Proof. Exercise 5.4.A shows that integral closedness is preserved by localization, so
(i) implies (ii). Clearly (ii) implies (iii).

It remains to show that (iii) implies (i). This argument involves a pretty con-
struction that we will use again. Suppose A is not integrally closed. We show that
there is some m such that Am is also not integrally closed. Suppose

(5.4.2.1) xn + an−1x
n−1 + · · ·+ a0 = 0

(with ai ∈ A) has a solution s in K(A) \A. Let I be the ideal of denominators of s:

I := {r ∈ A : rs ∈ A}.
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(Note that I is clearly an ideal of A.) Now I ̸= A, as 1 /∈ I. Thus there is some
maximal ideal m containing I. Then s /∈ Am, so equation (5.4.2.1) in Am[x] shows
that Am is not integrally closed as well, as desired. □

5.4.C. UNIMPORTANT EXERCISE. If A is an integral domain, show that A =
∩Am, where the intersection runs over all maximal ideals of A. (We won’t use this
exercise, but it gives good practice with the ideal of denominators.)

5.4.D. UNIMPORTANT EXERCISE RELATING TO THE IDEAL OF DENOMINATORS.
One might naively hope from experience with unique factorization domains that
the ideal of denominators is principal. This is not true. As a counterexample,
consider our new friend A = k[w, x, y, z]/(wz − xy) (which we first met in Exam-
ple 4.4.12, and which we will later recognize as the cone over the quadric surface),
and w/y = x/z ∈ K(A). Show that the ideal of denominators of this element of
K(A) is (y, z).

We will see that the I in the above exercise is not principal (Exercise 12.1.D —
you may be able to show it directly, using the fact that I is a homogeneous ideal of a
graded ring). But we will also see that in good situations (Noetherian, normal), the
ideal of denominators is “pure codimension 1” — this is the content of Algebraic
Hartogs’s Lemma 11.3.11. In its proof, §11.3.12, we give a geometric interpretation
of the ideal of denominators.

5.4.3. Factoriality.
We define a notion which implies normality.

5.4.4. Definition. If all the stalks of a scheme X are unique factorization domains,
we say that X is factorial. (Unimportant remark: This is sometimes called locally
factorial, which may falsely suggest that this notion is affine-local, which it isn’t,
see Exercise 5.4.N. Another unimportant remark: the locus of points on an affine
variety over an algebraically closed field that are factorial is an open subset, [BGS,
p. 1].)

5.4.E. EXERCISE. Show that any nonzero localization of a unique factorization
domain is a unique factorization domain.

5.4.5. Thus if A is a unique factorization domain, then SpecA is factorial. The
converse need not hold, see Exercise 5.4.N. In fact, we will see that elliptic curves
are factorial, yet no affine open set is the Spec of a unique factorization domain,
§19.11.1. Hence one can show factoriality by finding an appropriate affine cover,
but there need not be such a cover of a factorial scheme.

5.4.6. Remark: How to check if a ring is a unique factorization domain. There are very
few means of checking that a Noetherian integral domain is a unique factorization
domain. Some useful ones are: (0) elementary means: rings with a Euclidean
algorithm such as Z, k[t], and Z[i]; polynomial rings over a unique factorization
domain, by Gauss’s Lemma (see e.g., [Lan, IV.2.3]). (1) Exercise 5.4.E, that the
localization of a unique factorization domain is also a unique factorization domain.
(2) height 1 prime ideals are principal (Proposition 11.3.5). (3) normal and Cl = 0

(Exercise 14.2.T). (4) Nagata’s Lemma (Exercise 14.2.U). (Caution: even if A is a
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unique factorization domain, A[[x]] need not be; see [Mat2, p. 165]. The first such
example, due to P. Salmon, was A = k(u)[[x, y, z]]/(z2 + x3 +uz6), see [Sa, Dan].)

5.4.7. Factoriality implies normality. One of the reasons we like factoriality is that it
implies normality.

5.4.F. IMPORTANT EXERCISE. Show that unique factorization domains are inte-
grally closed. Hence factorial schemes are normal, and if A is a unique factor-
ization domain, then SpecA is normal. (However, rings can be integrally closed
without being unique factorization domains, as we will see in Exercise 5.4.L. An-
other example is given without proof in Exercise 5.4.N; in that example, Spec of
the ring is factorial. A variation on Exercise 5.4.L will show that schemes can be
normal without being factorial, see Exercise 12.1.E.)

5.4.8. Examples.

5.4.G. EASY EXERCISE. Show that the following schemes are normal: Ank , Pnk ,
SpecZ. (As usual, k is a field. Although it is true that if A is integrally closed then
A[x] is as well — see [Bo, Ch. 5, §1, no. 3, Cor. 2] or [E, Ex. 4.18] — this is not an
easy fact, so do not use it here.)

5.4.H. HANDY EXERCISE (YIELDING MANY ENLIGHTENING EXAMPLES LATER). Sup-
pose A is a unique factorization domain with 2 invertible, and z2 − f is irreducible
in A[z].
(a) Show that if f ∈ A has no repeated prime factors, then SpecA[z]/(z2 − f) is
normal. Hint: B := A[z]/(z2 − f) is an integral domain, as (z2 − f) is prime
in A[z]. Suppose we have monic F(T) ∈ B[T ] so that F(T) = 0 has a root α in
K(B) \ K(A). Then by replacing F(T) by F(T)F(T), we can assume F(T) ∈ A[T ].
Also, α = g + hz where g, h ∈ K(A). Now α is the root of Q(T) = 0 for monic
Q(T) = T2 − 2gT + (g2 − h2f) ∈ K(A)[T ], so we can factor F(T) = P(T)Q(T) in
K(A)[T ]. By Gauss’s lemma, 2g, g2 − h2f ∈ A. Say g = r/2, h = s/t (s and t have
no common factors, r, s, t ∈ A). Then g2 − h2f = (r2t2 − 4s2f)/4t2. Then t is
invertible.
(b) Show that if f ∈ A has repeated prime factors, then SpecA[z]/(z2 − f) is not
normal.

5.4.I. EXERCISE. Show that the following schemes are normal:

(a) SpecZ[x]/(x2−n) where n is a square-free integer congruent to 3modulo
4. Caution: the hypotheses of Exercise 5.4.H do not apply, so you will
have to do this directly. (Your argument may also show the result when 3
is replaced by 2. A similar argument shows that Z[(1+

√
n)/2] is integrally

closed if n ≡ 1 (mod 4) is square-free.)
(b) Spec k[x1, . . . , xn]/(x21 + x

2
2 + · · ·+ x2m) where char k ̸= 2, n ≥ m ≥ 3.

(c) Spec k[w, x, y, z]/(wz − xy) where chark ̸= 2. This is our cone over a
quadric surface example from Example 4.4.12 and Exercise 5.4.D. Hint:
Exercise 5.4.J may help. (The result also holds for char k = 2, but don’t
worry about this.)

5.4.J. EXERCISE (DIAGONALIZING QUADRATIC FORMS). Suppose k is an alge-
braically closed field of characteristic not 2. (The hypothesis that k is algebraically
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closed is not necessary, so feel free to deal with this more general case.)
(a) Show that any quadratic form in n variables can be “diagonalized” by chang-
ing coordinates to be a sum of at most n squares (e.g., uw − v2 = ((u +w)/2)2 +
(i(u − w)/2)2 + (iv)2), where the linear forms appearing in the squares are linearly in-
dependent. (Hint: use induction on the number of variables, by “completing the
square” at each step.)
(b) Show that the number of squares appearing depends only on the quadratic.
For example, x2 + y2 + z2 cannot be written as a sum of two squares. (Possible
approach: given a basis x1, . . . , xn of the linear forms, write the quadratic form as

(
x1 · · · xn

)
M

 x1
...
xn



where M is a symmetric matrix. Determine how M transforms under a change of
basis, and show that the rank ofM is independent of the choice of basis.)

The rank of the quadratic form is the number of (“linearly independent”)
squares needed. If the number of squares equals the number of variables, the
quadratic form is said to be full rank or (of) maximal rank.

5.4.K. EASY EXERCISE (RINGS CAN BE INTEGRALLY CLOSED BUT NOT UNIQUE
FACTORIZATION DOMAINS, ARITHMETIC VERSION). Show that Z[

√
−5] is inte-

grally closed but not a unique factorization domain. (Hints: Exercise 5.4.I(a) and
2× 3 = (1+

√
−5)(1−

√
−5).)

5.4.L. EASY EXERCISE (RINGS CAN BE INTEGRALLY CLOSED BUT NOT UNIQUE
FACTORIZATION DOMAINS, GEOMETRIC VERSION). Suppose char k ̸= 2. Let
A = k[w, x, y, z]/(wz− xy), so SpecA is the cone over the smooth quadric surface
(cf. Exercises 4.4.12 and 5.4.D).
(a) Show that A is integrally closed. (Hint: Exercises 5.4.I(c) and 5.4.J.)
(b) Show that A is not a unique factorization domain. (Clearly wz = xy. But why
are w, x, y, and z irreducible? Hint: A is a graded integral domain. Show that if a
homogeneous element factors, the factors must be homogeneous.)

The previous two exercises look similar, but there is a difference. The cone
over the quadric surface is normal (by Exercise 5.4.L) but not factorial; see Exer-
cise 12.1.E. On the other hand, SpecZ[

√
−5] is factorial — all of its stalks are unique

factorization domains. (You will later be able to show this by showing that Z[
√
−5]

is a Dedekind domain, §12.5.15, whose stalks are necessarily unique factorization
domains by Theorem 12.5.8(f).)

5.4.M. EXERCISE. Suppose A is a k-algebra, and l/k is a finite extension of fields.
(Most likely your proof will not use finiteness; this hypothesis is included to avoid
distraction by infinite-dimensional vector spaces.) Show that if A⊗k l is a normal
integral domain, then A is a normal integral domain as well. (Although we won’t
need this, a version of the converse is true if l/k is separable, [Gr-EGA, IV2.6.14.2].)
Hint: fix a k-basis for l, b1 = 1, . . . , bd. Explain why 1⊗b1, . . . , 1⊗bd forms a free



166 The Rising Sea: Foundations of Algebraic Geometry

A-basis for A⊗k l. Explain why we have injections

A //

��

K(A)

��
A⊗k l // K(A)⊗k l.

Show that K(A) ⊗k l = K(A ⊗k l). (Idea: A ⊗k l ⊂ K(A) ⊗k l ⊂ K(A ⊗k l). Why
is K(A)⊗k l a field?) Show that (A⊗k l) ∩ K(A) = A. Now assume P(T) ∈ A[T ] is
monic and has a root α ∈ K(A), and proceed from there.

5.4.N. EXERCISE (UFD-NESS IS NOT AFFINE-LOCAL). Let A = (Q[x, y]x2+y2)0
denote the homogeneous degree 0 part of the ring Q[x, y]x2+y2 . In other words, it
consists of quotients f(x, y)/(x2+y2)n, where f has pure degree 2n. Show that the
distinguished open sets D( x2

x2+y2 ) and D( y2

x2+y2 ) cover SpecA. (Hint: the sum of
those two fractions is 1.) Show that A x2

x2+y2

and A y2

x2+y2

are unique factorization

domains. (Hint: show that both rings are isomorphic to Q[t]t2+1; this is a localiza-
tion of the unique factorization domain Q[t].) Finally, show that A is not a unique
factorization domain. Possible hint:(

xy

x2 + y2

)2
=

(
x2

x2 + y2

)(
y2

x2 + y2

)
.

(This is generalized in Exercise 14.2.L . It is also related to Exercise 14.2.Q.)

Number theorists may prefer the example of Exercise 5.4.K: Z[
√
−5] is not a

unique factorization domain, but it turns out that you can cover it with two affine
open subsets D(2) andD(3), each corresponding to unique factorization domains.
(For number theorists: to show that Z[

√
−5]2 and Z[

√
−5]3 are unique factorization

domains, first show that the class group of Z[
√
−5] is Z/2 using the geometry of

numbers, as in [Ar4, Ch. 11, Thm. 7.9]. Then show that the ideals (1+
√
−5, 2) and

(1 +
√
−5, 3) are not principal, using the usual norm in C.) The ring Z[

√
−5] is an

example of a Dedekind domain, as we will discuss in §12.5.15.

5.4.9. Remark. For an example of k-algebra A that is not a unique factorization
domain, but becomes one after a certain field extension, see Exercise 14.2.N.

5.5 The crucial points of a scheme that control everything:
Associated points and primes

The associated points of a scheme are the few crucial points of the scheme
that capture essential information about its (sheaf of) functions. There are several
quite different ways of describing them, most of which are quite algebraic. We will
take a nonstandard approach, beginning with geometric motivation. Because they
involve both nilpotents and generic points — two concepts not part of your prior
geometric intuition — it can take some time to make them “geometric” in your
head. We will first meet them in a motivating example in two ways. We will then
discuss their key properties. Finally, we give proper (algebraic) definitions and
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proofs. As is almost always the case in mathematics, it is much more important to
remember the properties than it is to remember their proofs.

There are other approaches to associated points. Most notably, the algebraically
most central view is via a vitally important algebraic construction, primary decom-
position, mentioned only briefly in Aside 5.5.13.

5.5.1. Associated points as “fuzz attractors”. Recall Figure 4.4, our “fuzzy” picture of
the nonreduced scheme Spec k[x, y]/(y2, xy). When this picture was introduced,
we mentioned that the “fuzz” at the origin indicated that the nonreduced behav-
ior was concentrated there. This was justified in Exercise 5.2.C: the origin is the
only point where the stalk of the structure sheaf is nonreduced. Thus the different
levels of reducedness are concentrated along two irreducible closed subsets — the
origin, and the entire x-axis. Since irreducible closed subsets are in bijection with
points, we may as well say that the two key points with respect to “levels of nonre-
ducedness” were the generic point [(y)], and the origin [(x, y)]. These will be the
associated points of this scheme.

5.5.2. Better: associated points as generic points of irreducible components of the support
of sections.

We now give a seemingly unrelated exercise about the same scheme. Recall
that the support of a function on a scheme (Definition 2.4.2) is a closed subset.

5.5.A. EXERCISE. Suppose f is a function on Speck[x, y]/(y2, xy) (i.e., f ∈ k[x, y]/(y2, xy)).
Show that Supp f is either the empty set, or the origin, or the entire space.

The fact that the same closed subsets arise in two different ways is no coinci-
dence — their generic points are the associated points of Speck[x, y]/(y2, xy).

We discuss associated points first in the affine case SpecA. We assume that
A is Noetherian, and we take this as a standing assumption when discussing as-
sociated points. More generally, we will discuss associated points of M where M
is a finitely generated A module (and A is Noetherian). When speaking of rings
rather than schemes, we speak of associated prime ideals rather than associated points.
Associated primes and associated points can be defined more generally, and we
discuss one easy case (the integral case) in Exercise 5.5.Q.

We now state three essential properties, to be justified later. The first is the
most important.

(A) The associated primes/points of M are precisely the generic points of irreducible
components of the support of some element ofM (on SpecA).

For example, by Exercise 5.5.A, Spec k[x, y]/(y2, xy) has two associated points.
As another example:

5.5.B. EXERCISE (ASSUMING (A)). SupposeA is an integral domain. Show that the
generic point is the only associated point of SpecA.

(Important note: Exercises 5.5.B–5.5.H require you to work directly from some
axioms, not from our later definitions. If this troubles you, feel free to work
through the definitions, and use the later exercises rather than the geometric ax-
ioms (A)–(C) to solve these problems. But you may be surprised at how short the
arguments actually are, assuming the geometric axioms.)
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We could take (A) as the definition, although in our rigorous development
below, we will take a different (but logically equivalent) starting point. (Unimpor-
tant aside: ifA is a ring that is not necessarily Noetherian, then (A) is the definition
of a weakly associated prime, see [Stacks, tag 0547].)

The next property makes (A) more striking.

(B)M has a finite number of associated primes/points.

For example, there are only a finite number of irreducible closed subsets of
SpecA, such that the only possible supports of functions of SpecA are unions of
these. You may find this unexpected, although the examples above may have
prepared you for it. You should interpret this as another example of Noetherian-
ness forcing some sort of finiteness. (For example, we will see that this generalizes
“finiteness of irreducible components”, cf. Proposition 3.6.15. And to get an idea of
what can go wrong without Noetherian hypotheses, you can ponder the scheme of
Remark 5.2.2.) This gives some meaning to the statement that their generic points
are the few crucial points of the scheme.

We will see (in Exercise 5.5.O) that we can completely describe which subsets
of SpecA are the support of an element of M: precisely those subsets which are
the closure of a subset of the associated points.

5.5.3. We immediately see from (A) that ifM = A, the generic points of the irreducible
components of SpecA are associated points of M = A, by considering the function
1. The other associated points of SpecA are called embedded points. Thus in the
case of Spec k[x, y]/(y2, xy) (Figure 4.4), the origin is the only embedded point (by
Exercise 5.5.A).

5.5.C. EXERCISE (ASSUMING (A)). Show that if A is reduced, SpecA has no em-
bedded points. Hints: (i) first deal with the case where A is integral, i.e., where
SpecA is irreducible. (ii) Then deal with the general case. If f is a nonzero function
on a reduced affine scheme, show that Supp f = D(f): the support is the closure
of the locus where f doesn’t vanish. Show thatD(f) is the union of the irreducible
components meeting D(f), using (i).

Furthermore, the natural map

(5.5.3.1) M→ ∏
associated p

Mp

is an injection. (This is an important property. Once again, the associated points are
“where all the action happens”.) We show this by showing that the kernel is zero.
Suppose a function f has a germ of zero at each associated point, so its support
contains no associated points. It is supported on a closed subset, which by (A)
must be the union of closures of associated points. Thus it must be supported
nowhere, and thus be the zero function.

5.5.4. Unimportant Side Remark. An open subscheme U of a scheme X is said to be
scheme-theoretically dense if any function on any open set V is 0 if it restricts to
0 on U ∩ V . (We won’t use this phrase after this remark.) If X is locally Noether-
ian, then you can use the injection (5.5.3.1) (with M = A) to show that an open
subscheme U ⊂ X is scheme-theoretically dense if and only if it contains all the
associated points of X.
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5.5.D. EXERCISE (ASSUMING (A)). Suppose m ∈ M. Show that Suppm is the
closure of those associated points ofMwherem has nonzero germ. (Hint: Suppm
is a closed set containing the points described, and thus their closure. Why does it
contain no other points?)

5.5.E. EXERCISE (ASSUMING (A) AND (B)). Show that the locus on SpecA of points
[p] where OSpecA,[p] = Ap is nonreduced is the closure of those associated points of
SpecA whose stalks are nonreduced. (Hint: why do points in the closure of these
associated points all have nonreduced stalks? Why can’t any other point have a
nonreduced stalk?)

5.5.5. Remark. Exercise 5.5.E partially explains the link between associated points
and fuzzy pictures. (Primary decomposition, see Aside 5.5.13, gives a more ex-
plicit connection, but we won’t discuss it properly.) Note for future reference that
once we establish these properties (later in this section), we will have shown that
if Y is a locally Noetherian scheme, the “reduced locus” of Y is an open subset of
Y. This fulfills a promise made in Remark 5.2.2.

(C) An element f of A is a zerodivisor of M (i.e., there exists m ̸= 0 with fm = 0) if
and only if it vanishes at some associated point of M (i.e., is contained in some associated
prime ofM).

One direction is clear from the previous properties. (Do you see which?)
The next property allows us to globalize the construction of associated points

to arbitrary (locally Noetherian) schemes.

5.5.F. IMPORTANT EXERCISE (ASSUMING (A)). Show that the definition in (A) of as-
sociated primes/points behaves well with respect to localizing: if S is a multiplicative
subset of A, then the associated primes/points of S−1M are precisely those asso-
ciated primes/points of M that lie in SpecS−1A, i.e., associated primes of M that
do not meet S.

Thus the associated primes/points can be “determined locally”. For example,
associated points of A can be checked by looking at stalks of the structure sheaf
(the notion is “stalk-local”). As another example, the associated prime ideals ofM
may be determined by working on a distinguished open cover of SpecA. Thanks
to Important Exercise 5.5.F, we can (and do) define the associated points of a lo-
cally Noetherian scheme X to be those points p ∈ X such that, on any affine open
set SpecA containing p, p corresponds to an associated prime of A. This notion
is independent of choice of affine open neighborhood SpecA: if p has two affine
open neighborhoods SpecA and SpecB (say corresponding to prime ideals p ⊂ A

and q ⊂ B respectively), then p corresponds to an associated prime of A if and
only if it corresponds to an associated prime of Ap = OX,p = Bq if and only if it
corresponds to an associated prime of B, by Important Exercise 5.5.F.

(Here we are “globalizing” only the special case M = A. Once we define
quasicoherent sheaves, we will be able to globalize the case of a general M, see
§13.6.5.)

By combining the above properties, we immediately have a number of facts,
including the following. (i) A Noetherian scheme has finitely many associated
points. (ii) Each of the irreducible components of the support of any function
on a locally Noetherian scheme is the union of the closures of some subset of the
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associated points. (iii) The generic points of the irreducible components of a locally
Noetherian scheme are associated points. (The remaining associated points are
still called embedded points.) (iv) A reduced locally Noetherian scheme has no
embedded points. (v) The nonreduced locus of a locally Noetherian scheme (the
locus of points p ∈ X where OX,p is nonreduced) is the closure of those associated
points that have nonreduced stalk.

Furthermore, recall that one nice property of integral schemes X (such as irre-
ducible affine varieties) not shared by all schemes is that for any nonempty open
subset U ⊂ X, the natural map Γ(U,OX) → K(X) is an inclusion (Exercise 5.2.I).
Thus all sections over any nonempty open set, and elements of all stalks, can be
thought of as lying in a single field K(X), which is the stalk at the generic point.
Associated points allow us to generalize this idea.

5.5.G. EXERCISE (CF. (5.5.3.1)). Assuming the above properties of associated
points, show that if X is a locally Noetherian scheme, then for any open subset
U ⊂ X, the natural map

(5.5.5.1) Γ(U,OX)→ ∏
associated p inU

OX,p

is an injection.

We can use these properties to refine our ability to visualize schemes in a way
that captures precise mathematical information. As a first check, you should be
able to understand Figure 5.2. As a second, you should be able to do the following
exercise.

FIGURE 5.2. This scheme has 6 associated points, of which 3 are
embedded points. A function is a zerodivisor if it vanishes at any
of these six points.

5.5.H. EXERCISE (PRACTICE WITH FUZZY PICTURES). Assume the properties (A)–
(C) of associated points. Suppose X = SpecC[x, y]/I, and that the associated points
of X are [(y− x2)], [(x− 1, y− 1)], and [(x− 2, y− 2)].
(a) Sketch X as a subset of A2C = SpecC[x, y], including fuzz.
(b) Do you have enough information to know if X is reduced?
(c) Do you have enough information to know if x + y − 2 is a zerodivisor? How
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about x + y − 3? How about y − x2? (Exercise 5.5.R will verify that such an X
actually exists.)

The following exercise shows that “hypersurfaces have no embedded points”.
(Of course, thanks to Exercise 5.5.C, this is interesting only when the hypersurface
is nonreduced.)

5.5.I. EXERCISE. Assume the properties (A)–(C) of associated points. If f ∈
k[x1, . . . , xn] is nonzero, show that A := k[x1, . . . , xn]/(f) has no embedded points.
Hint: suppose g ∈ A is a zerodivisor, and choose a lift g ∈ k[x1, . . . , xn] of g. Show
that g has a common factor with f. (We will use this exercise in §18.6.3. All you
should use is that k[x1, . . . , xn] is a Noetherian unique factorization domain. We
will generalize this in §26.2.7.)

5.5.6. Definitions: Rational functions. A rational function on a locally Noetherian
scheme is an element of the image of Γ(U,OU) in (5.5.5.1) for some U containing
all the associated points. Equivalently, the set of rational functions is the colimit
of OX(U) over all open sets containing the associated points. Or if you prefer, a
rational function is a function defined on an open set containing all associated
points, i.e., an ordered pair (U, f), where U is an open set containing all associated
points, and f ∈ Γ(U,OX). Two such data (U, f) and (U ′, f ′) define the same rational
function if and only if the restrictions of f and f ′ to U ∩ U ′ are the same. If X is
reduced, this is the same as requiring that they are defined on an open set of each
of the irreducible components.

For example, on Speck[x, y]/(y2, xy) (Figure 4.4), x−2
(x−1)(x−3) is a rational func-

tion, but x−2
x(x−1) is not.

A rational function has a maximal domain of definition, because any two ac-
tual functions on an open set (i.e., sections of the structure sheaf over that open
set) that agree as “rational functions” (i.e., on small enough open sets containing
associated points) must be the same function, by the injectivity of (5.5.5.1). We say
that a rational function f is regular at a point p if p is contained in this maximal do-
main of definition (or equivalently, if there is some open set containing p where f
is defined). For example, on Speck[x, y]/(y2, xy), the rational function x−2

(x−1)(x−3)

has domain of definition consisting of everything but 1 and 3 (i.e., [(x − 1)] and
[(x − 3)]), and is regular away from those two points. A rational function is regu-
lar if it is regular at all points. (Unfortunately, “regular” is an overused word in
mathematics, and in algebraic geometry in particular.)

5.5.7. The rational functions form a ring, called the total fraction ring or total
quotient ring of X. If X = SpecA is affine, then this ring is called the total fraction
(or quotient) ring of A. If X is integral, the total fraction ring is the function field
K(X) — the stalk at the generic point — so this extends our earlier Definition 5.2.H
of K(·).

5.5.8. Definition and proofs.
We finally define associated points, and show that they have the desired prop-

erties (A)–(C) (and their consequences) for locally Noetherian schemes. Because
the definition is a useful property to remember (on the same level as (A)–(C)), we
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dignify it with a letter. We make the definition in more generality than we will use.
SupposeM is an A-module, and A is an arbitrary ring.

(D) A prime p ⊂ A is said to be associated toM if p is the annihilator of an element
m ofM (p = {a ∈ A : am = 0}).

5.5.9. Equivalently, p is associated to M if and only if M has a submodule isomor-
phic toA/p. The set of prime ideals associated toM is denoted AssM (or AssAM).
Awkwardly, if I is an ideal of A, the associated prime ideals of the module A/I are
said to be the associated prime ideals of I. This is not my fault.

5.5.10. Theorem (properties of associated prime ideals). — Suppose A is a Noe-
therian ring, andM ̸= 0 is finitely generated.

(a) The set AssM is finite (property (B)) and nonempty.
(b) The natural mapM→∏p∈AssMMp is an injection (cf. (5.5.3.1)).
(c) The set of zerodivisors ofM is ∪p∈AssMp (property (C)).
(d) (association commutes with localization, cf. Important Exercise 5.5.F) If S is a

multiplicative set, then

AssS−1A S
−1M = AssAM ∩ Spec S−1A

(= {p ∈ AssAM : p ∩ S = ∅}).
We prove Theorem 5.5.10 in a series of exercises.

5.5.J. IMPORTANT EXERCISE. Suppose M ̸= 0 is an A-module. Show that if I ⊂ A
is maximal among all proper ideals that are annihilators of elements of M, then I
is prime, and hence I ∈ AssM. Thus if A is Noetherian, then AssM is nonempty
(part of Theorem 5.5.10(a)). (This is a good excuse to state a general philosophy:
“Quite generally, proper ideals maximal with respect to some property have an
uncanny tendency to be prime,” [E, p. 70].)

5.5.K. EXERCISE. Suppose that M is a module over a Noetherian ring A. Show
that m = 0 if and only if m is 0 in Mp for each of the maximal associated prime
ideals p ofM. (Hint: use the previous exercise.)

This immediately implies Theorem 5.5.10(b). It also implies Theorem 5.5.10(c):
Any nonzero element of ∪p∈AssMp is clearly a zerodivisor. Conversely, if a annihi-
lates a nonzero element ofM, then a is contained in a maximal annihilator ideal.

5.5.L. EXERCISE. If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of
A-modules, show that

AssM ′ ⊂ AssM ⊂ AssM ′ ∪ AssM ′′.

(Possible hint for the second containment: if m ∈M has annihilator p, then Am ∼=
A/p.)

5.5.M. EXERCISE.
(a) If M is a finitely generated module over Noetherian A, show that M has a
filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

where Mi+1/Mi
∼= A/pi for some prime ideal pi. (If the pi are all maximal, the

filtration is called a composition series, see Definition 18.4.7.)
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(b) Show that the associated prime ideals are among the pi, and thus prove Theo-
rem 5.5.10(a).
(c) Show that for each i, SuppA/pi is contained in SuppM, or equivalently, that
every pi contains an associated prime. Hint: if pi does not contain an associated
prime, then localize at pi to “makeM disappear”. (Caution: non-associated prime
ideals may be among the pi: takeM = A = Z, and witness 0 ⊂ 2Z ⊂ Z.)

5.5.N. EXERCISE. Prove Theorem 5.5.10(d) as follows.
(a) Show that

AssAM ∩ SpecS−1A ⊂ AssS−1A S
−1M.

(Hint: suppose p ∈ AssAM ∩ SpecS−1A, with p = Annm form ∈M.)
(b) Suppose q ∈ AssS−1A S

−1M, which corresponds to p ∈ SpecA (i.e., q =
p(S−1A)). Then q = AnnS−1Am (m ∈ S−1M), which yields a nonzero element
of

HomS−1A(S
−1A/q, S−1M).

Argue that this group is isomorphic to S−1HomA(A/p,M) (see Exercise 1.6.G),
and hence HomA(A/p,M) ̸= 0.

This concludes the proof of Theorem 5.5.10. The remaining important loose
end is to understand associated points in terms of support.

5.5.O. EXERCISE. Show that those subsets of SpecA which are the support of an
element of M are precisely those subsets which are the closure of a subset of the
associated points. Hint: show that for any associated point p, there is a section
supported precisely on p. Remark: This can be used to solve Exercise 5.5.P, but
some people prefer to do Exercise 5.5.P first, and obtain this as a consequence.

5.5.P. IMPORTANT EXERCISE. Suppose A is a Noetherian ring, and M is a finitely
generated A-module. Show that associated points/primes of M satisfy property
(A) as follows.

(a) Show that every associated point is the generic point of an irreducible
component of Suppm for somem ∈M. Hint: if p ∈ A is associated, then
p = Annm for somem ∈M; this is useful in Exercise 5.5.O as well.

(b) If m ∈ M, show that the support of m is the closure of those associated
points at which m has nonzero germ (cf. Exercise 5.5.D, which relied on
(A) and (B)). Hint: if p is in the closure of such an associated point, show
that m has nonzero germ at p. If p is not in the closure of such an asso-
ciated point, show that m is 0 in Mp by localizing at p, and using Theo-
rem 5.5.10(b) in the localized ring Ap (using Theorem 5.5.10(d)).

5.5.11. Loose ends.
We can easily extend the theory of associated points of schemes to a (very

special) setting without Noetherian hypotheses: integral domains, and integral
schemes.

5.5.Q. EXERCISE (EASY VARIATION: ASSOCIATED POINTS OF INTEGRAL SCHEMES).
Define the notion of associated points for integral domains and integral schemes.
More precisely, take (A) as the definition, and establish (B) and (C). (Hint: the
unique associated prime of an integral domain is (0), and the unique associated
point of an integral scheme is its generic point.) In particular, rational functions
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on an integral scheme X are precisely elements of the function field K(X) (Defini-
tion 5.2.H).

Now that we have defined associated points, we can verify that there is an
example of the form described in Exercise 5.5.H

5.5.R. EXERCISE. Let I = (y − x2)3 ∩ (x − 1, y − 1)15 ∩ (x − 2, y − 2). Show that
X = SpecC[x, y]/I satisfies the hypotheses of Exercise 5.5.H. (Rhetorical question:
Is there a “smaller” example? Is there a “smallest”?)

5.5.12. A non-Noetherian remark. By combining §5.5.3 with (C), we see that if A is
a Noetherian ring, then any element of any minimal prime p is a zerodivisor. This
is true without Noetherian hypotheses: suppose s ∈ p. Then by minimality of p,
pAp is the unique prime ideal in Ap, so the element s/1 of Ap is nilpotent (because
it is contained in all prime ideals of Ap, Theorem 3.2.12). Thus for some t ∈ A \ p,
tsn = 0, so s is a zerodivisor. We will use this in Exercise 11.1.G.

5.5.13. Aside: Primary ideals. The notion of primary ideals and primary decompo-
sition is important, although we won’t use it. (An ideal I ⊂ A in a ring is primary
if I ̸= A and if xy ∈ I implies either x ∈ I or yn ∈ I for some n > 0.) The associated
prime ideals of an ideal turn out to be precisely the radicals of ideals in any pri-
mary decomposition. Primary decomposition was first introduced by the world
chess champion Lasker in 1905, and later axiomatized by Noether in the 1920’s.
See [E, §3.3], for example, for more on this topic.
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CHAPTER 6

Morphisms of schemes

6.1 Introduction

We now describe the morphisms between schemes. We will define some easy-
to-state properties of morphisms, but leave more subtle properties for later.

Recall that a scheme is (i) a set, (ii) with a topology, (iii) and a (structure) sheaf
of rings, and that it is sometimes helpful to think of the definition as having three
steps. In the same way, the notion of morphism of schemes X→ Y may be defined
(i) as a map of sets, (ii) that is continuous, and (iii) with some further informa-
tion involving the sheaves of functions. In the case of affine schemes, we have
already seen the map as sets (§3.2.9) and later saw that this map is continuous
(Exercise 3.4.H).

Here are two motivations for how morphisms should behave. The first is alge-
braic, and the second is geometric.

6.1.1. Algebraic motivation. We will want morphisms of affine schemes SpecA →
SpecB to be precisely the ring maps B→ A. We have already seen that ring maps
B→ A induce maps of topological spaces in the opposite direction (Exercise 3.4.H);
the main new ingredient will be to see how to add the structure sheaf of functions
into the mix. Then a morphism of schemes should be something that “on the level
of affine open sets, looks like this”.

6.1.2. Geometric motivation. Motivated by the theory of differentiable manifolds
(§3.1.1), which like schemes are ringed spaces, we want morphisms of schemes
at the very least to be morphisms of ringed spaces; we now motivate what these
are. (We will formalize this in the next section.) Notice that if π : X → Y is a
map of differentiable manifolds, then a differentiable function on Y pulls back to
a differentiable function on X. More precisely, given an open subset U ⊂ Y, there
is a natural map Γ(U,OY) → Γ(π−1(U),OX). This behaves well with respect to
restriction (restricting a function to a smaller open set and pulling back yields
the same result as pulling back and then restricting), so in fact we have a map
of sheaves on Y: OY → π∗OX. Similarly a morphism of schemes π : X → Y should
induce a map OY → π∗OX. But in fact in the category of differentiable manifolds
a continuous map π : X → Y is a map of differentiable manifolds precisely when
differentiable functions on Y pull back to differentiable functions on X (i.e., the
pullback map from differentiable functions on Y to functions on X in fact lies in the
subset of differentiable functions, i.e., the continuous map π induces a pullback of
differential functions, which can be interpreted as a map OY → π∗OX), so this map

177
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of sheaves characterizes morphisms in the differentiable category. So we could use
this as the definition of morphism in the differentiable category (see Exercise 3.1.A).

But how do we apply this to the category of schemes? In the category of differ-
entiable manifolds, a continuous map π : X→ Y induces a pullback of (the sheaf of)
functions, and we can ask when this induces a pullback of differentiable functions.
However, functions are odder on schemes, and we can’t recover the pullback map
just from the map of topological spaces. The right patch is to hardwire this into
the definition of morphism, i.e., to have a continuous map π : X→ Y, along with a
pullback map π♯ : OY → π∗OX. This leads to the definition of the category of ringed
spaces.

One might hope to define morphisms of schemes as morphisms of ringed
spaces. This isn’t quite right, as then Motivation 6.1.1 isn’t satisfied: as desired,
to each morphism A → B there is a morphism SpecB → SpecA, but there can be
additional morphisms of ringed spaces SpecB → SpecA not arising in this way
(see Exercise 6.2.E). A revised definition as morphisms of ringed spaces that lo-
cally look of this form will work, but this is awkward to work with, and we take a
different approach. However, we will check that our eventual definition actually
is equivalent to this (Exercise 6.3.C).

We begin by formally defining morphisms of ringed spaces.

6.2 Morphisms of ringed spaces

6.2.1. Definition. A morphism of ringed spaces π : X → Y is a continuous map
of topological spaces (which we unfortunately also call π) along with a map OY →
π∗OX, which we think of as a “pullback map”. By adjointness (§2.7.1), this is the
same as a map π−1OY → OX. (It can be convenient to package this information as
in the diagram (2.7.2.1).) There is an obvious notion of composition of morphisms,
so ringed spaces form a category. Hence we have notion of automorphisms and
isomorphisms. You can easily verify that an isomorphism of ringed spaces means
the same thing as it did before (Definition 4.3.1).

If U ⊂ Y is an open subset, then there is a natural morphism of ringed spaces
(U,OY |U) → (Y,OY) (which implicitly appeared earlier in Exercise 2.7.G). More
precisely, if U→ Y is an isomorphism of Uwith an open subset V of Y, and we are
given an isomorphism (U,OU) ∼= (V,OY |V ) (via the isomorphism U ∼= V), then the
resulting map of ringed spaces is called an open embedding (or open immersion)
of ringed spaces, and the morphism U→ Y is often written U ↪→ Y.

6.2.A. EXERCISE (MORPHISMS OF RINGED SPACES GLUE). Suppose (X,OX) and
(Y,OY) are ringed spaces, X = ∪iUi is an open cover of X, and we have morphisms
of ringed spaces πi : Ui → Y that “agree on the overlaps”, i.e., πi|Ui∩Uj

= πj|Ui∩Uj
.

Show that there is a unique morphism of ringed spaces π : X→ Y such that π|Ui
=

πi. (Exercise 2.2.F essentially showed this for topological spaces.)

6.2.B. EASY IMPORTANT EXERCISE: O -MODULES PUSH FORWARD. Given a mor-
phism of ringed spaces π : X→ Y, show that sheaf pushforward induces a functor
ModOX

→ModOY
.
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6.2.C. EASY IMPORTANT EXERCISE. Given a morphism of ringed spaces π : X→ Y

with π(p) = q, show that there is a map of stalks (OY)q → (OX)p.

6.2.D. KEY EXERCISE. Suppose π♯ : B → A is a morphism of rings. Define a
morphism of ringed spaces π : SpecA → SpecB as follows. The map of topo-
logical spaces was given in Exercise 3.4.H. To describe a morphism of sheaves
OSpecB → π∗OSpecA on SpecB, it suffices to describe a morphism of sheaves on the
distinguished base of SpecB. On D(g) ⊂ SpecB, we define

OSpecB(D(g))→ OSpecA(π
−1D(g)) = OSpecA(D(π♯g))

by Bg → Aπ♯g. Verify that this makes sense (e.g., is independent of g), and that
this describes a morphism of sheaves on the distinguished base. (This is the third
in a series of exercises. We saw that a morphism of rings induces a map of sets
in §3.2.9, a map of topological spaces in Exercise 3.4.H, and now a map of ringed
spaces here.)

The map of ringed spaces of Key Exercise 6.2.D is really not complicated. Here
is an example. Consider the ring map C[y]→ C[x] given by y 7→ x2 (see Figure 3.6).
We are mapping the affine line with coordinate x to the affine line with coordinate
y. The map is (on closed points) a 7→ a2. For example, where does [(x− 3)] go to?
Answer: [(y − 9)], i.e., 3 7→ 9. What is the preimage of [(y − 4)]? Answer: those
prime ideals in C[x] containing [(x2−4)], i.e., [(x−2)] and [(x+2)], so the preimage
of 4 is indeed ±2. This is just about the map of sets, which is old news (§3.2.9), so
let’s now think about functions pulling back. What is the pullback of the function
3/(y− 4) on D([(y− 4)]) = A1 − {4}? Of course it is 3/(x2 − 4) on A1 − {−2, 2}.

The construction of Key Exercise 6.2.D will soon be an example of morphism
of schemes! In fact we could make that definition right now. Before we do, we
point out (via the next exercise) that not every morphism of ringed spaces between
affine schemes is of the form of Key Exercise 6.2.D. (In the language of §6.3, this
morphism of ringed spaces is not a morphism of locally ringed spaces.)

6.2.E. UNIMPORTANT EXERCISE. Recall (Exercise 3.4.K) that Spec k[y](y) has two
points, [(0)] and [(y)], where the second point is closed, and the first is not. De-
scribe a map of ringed spaces Spec k(x) → Speck[y](y) sending the unique point
of Speck(x) to the closed point [(y)], where the pullback map on global sections
sends k to k by the identity, and sends y to x. Show that this map of ringed spaces
is not of the form described in Key Exercise 6.2.D.

6.2.2. Tentative Definition we won’t use (cf. Motivation 6.1.1 in §6.1). A mor-
phism of schemes π : (X,OX) → (Y,OY) is a morphism of ringed spaces that “lo-
cally looks like” the maps of affine schemes described in Key Exercise 6.2.D. Pre-
cisely, for each choice of affine open sets SpecA ⊂ X, SpecB ⊂ Y, such that
π(SpecA) ⊂ SpecB, the induced map of ringed spaces should be of the form
shown in Key Exercise 6.2.D.

We would like this definition to be checkable on an affine cover, and we might
hope to use the Affine Communication Lemma to develop the theory in this way.
This works, but it will be more convenient to use a clever trick: in the next section,
we will use the notion of locally ringed spaces, and then once we have used it, we
will discard it like yesterday’s garbage.
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6.3 From locally ringed spaces to morphisms of schemes

In order to prove that morphisms behave in a way we hope, we will use the
notion of a locally ringed space. It will not be used later, although it is useful else-
where in geometry. The notion of locally ringed spaces (and maps between them)
is inspired by what we know about manifolds (see Exercise 3.1.B). If π : X → Y

is a morphism of manifolds, with π(p) = q, and f is a function on Y vanishing
at q, then the pulled back function π♯(f) on X should vanish on p. Put differently:
germs of functions (at q ∈ Y) vanishing at q should pull back to germs of functions
(at p ∈ X) vanishing at p.

6.3.1. Definition. Recall (Definition 4.3.6) that a locally ringed space is a ringed
space (X,OX) such that the stalks OX,p are all local rings. A morphism of locally
ringed spaces π : X→ Y is a morphism of ringed spaces such that the induced map
of stalks π♯ : OY,q → OX,p (Exercise 6.2.C) sends the maximal ideal of the former
into the maximal ideal of the latter (a “morphism of local rings”). This means
something rather concrete and intuitive: “if p 7→ q, and g is a function vanishing
at q, then it will pull back to a function vanishing at p.” (Side Remark: you would
also want: “if p 7→ q, and g is a function not vanishing at q, then it will pull back
to a function not vanishing at p.” This follows from our definition — can you see
why?) Note that locally ringed spaces form a category.

To summarize: we use the notion of locally ringed space only to define mor-
phisms of schemes, and to show that morphisms have reasonable properties. The
main things you need to remember about locally ringed spaces are (i) that the func-
tions have values at points, and (ii) that given a map of locally ringed spaces, the
pullback of where a function vanishes is precisely where the pulled back function
vanishes.

6.3.A. EXERCISE. Show that morphisms of locally ringed spaces glue (cf. Exer-
cise 6.2.A). (Hint: your solution to Exercise 6.2.A may work without change.)

6.3.B. EASY IMPORTANT EXERCISE.
(a) Show that SpecA is a locally ringed space. (Hint: Exercise 4.3.F.)
(b) Show that the morphism of ringed spaces π : SpecA → SpecB defined by a
ring morphism π♯ : B→ A (Exercise 6.2.D) is a morphism of locally ringed spaces.

6.3.2. Key Proposition. — If π : SpecA → SpecB is a morphism of locally ringed
spaces then it is the morphism of locally ringed spaces induced by the map π♯ : B =
Γ(SpecB,OSpecB)→ Γ(SpecA,OSpecA) = A as in Exercise 6.3.B(b).

(Aside: Exercise 4.3.A is a special case of Key Proposition 6.3.2. You should
look back at your solution to Exercise 4.3.A, and see where you implicitly used
ideas about locally ringed spaces.)

Proof. Suppose π : SpecA → SpecB is a morphism of locally ringed spaces. We
wish to show that it is determined by its map on global sections π♯ : B → A. We
first need to check that the map of points is determined by global sections. Now
a point p of SpecA can be identified with the prime ideal of global functions van-
ishing on it. The image point π(p) in SpecB can be interpreted as the unique point
q of SpecB, where the functions vanishing at q are precisely those that pull back



November 18, 2017 draft 181

to functions vanishing at p. (Here we use the fact that π is a map of locally ringed
spaces.) This is precisely the way in which the map of sets SpecA → SpecB in-
duced by a ring map B→ Awas defined (§3.2.9).

Note in particular that if b ∈ B, π−1(D(b)) = D(π♯b), again using the hypoth-
esis that π is a morphism of locally ringed spaces.

It remains to show that π♯ : OSpecB → π∗OSpecA is the morphism of sheaves
given by Exercise 6.2.D (cf. Exercise 6.3.B(b)). It suffices to check this on the dis-
tinguished base (Exercise 2.5.C(a)). We now want to check that for any map of
locally ringed spaces inducing the map of sheaves OSpecB → π∗OSpecA, the map of
sections on any distinguished open set D(b) ⊂ SpecB is determined by the map
of global sections B→ A.

Consider the commutative diagram

B Γ(SpecB,OSpecB)
π

♯
Spec B //

resSpec B,D(b)

��

Γ(SpecA,OSpecA)

resSpec A,D(π♯b)

��

A

Bb Γ(D(b),OSpecB)
π

♯
D(b) // Γ(D(π♯b),OSpecA) Aπ♯b = A⊗B Bb.

The vertical arrows (restrictions to distinguished open sets) are localizations by
b, so the lower horizontal map π♯

D(b) is determined by the upper map (it is just
localization by b). □

We are ready for our definition.

6.3.3. Definition. If X and Y are schemes, then a morphism π : X → Y as locally
ringed spaces is called a morphism of schemes. We have thus defined the category
of schemes, which we denote Sch. (We then have notions of isomorphism — just
the same as before, §4.3.6 — and automorphism. The target Y of π is sometimes
called the base scheme or the base, when we are interpreting π as a “family of
schemes parametrized by Y” — this may become clearer once we have defined the
fibers of morphisms in §9.3.2.)

The definition in terms of locally ringed spaces easily implies Tentative Defi-
nition 6.2.2:

6.3.C. IMPORTANT EXERCISE. Show that a morphism of schemes π : X → Y is
a morphism of ringed spaces that looks locally like morphisms of affine schemes.
Precisely, if SpecA is an affine open subset of X and SpecB is an affine open subset
of Y, and π(SpecA) ⊂ SpecB, then the induced morphism of ringed spaces is a
morphism of affine schemes. (In case it helps, note: if W ⊂ X and Y ⊂ Z are both
open embeddings of ringed spaces, then any morphism of ringed spaces X → Y

induces a morphism of ringed spaces W → Z, by composition W → X → Y → Z.)
Show that it suffices to check on a set (SpecAi, SpecBi) where the SpecAi form
an open cover of X and the SpecBi form an open cover of Y.

In practice, we will use the affine cover interpretation, and forget completely
about locally ringed spaces. In particular, put imprecisely, the category of affine
schemes is the category of rings with the arrows reversed. More precisely:
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6.3.D. EXERCISE. Show that the category of rings and the opposite category of
affine schemes are equivalent (see §1.2.21 to read about equivalence of categories).

In particular: there can be many different maps from one point to another! For
example, here are two different maps from the point SpecC to the point SpecC: the
identity (corresponding to the identity C → C), and complex conjugation. (There
are even more such maps!)

It is clear (from the corresponding facts about locally ringed spaces) that mor-
phisms glue (Exercise 6.3.A), and the composition of two morphisms is a mor-
phism. Isomorphisms in this category are precisely what we defined them to be
earlier (§4.3.6).

6.3.E. ENLIGHTENING EXERCISE. (This exercise can give you some practice with
understanding morphisms of schemes by cutting up into affine open sets.) Make
sense of the following sentence: “An+1k \ {⃗0}→ Pnk given by

(x0, x1, . . . , xn) 7→ [x0, x1, . . . , xn]

is a morphism of schemes.” Caution: you can’t just say where points go; you have
to say where functions go. So you may have to divide these up into affines, and
describe the maps, and check that they glue. (Can you generalize to the case where
k is replaced by a general ring B? See Exercise 6.3.M for an answer.)

6.3.4. Morphisms to affine schemes.
The following result shows that it is easy to describe morphisms to an affine

scheme without working hard to cover the source with affine open sets.

6.3.F. ESSENTIAL EXERCISE. Show that morphisms X → SpecA are in natural
bijection with ring morphisms A→ Γ(X,OX). Hint: Show that this is true when X
is affine. Use the fact that morphisms glue, Exercise 6.3.A. (This is even true in the
category of locally ringed spaces. You are free to prove it in this generality, but it
is easier in the category of schemes.)

In particular, there is a canonical morphism from a scheme to Spec of its ring of
global sections. (Warning: Even if X is a finite type k-scheme, the ring of global sec-
tions might be nasty! In particular, it might not be finitely generated, see 19.11.13.)
The canonical morphism X → Spec Γ(X,OX) is an isomorphism if and only if X is
affine (i.e., isomorphic to SpecA for some ring A), and in this case it is the isomor-
phism hinted at in Remark 4.3.2.

6.3.G. EASY EXERCISE. Show that this definition of A-scheme given in §6.3.7
agrees with the earlier definition of §5.3.6.

6.3.H. EASY EXERCISE. If S• is a finitely generated graded A-algebra, describe a
natural “structure morphism” ProjS• → SpecA.

6.3.I. EASY EXERCISE. Show that SpecZ is the final object in the category of
schemes. In other words, if X is any scheme, there exists a unique morphism
to SpecZ. (Hence the category of schemes is isomorphic to the category of Z-
schemes.) If k is a field, show that Speck is the final object in the category of
k-schemes.
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6.3.5. Remark. From Essential Exercise 6.3.F, it is one small step to show that some
products of schemes exist: if A and B are rings, then SpecA× SpecB = Spec(A⊗Z
B); and if A and B are C-algebras, then SpecA×SpecC SpecB = Spec(A⊗C B). But
we are in no hurry, so we wait until Exercise 9.1.B to discuss this properly.

6.3.6. ⋆⋆ Side fact for experts: Γ and Spec are adjoints. We have a contravariant
functor Spec from rings to locally ringed spaces, and a contravariant functor Γ
from locally ringed spaces to rings. In fact (Γ, Spec) is an adjoint pair! (Caution:
we have only discussed adjoints for covariant functors; if you care, you will have
to figure out how to define adjoints for contravariant functors.) Thus we could
have defined Spec by requiring it to be right-adjoint to Γ . (Fun but irrelevant side
question: if you used ringed spaces rather than locally ringed spaces, Γ again has
a right adjoint. What is it?)

Our ability to easily describe morphisms to affine schemes will allow us to
revisit our earlier discussions of schemes over a given field or ring (§5.3.6).

6.3.7. The category of complex schemes (or more generally the category of k-
schemes where k is a field, or more generally the category of A-schemes where
A is a ring, or more generally the category of S-schemes where S is a scheme).
The category of S-schemes SchS (where S is a scheme) is defined as follows. The
objects (S-schemes) are morphisms of the form

X

��
S

(The morphism to S is called the structure morphism. A motivation for this termi-
nology is the fact that if S = SpecA, the structure morphism gives the functions
on each open set of X the structure of an A-algebra, cf. §5.3.6.) The morphisms in
the category of S-schemes are defined to be commutative diagrams

X

��

// Y

��
S

= // S

which is more conveniently written as a commutative diagram

X //

��@
@@

@@
@@

Y

����
��
��
�

S.

When there is no confusion (if the base scheme is clear), simply the top row of
the diagram is given. In the case where S = SpecA, where A is a ring, we get
the notion of an A-scheme, which is the same as the same definition as in §5.3.6
(Exercise 6.3.G), but in a more satisfactory form. For example, complex geometers
may consider the category of C-schemes.

6.3.8. Morphisms from (some) affine schemes.
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Morphisms from affine schemes are not quite as simple as morphisms to affine
schemes, but some cases are worth pointing out.

6.3.J. EXERCISE.
(a) Suppose p is a point of a schemeX. Describe a canonical (choice-free) morphism
Spec OX,p → X. (Hint: do this for affine X first. But then for general X be sure to
show that your morphism is independent of choice.)
(b) Define a canonical morphism Specκ(p)→ X. (This is often written p→ X; one
gives p the obvious interpretation as a scheme, Specκ(p).)

6.3.K. EXERCISE (MORPHISMS FROM Spec OF A LOCAL RING TO X). Suppose
X is a scheme, and (A,m) is a local ring. Suppose we have a scheme morphism
π : SpecA→ X sending [m] to p. Show that any open set containing p contains the
image of π. Show that there is a bijection between Mor(SpecA,X) and

{p ∈ X, local homomorphisms OX,p → A}.

(Possible hint: Exercise 6.3.J(a).)

These exercises lead us to the notion of field-valued points, and more generally
ring-valued points, and more generally still, scheme-valued points.

6.3.9. Definition: The functor of points, and scheme-valued points (and ring-
valued points, and field-valued points) of a scheme. If Z is a scheme, then
Z-valued points of a scheme X, denoted X(Z), are defined to be maps Z→ X. If A
is a ring, then A-valued points of a scheme X, denoted X(A), are defined to be the
(SpecA)-valued points of the scheme. (The most common case of this is when A
is a field.)

If you are working over a base scheme B — for example, complex algebraic
geometers will consider only schemes and morphisms over B = SpecC — then in
the above definition, there is an implicit structure map Z → B (or SpecA → B in
the case of X(A)). For example, for a complex geometer, if X is a scheme over C,
the C(t)-valued points of X correspond to commutative diagrams of the form

SpecC(t) //

ξ %%KK
KKK

KKK
KK

X

π
||zz
zz
zz
zz
z

SpecC

where π : X→ SpecC is the structure map for X, and ξ corresponds to the obvious
inclusion of rings C → C(t). (Warning: a k-valued point of a k-scheme X is some-
times called a “rational point” of X, which is dangerous, as for most of the world,
“rational” refers to Q. We will use the safer phrase “k-valued point” of X.)

The terminology “Z-valued point” (and A-valued point) is unfortunate, be-
cause we earlier defined the notion of points of a scheme, and Z-valued points
(and A-valued points) are not (necessarily) points! But these usages are well-
established in the literature. (Look in the index under “point” to see even more
inconsistent use of adjectives that modify this word.)

6.3.L. EXERCISE.
(a) (easy) Show that a morphism of schemes X → Y induces a map of Z-valued
points X(Z)→ Y(Z).
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(b) Note that morphisms of schemes X→ Y are not determined by their “underly-
ing” map of points. (What is an example?) Show that they are determined by their
induced maps of Z-valued points, as Z varies over all schemes. (Hint: pick Z = X.
In the course of doing this exercise, you will largely prove Yoneda’s Lemma in the
guise of Exercise 9.1.C.)

6.3.10. Furthermore, we will see that “products of Z-valued points” behave as you
might hope (§9.1.3). A related reason this language is suggestive: the notationX(Z)
suggests the interpretation of X as a (contravariant) functor hX from schemes to
sets — the functor of (scheme-valued) points of the scheme X (cf. Example 1.2.20).

Here is a low-brow reason A-valued points are a useful notion: the A-valued
points of an affine scheme SpecZ[x1, . . . , xn]/(f1, . . . , fr) (where fi ∈ Z[x1, . . . , xn] are
relations) are precisely the solutions to the equations

f1(x1, . . . , xn) = · · · = fr(x1, . . . , xn) = 0

in the ring A. For example, the rational solutions to x2 + y2 = 16 are precisely the
Q-valued points of SpecZ[x, y]/(x2+y2− 16). The integral solutions are precisely
the Z-valued points. So A-valued points of an affine scheme (finite type over Z)
can be interpreted simply. In the special case where A is local, A-valued points of
a general scheme have a good interpretation too:

On the other hand, Z-valued points of projective space can be subtle. There
are some maps we can write down easily, as shown by applying the next exercise
in the case X = SpecA, where A is a B-algebra.

6.3.M. EASY (BUT SURPRISINGLY ENLIGHTENING) EXERCISE (CF. EXERCISE 6.3.E).

(a) Suppose B is a ring. If X is a B-scheme, and f0, . . . , fn are n + 1 functions
on X with no common zeros, then show that [f0, . . . , fn] gives a morphism of B-
schemes X→ PnB.
(b) Suppose g is a nowhere vanishing function on X, and fi are as in part (a). Show
that the morphisms [f0, . . . , fn] and [gf0, . . . , gfn] to PnB are the same.

6.3.11. Example (Exercise 6.3.E revisited). Consider the n + 1 functions x0, . . . , xn
on An+1 (otherwise known as n + 1 sections of the trivial bundle). They have no
common zeros on An+1 − 0. Hence they determine a morphism An+1 − 0→ Pn.

6.3.12. You might hope that Exercise 6.3.M(a) gives all morphisms to projective
space (over B). But this isn’t the case. Indeed, even the identity morphism X =
P1k → P1k isn’t of this form, as the source P1 has no nonconstant global functions
with which to build this map. (There are similar examples with an affine source.)
However, there is a correct generalization (characterizing all maps from schemes
to projective schemes) in Theorem 16.4.1. This result roughly states that this works,
so long as the fi are not quite functions, but sections of a line bundle. Our desire
to understand maps to projective schemes in a clean way will be one important
motivation for understanding line bundles.

We will see more ways to describe maps to projective space in the next sec-
tion. A different description directly generalizing Exercise 6.3.M(a) will be given
in Exercise 15.3.F, which will turn out (in Theorem 16.4.1) to be a “universal” de-
scription.
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Incidentally, before Grothendieck, it was considered a real problem to figure
out the right way to interpret points of projective space with “coordinates” in a
ring. These difficulties were due to a lack of functorial reasoning. And the clues
to the right answer already existed (the same problems arise for maps from a man-
ifold to RPn) — if you ask such a geometric question (for projective space is geo-
metric), the answer is necessarily geometric, not purely algebraic!

6.3.13. Visualizing schemes III: picturing maps of schemes when nilpotents are present.
You now know how to visualize the points of schemes (§3.3), and nilpotents (§4.2
and §5.5). The following imprecise exercise will give you some sense of how to vi-
sualize maps of schemes when nilpotents are involved. Suppose a ∈ C. Consider
the map of rings C[x]→ C[ϵ]/ϵ2 given by x 7→ aϵ. Recall that SpecC[ϵ]/(ϵ2) may
be pictured as a point with a tangent vector (§4.2). How would you picture this
map if a ̸= 0? How does your picture change if a = 0? (The tangent vector should
be “crushed” in this case.)

Exercise 12.1.I will extend this considerably. You may enjoy reading its state-
ment now.

6.3.N. ⋆⋆ EXERCISE FOR THOSE WITH APPROPRIATE BACKGROUND: THE ANALYTI-
FICATION FUNCTOR. Recall the analytification construction of Exercise 5.3.G. For
each morphism of reduced finite type C-schemes π : X→ Y (over C), define a mor-
phism of complex analytic prevarieties πan : Xan → Yan (the analytification of
π). Show that analytification gives a functor from the category of reduced finite
type C-schemes to the category of complex analytic prevarieties. (Remark: Two
nonisomorphic varieties can have isomorphic analytifications. For example, Serre
described two different algebraic structures on the complex manifold C∗ ×C∗, see
[Ha2, p. 232] and [MO68421]; one is “the obvious one”, and the other is a P1-
bundle over an elliptic curve, with a section removed. For an example of a smooth
complex surface with infinitely many algebraic structures, see §19.11.3. On the
other hand, a compact complex variety can have only one algebraic structure (see
[Se3, §19]).)

6.4 Maps of graded rings and maps of projective schemes

As maps of rings correspond to maps of affine schemes in the opposite direc-
tion, maps of graded rings (over a base ring A) sometimes give maps of projective
schemes in the opposite direction. This is an imperfect generalization: not every
map of graded rings gives a map of projective schemes (§6.4.2); not every map
of projective schemes comes from a map of graded rings (§19.11.9); and different
maps of graded rings can yield the same map of schemes (Exercise 6.4.C).

You may find it helpful to think through Examples 6.4.1 and 6.4.2 while work-
ing through the following exercise.

6.4.A. ESSENTIAL EXERCISE. Suppose that ϕ : S• // R• is a morphism of (Z≥0-
)graded rings. (By map of graded rings, we mean a map of rings that preserves
the grading as a map of “graded semigroups” (or “graded monoids”). In other
words, there is a d > 0 such that Sn maps to Rdn for all n.) Show that this induces
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a morphism of schemes (ProjR•) \ V(ϕ(S+)) → ProjS•. (Hint: Suppose f is a
homogeneous element of S+. Define a map D(ϕ(f))→ D(f). Show that they glue
together (as f runs over all homogeneous elements of S+). Show that this defines
a map from all of ProjR• \ V(ϕ(S+)).) In particular, if

(6.4.0.1) V(ϕ(S+)) = ∅,

then we have a morphism ProjR• → ProjS•. From your solution, it will be clear
that if ϕ is furthermore a morphism of A-algebras, then the induced morphism
ProjR• \ V(ϕ(S•))→ ProjS• is a morphism of A-schemes.

6.4.1. Example. Let’s see Exercise 6.4.A in action. We will scheme-theoretically
interpret the map of complex projective manifolds CP1 to CP2 given by

CP1 // CP2

[s, t]
� // [s20, s9t11, t20]

Notice first that this is well-defined: [λs, λt] is sent to the same point of CP2 as
[s, t]. The reason for it to be well-defined is that the three polynomials s20, s9t11,
and t20 are all homogeneous of degree 20.

Algebraically, this corresponds to a map of graded rings in the opposite direc-
tion

C[x, y, z]→ C[s, t]
given by x 7→ s20, y 7→ s9t11, z 7→ t20. You should interpret this in light of your
solution to Exercise 6.4.A, and compare this to the affine example of §3.2.10.

6.4.2. Example. Notice that there is no map of complex manifolds CP2 → CP1
given by [x, y, z] 7→ [x, y], because the map is not defined when x = y = 0. This
corresponds to the fact that the map of graded rings C[s, t] → C[x, y, z] given by
s 7→ x and t 7→ y, doesn’t satisfy hypothesis (6.4.0.1).

6.4.B. EXERCISE. Show that if ϕ : S• → R• satisfies
√
(ϕ(S+)) = R+, then hypoth-

esis (6.4.0.1) is satisfied. (Hint: Exercise 4.5.I.) This algebraic formulation of the
more geometric hypothesis can sometimes be easier to verify.

6.4.C. UNIMPORTANT EXERCISE. This exercise shows that different maps of
graded rings can give the same map of schemes. Let R• = k[x, y, z]/(xz, yz, z2)
and S• = k[a, b, c]/(ac, bc, c2), where every variable has degree 1. Show that
ProjR• ∼= ProjS• ∼= P1k. Show that the maps S• → R• given by (a, b, c) 7→ (x, y, z)
and (a, b, c) 7→ (x, y, 0) give the same (iso)morphism ProjR• → ProjS•. (The real
reason is that all of these constructions are insensitive to what happens in a finite
number of degrees. This will be made precise in a number of ways later, most
immediately in Exercise 6.4.F.)

6.4.3. Unimportant remark. Exercise 16.4.H shows that not every morphism of
schemes ProjR• → ProjS• comes from a map of graded rings S• → R•, even in
quite reasonable circumstances.

6.4.4. Veronese subrings.
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Here is a useful construction. Suppose S• is a finitely generated graded ring.
Define the nth Veronese subring of S• by Sn• = ⊕∞j=0Snj. (The “old degree” n is
“new degree” 1.)

6.4.D. EXERCISE. Show that the map of graded rings Sn• ↪→ S• induces an isomor-
phism ProjS• → ProjSn•. (Hint: if f ∈ S+ is homogeneous of degree divisible by n,
identify D(f) on ProjS• with D(f) on ProjSn•. Why do such distinguished open
sets cover ProjS•?)

6.4.E. EXERCISE. If S• is generated in degree 1, show that Sn• is also generated in
degree 1. (You may want to consider the case of the polynomial ring first.)

6.4.F. EXERCISE. Show that if R• and S• are the same finitely generated graded
rings except in a finite number of nonzero degrees (make this precise!), then ProjR• ∼=
ProjS•.

6.4.G. EXERCISE. Suppose S• is generated over S0 by f1, . . . , fn. Find a d such that
Sd• is finitely generated in “new” degree 1 (= “old” degree d). (This is surprisingly
tricky, so here is a hint. Suppose there are generators x1, . . . , xn of degrees d1, . . . ,
dn respectively. Show that any monomial xa1

1 · · · xan
n of degree at least nd1 . . . dn

has ai ≥ (
∏
j dj)/di for some i. Show that the (nd1 . . . dn)th Veronese subring is

generated by elements in “new” degree 1.)

Exercise 6.4.G, in combination with Exercise 6.4.D, shows that there is little
harm in assuming that finitely generated graded rings are generated in degree 1,
as after a regrading (or more precisely, keeping only terms of degree a multiple of
d, then dividing the degree by d), this is indeed the case. This is handy, as it means
that, using Exercise 6.4.D, we can assume that any finitely generated graded ring
is generated in degree 1. Exercise 8.2.G will later imply as a consequence that we
can embed every Proj in some projective space.

6.4.H. LESS IMPORTANT EXERCISE. Suppose S• is a finitely generated ring. Show
that Sn• is a finitely generated graded ring. (Possible approach: use the previous
exercise, or something similar, to show there is someN such that SnN• is generated
in degree 1, so the graded ring SnN• is finitely generated. Then show that for each
0 < j < N, SnN•+nj is a finitely generated module over SnN•.)

6.5 Rational maps from reduced schemes

Informally speaking, a “rational map” is “a morphism defined almost every-
where”, much as a rational function (Definition 5.5.6) is a name for a function
defined almost everywhere. We will later see that in good situations, just as with
rational functions, where a rational map is defined, it is uniquely defined (the
Reduced-to-Separated Theorem 10.2.2), and has a largest “domain of definition” (§10.2.3).
For this section only, we assume X to be reduced. A key example will be irreducible
varieties (§6.5.6), and the language of rational maps is most often used in this case.

6.5.1. Definition. A rational map π from X to Y, denoted π : X 99K Y, is a morphism
on a dense open set, with the equivalence relation (α : U → Y) ∼ (β : V → Y) if
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there is a dense open setZ ⊂ U∩V such thatα|Z = β|Z. (In §10.2.3, we will improve
this to: if α|U∩V = β|U∩V in good circumstances — when Y is separated.) People
often use the word “map” for “morphism”, which is quite reasonable, except that a
rational map need not be a map. So to avoid confusion, when one means “rational
map”, one should never just say “map”.

We will also discuss rational maps of S-schemes for a scheme S. The definition
is the same, except now X and Y are S-schemes, and α : U → Y is a morphism of
S-schemes.

6.5.2. ⋆ Rational maps more generally. Just as with rational functions, Definition 6.5.1
can be extended to where X is not reduced, as is (using the same name, “rational
map”), or in a version that imposes some control over what happens over the
nonreduced locus (pseudo-morphisms, [Stacks, tag 01RX]). We will see in §10.2 that
rational maps from reduced schemes to separated schemes behave particularly
well, which is why they are usually considered in this context. The reason for
the definition of pseudo-morphisms is to extend these results to when X is nonre-
duced. We will not use the notion of pseudo-morphism.

6.5.3. An obvious example of a rational map is a morphism. Another important
example is the projection PnA 99K Pn−1A given by [x0, · · · , xn] 7→ [x0, · · · , xn−1].
(How precisely is this a rational map in the sense of Definition 6.5.1? What is its
domain of definition?)

A rational map π : X 99K Y is dominant (or in some sources, dominating) if
for some (and hence every) representative U → Y, the image is dense in Y. A
morphism is a dominant morphism (or dominating morphism) if it is dominant as
a rational map.

6.5.A. EXERCISE. Show that a rational map π : X 99K Y of irreducible schemes is
dominant if and only if π sends the generic point of X to the generic point of Y.

A little thought will convince you that you can compose (in a well-defined
way) a dominant map π : X 99K Y from an irreducible scheme X to an irreducible
scheme Y with a rational map ρ : Y 99K Z. Furthermore, the composition ρ ◦ π
will be dominant if ρ is dominant. Integral schemes and dominant rational maps
between them form a category which is geometrically interesting.

6.5.B. EASY EXERCISE. Show that dominant rational maps of integral schemes
give morphisms of function fields in the opposite direction.

In “suitably classical situations” (integral finite type k-schemes — and in par-
ticular, irreducible varieties, to be defined in §10.1.7) — this is reversible: dominant
rational maps correspond to inclusions of function fields in the opposite direction.
We make this precise in §6.5.6 below. But it is not true that morphisms of function
fields always give dominant rational maps, or even rational maps. For example,
Spec k[x] and Spec k(x) have the same function field k(x), but there is no corre-
sponding rational map Speck[x] 99K Speck(x) of k-schemes. Reason: such a ra-
tional map would correspond to a morphism from an open subset U of Speck[x],
say Spec k[x, 1/f(x)], to Spec k(x). But there is no map of rings k(x) → k[x, 1/f(x)]
(sending k identically to k and x to x) for any one f(x).
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(If you want more evidence that the topologically-defined notion of domi-
nance is simultaneously algebraic, you can show that if ϕ : A → B is a ring mor-
phism, then the corresponding morphism SpecB → SpecA is dominant if and
only if ϕ has kernel contained in the nilradical of A.)

6.5.4. Definition. A rational map π : X 99K Y is said to be birational if it is dominant,
and there is another rational map (a “rational inverse”) ψ that is also dominant,
such that π ◦ ψ is (in the same equivalence class as) the identity on Y, and ψ ◦
π is (in the same equivalence class as) the identity on X. This is the notion of
isomorphism in the category of integral schemes and dominant rational maps. (We
note in passing that in the differentiable category, this is a useless notion — any
connected differentiable manifolds of dimension d have isomorphic dense open
sets. To show this, use the fact that every smooth manifold admits a triangulation,
see [Wh, p. 124-135].) A morphism is birational if it is birational as a rational map.
(Note that the “inverse” to a birational morphism may be only a rational map, not
a morphism.)

We say X and Y are birational (to each other) if there exists a birational map
X 99K Y. If X and Y are irreducible, then birational maps induce isomorphisms
of function fields. The fact that maps of function fields correspond to rational
maps in the opposite direction for integral finite type k-schemes, to be proved in
Proposition 6.5.7, shows that a map between integral finite type k-schemes that
induces an isomorphism of function fields is birational. An integral finite type
k-scheme is said to be rational if it is birational to Ank for some n.

6.5.5. Proposition. — Suppose X and Y are reduced schemes. Then X and Y are bira-
tional if and only if there is a dense open subscheme U of X and a dense open subscheme V
of Y such that U ∼= V .

Proposition 6.5.5 tells you how to think of birational maps. Just as a rational
map is a “mostly defined function”, two birational reduced schemes are “mostly
isomorphic”. For example, a reduced finite type k-scheme (such as a reduced
affine variety over k) is rational if it has a dense open subscheme isomorphic to
an open subscheme of Ank .

Proof. The “if” direction is trivial, so we prove the “only if” direction.
Step 1. Because X and Y are birational, we can find some dense open sub-

schemes X1 ⊂ X and Y1 ⊂ Y, along with F : X1 → Y and G : Y1 → X whose com-
position in either order is the identity morphism on some dense open subscheme
where it makes sense. Replace X1 and Y1 by those dense open subschemes.

We have thus found dense open subschemes X1 ⊂ X and Y1 ⊂ Y, along with
morphisms F : X1 → Y and G : Y1 → X, whose composition in either order is the
identity on the open subset where it is defined. (More precisely, if X2 = F−1(Y1),
and Y2 = G−1(X1), then G ◦ F|X2

= idX2
, and F ◦G|Y2

= idY2
.)

Step 2. For n > 1, inductively define Xn+1 = F−1(Yn) and Yn+1 = G−1(Xn).
Informally, Xn is the (dense) open subset of points of X that can be mapped n
times by F and G alternately, and analogously for Yn. Define X∞ = ∩n≥1Xn, and
Y∞ = ∩n≥1Yn. Then X∞ = X2, as G ◦ F is the identity on X2 (so any point of
X2 can be acted on by F and G alternately any number of times), and similarly
Y∞ = Y2. Thus F and G define maps between X2 and Y2, and these are inverse
maps by assumption. □
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6.5.6. Rational maps of irreducible varieties.

6.5.7. Proposition. — Suppose X is an integral k-scheme and Y is an integral finite type
k-scheme, and we are given an extension of function fields ϕ♯ : K(Y) ↪→ K(X) preserving
k. Then there exists a dominant rational map of k-schemes ϕ : X 99K Y inducing ϕ♯.

Proof. By replacing Y with an open subset, we may assume that Y is affine, say
SpecB, where B is generated over k by finitely many elements y1, . . . , yn. Since
we only need to define ϕ on an open subset of X, we may similarly assume that
X = SpecA is affine. Then ϕ♯ gives an inclusion ϕ♯ : B ↪→ K(A). Write ϕ♯(yi) as
fi/gi (fi, gi ∈ A), and let g :=

∏
gi. Then ϕ♯ further induces an inclusion B ↪→ Ag.

Thereforeϕ : SpecAg → SpecB inducesϕ♯. The morphismϕ is dominant because
the inverse image of the zero ideal under the inclusion B ↪→ Ag is the zero ideal,
so ϕ takes the generic point of X to the generic point of Y. □

6.5.C. EXERCISE. Let K be a finitely generated field extension of k. (Recall that a
field extension K over k is finitely generated if there is a finite “generating set” x1,
. . . , xn in K such that every element of K can be written as a rational function in x1,
. . . , xn with coefficients in k.) Show that there exists an irreducible affine k-variety
with function field K. (Hint: Consider the map k[t1, . . . , tn]→ K given by ti 7→ xi,
and show that the kernel is a prime ideal p, and that k[t1, . . . , tn]/p has fraction
field K. Interpreted geometrically: consider the map SpecK → Speck[t1, . . . , tn]
given by the ring map ti 7→ xi, and take the closure of the one-point image.)

6.5.D. EXERCISE. Describe equivalences of categories among the following.

(a) the category with objects “integral k-varieties”, and morphisms “domi-
nant rational maps defined over k”;

(b) the category with objects “integral affine k-varieties”, and morphisms “dom-
inant rational maps defined over k”; and

(c) the opposite (“arrows-reversed”) category with objects “finitely gener-
ated field extensions of k”, and morphisms “inclusions extending the
identity on k”.

In particular, an integral affine k-variety X is rational if its function field K(X)
is a purely transcendental extension of k, i.e., K(X) ∼= k(x1, . . . , xn) for some n.
(This needs to be said more precisely: the map k ↪→ K(X) induced by X → Speck
should agree with the “obvious” map k ↪→ k(x1, . . . , xn) under this isomorphism.)

6.5.8. More examples of rational maps.
A recurring theme in these examples is that domains of definition of rational

maps to projective schemes extend over regular codimension one points. We will
make this precise in the Curve-to-Projective Extension Theorem 16.5.1, when we
discuss curves.

The first example is the classical formula for Pythagorean triples. Suppose you
are looking for rational points on the circleC given by x2+y2 = 1 (Figure 6.1). One
rational point is p = (1, 0). If q is another rational point, then pq is a line of rational
(non-infinite) slope. This gives a rational map from the conic C (now interpreted
as SpecQ[x, y]/(x2+y2−1)) to A1Q, given by (x, y) 7→ y/(x−1). (Something subtle
just happened: we were talking about Q-points on a circle, and ended up with a
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C

FIGURE 6.1. Finding primitive Pythagorean triples using geometry

rational map of schemes.) Conversely, given a line of slopem through p, wherem
is rational, we can recover q by solving the equations y = m(x − 1), x2 + y2 = 1.
We substitute the first equation into the second, to get a quadratic equation in x.
We know that we will have a solution x = 1 (because the line meets the circle at
(x, y) = (1, 0)), so we expect to be able to factor this out, and find the other factor.
This indeed works:

x2 + (m(x− 1))2 = 1

=⇒ (m2 + 1)x2 + (−2m2)x+ (m2 − 1) = 0

=⇒ (x− 1)((m2 + 1)x− (m2 − 1)) = 0

The other solution is x = (m2−1)/(m2+1), which gives y = −2m/(m2+1). Thus
we get a birational map between the conic C and A1 with coordinate m, given by
f : (x, y) 7→ y/(x − 1) (which is defined for x ̸= 1), and with inverse rational map
given by m 7→ ((m2 − 1)/(m2 + 1),−2m/(m2 + 1)) (which is defined away from
m2 + 1 = 0).

We can extend this to a rational map C 99K P1Q via the “inclusion” A1Q → P1Q
(which we later call an open embedding). Then f is given by (x, y) 7→ [y, x−1]. We
then have an interesting question: what is the domain of definition of f? It appears
to be defined everywhere except for where y = x − 1 = 0, i.e., everywhere but p.
But in fact it can be extended over p! Note that (x, y) 7→ [x+ 1,−y] (where (x, y) ̸=
(−1, 0)) agrees with f on their common domains of definition, as [x + 1,−y] =
[y, x− 1]. Hence this rational map can be extended farther than we at first thought.
This will be a special case of the Curve-to-Projective Extension Theorem 16.5.1.

6.5.E. EXERCISE. Use the above to find a “formula” yielding all Pythagorean
triples.

6.5.F. EXERCISE. Show that the conic x2 + y2 = z2 in P2k is isomorphic to P1k for
any field k of characteristic not 2. (Aside: What happens in characteristic 2?)
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6.5.9. In fact, any conic in P2k with a k-valued point (i.e., a point with residue field
k) of rank 3 (after base change to k, so “rank” makes sense, see Exercise 5.4.J) is iso-
morphic to P1k. (The hypothesis of having a k-valued point is certainly necessary:
x2 + y2 + z2 = 0 over k = R is a conic that is not isomorphic to P1k.

6.5.G. EXERCISE. Find all rational solutions to y2 = x3+x2, by finding a birational
map to A1Q, mimicking what worked with the conic. Hint: what point should you
project from? (In Exercise 19.10.F, we will see that these points form a group, and
that this is a degenerate elliptic curve.)

You will obtain a rational map to P1Q that is not defined over the node x =
y = 0, and cannot be extended over this codimension 1 set. This is an example of
the limits of our future result, the Curve-to-Projective Extension Theorem 16.5.1,
showing how to extend rational maps to projective space over codimension 1 sets:
the codimension 1 sets have to be regular.

6.5.H. EXERCISE. Use a similar idea to find a birational map from the quadric
surface Q = {x2 + y2 = w2 + z2} ⊂ P3Q to P2Q. Use this to find all rational points
onQ. (This illustrates a good way of solving Diophantine equations. You will find
a dense open subset of Q that is isomorphic to a dense open subset of P2, where
you can easily find all the rational points. There will be a closed subset ofQwhere
the rational map is not defined, or not an isomorphism, but you can deal with this
subset in an ad hoc fashion.)

6.5.I. EXERCISE (THE CREMONA TRANSFORMATION, A USEFUL CLASSICAL CON-
STRUCTION). Consider the rational map P2k 99K P2k, given by [x, y, z]→ [1/x, 1/y, 1/z].
What is the the domain of definition? (It is bigger than the locus where xyz ̸= 0!)
You will observe that you can extend it over “codimension 1 sets” (ignoring the
fact that we don’t yet know what codimension means). This again foreshadows
the Curve-to-Projective Extension Theorem 16.5.1.

6.5.10. ⋆ Complex curves that are not rational (fun but inessential).
We now describe two examples of curves C that do not admit a nonconstant

rational map from P1C. (Admittedly, we do not yet know what “curve” means, but
no matter.) Both proofs are by Fermat’s method of infinite descent. These results
can be interpreted (as you will later be able to check using Theorem 17.4.3) as the
fact that these curves have no “nontrivial” C(t)-valued points, where by this, we
mean that any C(t)-valued point is secretly a C-valued point. You may notice
that if you consider the same examples with C(t) replaced by Q (and where C
is a curve over Q rather than C), you get two fundamental questions in number
theory and geometry. The analog of Exercise 6.5.L is the question of rational points
on elliptic curves, and you may realize that the analog of Exercise 6.5.J is even
more famous. Also, the arithmetic analog of Exercise 6.5.L(a) is the “Four Squares
Theorem” (there are not four integer squares in arithmetic progression), first stated
by Fermat. These examples will give you a glimpse of how and why facts over
number fields are often parallelled by facts over function fields of curves. This
parallelism is a recurring deep theme in the subject.

6.5.J. EXERCISE. If n > 2, show that P1C has no dominant rational maps to the
“Fermat curve” xn + yn = zn in P2C. Hint: reduce this to showing that there is
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no “nonconstant” solution (f(t), g(t), h(t)) to f(t)n + g(t)n = h(t)n, where f(t),
g(t), and h(t) are rational functions in t (that is, elements of C(t)). By clearing
denominators, reduce this to showing that there is no nonconstant solution where
f(t), g(t), and h(t) are relatively prime polynomials. For this, assume there is a
solution, and consider one of the lowest positive degree. Then use the fact that
C[t] is a unique factorization domain, and h(t)n − g(t)n =

∏n
i=1(h(t) − ζ

ig(t)),
where ζ is a primitive nth root of unity. Argue that each h(t) − ζig(t) is an nth
power. Then use

(h(t) − g(t)) + α (h(t) − ζg(t)) = β
(
h(t) − ζ2g(t)

)
for suitably chosen α and β to get a solution of smaller degree. (How does this
argument fail for n = 2?)

6.5.K. EXERCISE. Give two smooth complex curves X and Y so that no nonempty
open subset of X is isomorphic to a nonempty open subset of Y. (Try not to be both-
ered by the fact that we have not yet defined “smoothness”.) Hint: Exercise 6.5.J.

6.5.L. EXERCISE. Suppose a, b, and c are distinct complex numbers. By the
following steps, show that if x(t) and y(t) are two rational functions of t such that

(6.5.10.1) y(t)2 = (x(t) − a)(x(t) − b)(x(t) − c),

then x(t) and y(t) are constants (x(t), y(t) ∈ C). (Here C may be replaced by any
field K of characteristic not 2; slight extra care is needed if K is not algebraically
closed.)
(a) Suppose P,Q ∈ C[t] are relatively prime polynomials such that four linear
combinations of them are perfect squares, no two of which are constant multi-
ples of each other. Show that P and Q are constant (i.e., P,Q ∈ C). Hint: By
renaming P and Q, show that you may assume that the perfect squares are P, Q,
P − Q, P − λQ (for some λ ∈ C). Define u and v to be square roots of P and
Q respectively. Show that u − v, u + v, u −

√
λv, u +

√
λv are perfect squares,

and that u and v are relatively prime. If P and Q are not both constant, note that
0 < max(degu,deg v) < max(degP,degQ). Assume from the start that P and Q
were chosen as a counterexample with minimal max(degP,degQ) to obtain a con-
tradiction. (Aside: It is possible to have three distinct linear combinations that are
perfect squares. Such examples essentially correspond to primitive Pythagorean
triples in C(t) — can you see how?)
(b) Suppose (x, y) = (p/q, r/s) is a solution to (6.5.10.1), where p, q, r, s ∈ C[t],
and p/q and r/s are in lowest terms. Clear denominators to show that r2q3 =
s2(p−aq)(p−bq)(p−cq). Show that s2|q3 and q3|s2, and hence that s2 = δq3 for
some δ ∈ C. From r2 = δ(p − aq)(p − bq)(p − cq), show that (p − aq), (p − bq),
(p − cq) are perfect squares. Show that q is also a perfect square, and then apply
part (a).

A much better geometric approach to Exercises 6.5.J and 6.5.L is given in Exer-
cise 21.7.H.

6.6 ⋆ Representable functors and group schemes
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6.6.1. Maps to A1 correspond to functions. If X is a scheme, there is a bijection
between the maps X → A1 and global sections of the structure sheaf: by Exer-
cise 6.3.F, maps π : X → A1Z correspond to maps to ring maps π♯ : Z[t] → Γ(X,OX),
and π♯(t) is a function on X; this is reversible.

This map is very natural in an informal sense: you can even picture this map
to A1 as being given by the function. (By analogy, a function on a manifold is a
map to R.) But it is natural in a more precise sense: this bijection is functorial in X.
We will ponder this example at length, and see that it leads us to two important
sophisticated notions: representable functors and group schemes.

6.6.A. EASY EXERCISE. Suppose X is a C-scheme. Verify that there is a natural
bijection between maps X → A1C in the category of C-schemes and functions on X.
(Here the base ring C can be replaced by any ring A.)

This interpretation can be extended to rational maps, as follows.

6.6.B. UNIMPORTANT EXERCISE. Interpret rational functions on an integral scheme
(Exercise 5.5.Q, see also Definition 5.5.6) as rational maps to A1Z.

6.6.2. Representable functors. We restate the bijection of §6.6.1 as follows. We
have two different contravariant functors from Sch to Sets: maps to A1 (i.e.,H : X 7→
Mor(X,A1Z)), and functions on X (F : X 7→ Γ(X,OX)). The “naturality” of the bijec-
tion — the functoriality in X — is precisely the statement that the bijection gives a
natural isomorphism of functors (§1.2.21): given any π : X→ X ′, the diagram

H(X ′)

��

H(π) // H(X)

��
F(X ′)

F(π) // F(X)

(where the vertical maps are the bijections given in §6.6.1) commutes.
More generally, if Y is an element of a category C (we care about the spe-

cial case C = Sch), recall the contravariant functor hY : C → Sets defined by
hY(X) = Mor(X, Y) (Example 1.2.20). We say a contravariant functor from C to
Sets is represented by Y if it is naturally isomorphic to the functor hY . We say it is
representable if it is represented by some Y.

The bijection of §6.6.1 may now be restated as: the global section functor is repre-
sented by A1.

6.6.C. IMPORTANT EASY EXERCISE (REPRESENTING OBJECTS ARE UNIQUE UP TO
UNIQUE ISOMORPHISM). Show that if a contravariant functor F is represented by
Y and by Z, then we have a unique isomorphism Y → Z induced by the natural
isomorphism of functors hY → hZ. Hint: this is a version of the universal prop-
erty arguments of §1.3: once again, we are recognizing an object (up to unique
isomorphism) by maps to that object. This exercise is essentially Exercise 1.3.Z(b).
(This extends readily to Yoneda’s Lemma in this setting, Exercise 9.1.C. You are
welcome to try that now.)

You have implicitly seen this notion before: you can interpret the existence of
products and fibered products in a category as examples of representable functors.
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(You may wish to work out how a natural isomorphism hY×Z ∼= hY × hZ induces
the projection maps Y × Z→ Y and Y × Z→ Z.)

6.6.D. EXERCISE (WARM-UP). Suppose F is the contravariant functor Sch → Sets
defined by F(X) = {Grothendieck, A.} for all schemes X. Show that F is repre-
sentable. (What is it representable by?)

6.6.E. EXERCISE. In this exercise, Z may be replaced by any ring.
(a) (Affine n-space represents the functor of n functions.) Show that the contravariant
functor from (Z-)schemes to Sets

X 7→ {(f1, . . . , fn) : fi ∈ Γ(X,OX)}

is represented by AnZ . Show that A1Z×ZA1Z ∼= A2Z, i.e., that A2 satisfies the universal
property of A1 × A1. (You will undoubtedly be able to immediately show that∏

Ami

Z
∼= A

∑
mi

Z .)
(b) (The functor of invertible functions is representable.) Show that the contravariant
functor from (Z-)schemes to Sets taking X to invertible functions on X is repre-
sentable by SpecZ[t, t−1].

6.6.3. Definition. The scheme defined in Exercise 6.6.E(b) is called the multiplica-
tive group Gm. “Gm over a field k” (“the multiplicative group over k”) means
Spec k[t, t−1], with the same group operations. Better: it represents the group of
invertible functions in the category of k-schemes. We can similarly define Gm over
an arbitrary ring or even arbitrary scheme.

6.6.F. LESS IMPORTANT EXERCISE. Fix a ring A. Consider the functor H from the
category of locally ringed spaces to Sets given by H(X) = {A → Γ(X,OX)}. Show
that this functor is representable (by SpecA). This gives another (admittedly odd)
motivation for the definition of SpecA, closely related to that of §6.3.6.

6.6.4. ⋆⋆ Group schemes (or more generally, group objects in a category).
(The rest of §6.6 should be read only for entertainment.) We return again to

Example 6.6.1. Functions on X are better than a set: they form a group. (Indeed
they even form a ring, but we will worry about this later.) Given a morphism
X → Y, pullback of functions Γ(Y,OY) → Γ(X,OX) is a group homomorphism.
So we should expect A1 to have some group-like structure. This leads us to the
notion of group scheme, or more generally a group object in a category, which we
now define.

Suppose C is a category with a final object Z and with products. (We know
that Sch has a final object Z = SpecZ, by Exercise 6.3.I. We will later see that it has
products, §9.1. But in Exercise 6.6.K we will give an alternative characterization of
group objects that applies in any category, so we won’t worry about this.)

A group object in C is an element X along with three morphisms:

• multiplication: m : X× X→ X

• inverse: i : X→ X

• identity element: e : Z→ X (not the identity map)

These morphisms are required to satisfy several conditions.
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(i) associativity axiom:

X× X× X
(m,id) //

(id,m)

��

X× X

m

��
X× X m // X

commutes. (Here idmeans the equality X→ X.)
(ii) identity axiom:

X
∼ // Z× X e×id // X× X m // X

and

X
∼ // X× Z id×e // X× X m // X

are both the identity map X → X. (This corresponds to the group axiom: “multi-
plication by the identity element is the identity map”.)

(iii) inverse axiom: X
i,id // X× X m // X and X

id,i // X× X m // X are

both the map that is the composition X // Z
e // X .

As motivation, you can check that a group object in the category of sets is in
fact the same thing as a group. (This is symptomatic of how you take some notion
and make it categorical. You write down its axioms in a categorical way, and if
all goes well, if you specialize to the category of sets, you get your original notion.
You can apply this to the notion of “rings” in an exercise below.)

A group scheme is defined to be a group object in the category of schemes. A
group scheme over a ring A (or a scheme S) is defined to be a group object in the
category of A-schemes (or S-schemes).

6.6.G. EXERCISE. Give A1Z the structure of a group scheme, by describing the
three structural morphisms, and showing that they satisfy the axioms. (Hint: the
morphisms should not be surprising. For example, inverse is given by t 7→ −t.
Note that we know that the product A1Z × A1Z exists, by Exercise 6.6.E(a).)

6.6.H. EXERCISE. Show that ifG is a group object in a category C , then for any X ∈
C , Mor(X,G) has the structure of a group, and the group structure is preserved by
pullback (i.e., Mor(·, G) is a contravariant functor to Groups).

6.6.I. EXERCISE. Show that the group structure described by the previous exercise
translates the group scheme structure on A1Z to the group structure on Γ(X,OX),
via the bijection of §6.6.1.

6.6.J. EXERCISE. Define the notion of abelian group scheme, and ring scheme.
(You will undoubtedly at the same time figure out how to define the notion of
abelian group object and ring object in any category C. You may discover a more
efficient approach to such questions after reading §6.6.5.)

The language of scheme-valued points (Definition 6.3.9) has the following ad-
vantage: notice that the points of a group scheme need not themselves form a group
(consider A1Z). But Exercise 6.6.H shows that the Z-valued points of a group scheme
(where Z is any given scheme) indeed form a group.
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6.6.5. Group schemes, more functorially. There was something unsatisfactory about
our discussion of the “group-respecting” nature of the bijection in §6.6.1: we ob-
served that the right side (functions on X) formed a group, then we developed
the axioms of a group scheme, then we cleverly figured out the maps that made
A1Z into a group scheme, then we showed that this induced a group structure on
the left side of the bijection (Mor(X,A1)) that precisely corresponded to the group
structure on the right side (functions on X).

The picture is more cleanly explained as follows.

6.6.K. EXERCISE. Suppose we have a contravariant functor F from Sch (or indeed
any category) to Groups. Suppose further that F composed with the forgetful func-
tor Groups → Sets is represented by an object Y. Show that the group operations
on F(X) (as X varies through Sch) uniquely determine m : Y × Y → Y, i : Y → Y,
e : Z → Y satisfying the axioms defining a group scheme, such that the group op-
eration on Mor(X, Y) is the same as that on F(X).

In particular, the definition of a group object in a category was forced upon
us by the definition of group. More generally, you should expect that any class of
objects that can be interpreted as sets with additional structure should fit into this
picture.

You should apply this exercise to A1Z, and see how the explicit formulas you
found in Exercise 6.6.G are forced on you.

6.6.L. EXERCISE. Work out the maps m, i, and e in the group schemes of Exer-
cise 6.6.E.

6.6.M. EXERCISE. Explain why the product of group objects in a category can be
naturally interpreted as a group object in that category.

6.6.N. EXERCISE.
(a) Define morphism of group schemes.
(b) Recall that if A is a ring, then GLn(A) (the general linear group over A) is the
group of invertible n × n matrices with entries in the ring A. Figure out the right
definition of the group schemeGLn (over a ringA), and describe the determinant
map det : GLn → Gm.
(c) Make sense of the statement: “(·n) : Gm → Gm given by t 7→ tn is a morphism
of group schemes.”

The language of Exercise 6.6.N(a) suggests that group schemes form a cate-
gory; feel free to prove this if you want. In fact, the category of group schemes has
a zero object. What is it?

6.6.O. EXERCISE (KERNELS OF MAPS OF GROUP SCHEMES). Suppose F : G1 → G2
is a morphism of group schemes. Consider the contravariant functor Sch→ Groups
given by X 7→ ker(Mor(X,G1) → Mor(X,G2)). If this is representable, by a group
scheme G0, say, show that G0 → G1 is the kernel of F in the category of group
schemes.

6.6.P. EXERCISE. Show that the kernel of (·n) (Exercise 6.6.N) is representable. If
n > 0, show that over a field k of characteristic p dividing n, this group scheme is
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nonreduced. (This group scheme, denoted µn, is important, although we will not
use it.)

6.6.Q. EXERCISE. Show that the kernel of det : GLn → Gm is representable. This
is the group scheme SLn. (You can do this over Z, or over a field k, or even over
an arbitrary ring A; the algebra is the same.)

6.6.R. EXERCISE. Show (as easily as possible) that A1k is a ring k-scheme. (Here k
can be replaced by any ring.)

6.6.S. EXERCISE.
(a) Define the notion of a (left) group scheme action (of a group scheme on a
scheme).
(b) Suppose A is a ring. Show that specifying an integer-valued grading on A
is equivalent to specifying an action of Gm on SpecA. (This interpretation of a
grading is surprisingly enlightening. Caution: there are two possible choices of
the integer-valued grading, and there are reasons for both. Both are used in the
literature.)

6.6.6. Aside: Hopf algebras. Here is a notion that we won’t use, but it is easy
enough to define now. SupposeG = SpecA is an affine group scheme, i.e., a group
scheme that is an affine scheme. The categorical definition of group scheme can be
restated in terms of the ring A. (This requires thinking through Remark 6.3.5; see
Exercise 9.1.B.) Then these axioms define a Hopf algebra. For example, we have a
“comultiplication map” A→ A⊗A.

6.6.T. EXERCISE. As A1Z is a group scheme, Z[t] has a Hopf algebra structure.
Describe the comultiplication map Z[t]→ Z[t]⊗Z Z[t].

6.7 ⋆⋆ The Grassmannian (initial construction)

The Grassmannian is a useful geometric construction that is “the geometric
object underlying linear algebra”. In (classical) geometry over a field K = R or
C, just as projective space parametrizes one-dimensional subspaces of a given
n-dimensional vector space, the Grassmannian parametrizes k-dimensional sub-
spaces of n-dimensional space. The Grassmannian G(k, n) is a manifold of dimen-
sion k(n − k) (over the field). The manifold structure is given as follows. Given a
basis (v1, . . . , vn) of n-space, “most” k-planes can be described as the span of the
k vectors

(6.7.0.1)

⟨
v1 +

n∑
i=k+1

a1ivi, v2 +

n∑
i=k+1

a2ivi, . . . , vk +

n∑
i=k+1

akivi

⟩
.

(Can you describe which k-planes are not of this form? Hint: row reduced echelon
form. Aside: the stratification of G(k, n) by normal form is the decomposition of
the Grassmannian into Schubert cells. You may be able to show using the normal
form that each Schubert cell is isomorphic to an affine space.) Any k-plane of
this form can be described in such a way uniquely. We use this to identify those k-
planes of this form with the manifoldKk(n−k) (with coordinates aji). This is a large
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affine patch on the Grassmannian (called the “open Schubert cell” with respect to
this basis). As the vi vary, these patches cover the Grassmannian (why?), and the
manifold structures agree (a harder fact).

We now define the Grassmannian in algebraic geometry, over a ring A. Sup-
pose v = (v1, . . . , vn) is a basis for A⊕n. More precisely: vi ∈ A⊕n, and the map
A⊕n → A⊕n given by (a1, . . . , an) 7→ a1v1 + · · ·+ anvn is an isomorphism.

6.7.A. EXERCISE. Show that any two bases are related by an invertible n × n

matrix over A — a matrix with entries in A whose determinant is an invertible
element of A.

For each such basis v, we consider the schemeUv ∼= Ak(n−k)A , with coordinates
aji (k + 1 ≤ i ≤ n, 1 ≤ j ≤ k), which we imagine as corresponding to the k-plane
spanned by the vectors (6.7.0.1).

6.7.B. EXERCISE. Given two bases v and w, explain how to glue Uv to Uw along
appropriate open sets. You may find it convenient to work with coordinates aji
where i runs from 1 to n, not just k + 1 to n, but imposing aji = δji (i.e., 1 when
i = j and 0 otherwise) when i ≤ k. This convention is analogous to coordinates
xi/j on the patches of projective space (§4.4.9). Hint: the relevant open subset of
Uv will be where a certain determinant doesn’t vanish.

6.7.C. EXERCISE/DEFINITION. By checking triple intersections, verify that these
patches (over all possible bases) glue together to a single scheme (Exercise 4.4.A).
This is the Grassmannian G(k, n) over the ring A. Because it can be interpreted as
a space of linear “Pk−1A ’s” in Pn−1A , it is often also written G(k− 1, n− 1). (You will
see that this is wise notation in Exercise 11.2.K, for example.)

Although this definition is pleasantly explicit (it is immediate that the Grass-
mannian is covered by Ak(n−k)’s), and perhaps more “natural” than our original
definition of projective space in §4.4.9 (we aren’t making a choice of basis; we use
all bases), there are several things unsatisfactory about this definition of the Grass-
mannian. In fact the Grassmannian is projective; this isn’t obvious with this defi-
nition. Furthermore, the Grassmannian comes with a natural morphism to P(

n
k)−1

(which is an example of a closed embedding, to be defined later), called the Plücker
embedding. Finally, there is an action ofGLn on the space of k-planes in n-space, so
we should be able to see this in our algebraic incarnation. We will address these
issues in §16.7, by giving a better description, as a moduli space.

6.7.1. (Partial) flag varieties. Just as the Grassmannian “parametrizes” k-planes in
n-space, the flag variety parametrizes “flags”: nested sequences of subspaces of
n-space

F0 ⊂ F1 ⊂ · · · ⊂ Fn
where dim Fi = i. Generalizing both of these is the notion of a partial flag variety
associated to some data 0 ≤ a1 < · · · < aℓ ≤ n, which parametrizes nested
sequences of subspaces of n-space

Fa1
⊂ · · · ⊂ Faℓ

where dim Fai
= ai. You should be able to generalize all of the discussion in §6.7

to this setting.



CHAPTER 7

Useful classes of morphisms of schemes

We now define an excessive number of types of morphisms. Some (often
finiteness properties) are useful because every “reasonable” morphism has such
properties, and they will be used in proofs in obvious ways. Others correspond to
geometric behavior, and you should have a picture of what each means.

7.0.1. Reasonably behaved classes of morphisms. One of Grothendieck’s lessons is
that things that we often think of as properties of objects are better understood as
properties of morphisms. One way of turning properties of objects into properties
of morphisms is as follows. If P is a property of schemes, we often (but not always)
say that a morphism π : X → Y has P if for every affine open subset U ⊂ Y, π−1(U)
has P. We will see this for P = quasicompact, quasiseparated, affine, and more.
(As you might hope, in good circumstances, P will satisfy the hypotheses of the
Affine Communication Lemma 5.3.2, so we don’t have to check every affine open
subset.) Informally, you can think of such a morphism as one where all the fibers
have P. (You can quickly define the fiber of a morphism as a topological space,
but once we define fibered product, we will define the scheme-theoretic fiber, and
then this discussion will make sense.) But it means more than that: it means that
“being P” is really not just fiber-by-fiber, but behaves well as the fiber varies. (For
comparison, a smooth morphism of manifolds means more than that the fibers are
smooth.)

7.1 An example of a reasonable class of morphisms: Open
embeddings

7.1.1. What to expect of any “reasonable” type of morphism. You will notice
that essentially all classes of morphisms have three properties.

(i) They are local on the target. In other words, (a) if π : X→ Y is in the class,
then for any open subset V of Y, the restricted morphism π−1(V) → V is
in the class; and (b) for a morphism π : X → Y, if there is an open cover
{Vi} of Y for which each restricted morphism π−1(Vi)→ Vi is in the class,
then π is in the class. In particular, as schemes are built out of affine
schemes, it should be possible to check on an affine cover, as described in
§7.0.1.

(ii) They are closed under composition: if π : X → Y and ρ : Y → Z are both
in this class, then so is ρ ◦ π.

(iii) They are closed under “base change” or “pullback” or “fibered product”.
We will discuss fibered products of schemes in Chapter 9.1.

201
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When anyone tells you a new class of morphism, you should immediately ask
yourself (or them) whether these three properties hold. And it is essentially true
that a class of morphism is “reasonable” if and only if it satisfies these three prop-
erties. Here is a first example.

An open embedding (or open immersion) of schemes is defined to be an open
embedding as ringed spaces (§6.2.1). In other words, a morphism π : (X,OX) →
(Y,OY) of schemes is an open embedding if π factors as

(X,OX)
ρ

∼
// (U,OY |U)

� � τ // (Y,OY)

where ρ is an isomorphism, and τ : U ↪→ Y is an inclusion of an open set. It is
immediate that isomorphisms are open embeddings. The symbol ↪→ is often used
to indicate that a morphism is an open embedding (or more generally, a locally
closed embedding, see §8.1.2).

If X is actually a subset of Y (and π is the inclusion, i.e., ρ is the identity),
then we say (X,OX) is an open subscheme of (Y,OY). This is a bit confusing, and
not too important: at the level of sets, open subschemes are subsets, while open
embeddings are bijections onto subsets.

“Open subschemes” are scheme-theoretic analogs of open subsets. “Closed
subschemes” are scheme-theoretic analogs of closed subsets, but they have a sur-
prisingly different flavor, as we will see in §8.1.

7.1.A. EXERCISE (PROPERTIES (I) AND (II)). Verify that the class of open embed-
dings satisfies properties (i) and (ii) of §7.1.1.

7.1.B. IMPORTANT BUT EASY EXERCISE (PROPERTY (III)). Verify that the class
of open embeddings satisfies property (iii) of §7.1.1. More specifically: suppose
i : U → Z is an open embedding, and ρ : Y → Z is any morphism. Show that
U ×Z Y exists and U ×Z Y → Y is an open embedding. (Hint: I’ll even tell you
what U×Z Y is: (ρ−1(U),OY |ρ−1(U)).) In particular, if U ↪→ Z and V ↪→ Z are open
embeddings, U×Z V ∼= U ∩ V .

7.1.C. EASY EXERCISE. Suppose π : X → Y is an open embedding. Show that if
Y is locally Noetherian, then X is too. Show that if Y is Noetherian, then X is too.
However, show that if Y is quasicompact, X need not be. (Hint: let Y be affine but
not Noetherian, see Exercise 3.6.G(b).)

7.1.2. Definition. In analogy with “local on the target” (§7.1.1), we define what
it means for a property P of morphisms to be local on the source: to check if a
morphism π : X→ Y has P, it suffices to check on any open cover {Ui} of X. We then
define affine-local on the source (and affine-local on the target) in the obvious
way: it suffices to check on any affine cover of the source (resp. target). The use
of “affine-local” rather than “local” is to emphasize that the criterion on affine
schemes is simple to describe. (Clearly the Affine Communication Lemma 5.3.2
will be very handy.)

7.1.D. EXERCISE (PRACTICE WITH THE CONCEPT). Show that the notion of “open
embedding” is not local on the source.



November 18, 2017 draft 203

7.2 Algebraic interlude: Lying Over and Nakayama

Algebra is the offer made by the devil to the mathematician. The devil says: I will give
you this powerful machine, it will answer any question you like. All you need to do is give
me your soul: give up geometry and you will have this marvelous machine.

— M. Atiyah, [At2, p. 659]; but see the Atiyah quote at the start of §0.3

To set up our discussion in the next section on integral morphisms, we de-
velop some algebraic preliminaries. A clever trick we use can also be used to
show Nakayama’s Lemma, so we discuss this as well.

Suppose ϕ : B → A is a ring morphism. We say a ∈ A is integral over B if a
satisfies some monic polynomial

an + ?an−1 + · · ·+ ? = 0

where the coefficients lie in ϕ(B). A ring homomorphism ϕ : B→ A is integral if ev-
ery element of A is integral over ϕ(B). An integral ring morphism ϕ is an integral
extension ifϕ is an inclusion of rings. You should think of integral homomorphisms
and integral extensions as ring-theoretic generalizations of the notion of algebraic
extensions of fields.

7.2.A. EXERCISE. Show that if ϕ : B → A is a ring morphism, (b1, . . . , bn) = 1

in B, and Bbi
→ Aϕ(bi) is integral for all i, then ϕ is integral. Hint: replace B by

ϕ(B) to reduce to the case where B is a subring of A. Suppose a ∈ A. Show that
there is some t and m such that btia

m ∈ B + Ba + Ba2 + · · · + Bam−1 for some
t and m independent of i. Use a “partition of unity” argument as in the proof of
Theorem 4.1.2 to show that am ∈ B+ Ba+ Ba2 + · · ·+ Bam−1.

7.2.B. EXERCISE.
(a) Show that the property of a homomorphism ϕ : B → A being integral is always
preserved by localization and quotient of B, and quotient of A, but not localiza-
tion of A. More precisely: suppose ϕ is integral. Show that the induced maps
T−1B→ ϕ(T)−1A, B/J→ A/ϕ(J)A, and B→ A/I are integral (where T is a multi-
plicative subset of B, J is an ideal of B, and I is an ideal of A), but B→ S−1A need
not be integral (where S is a multiplicative subset of A). (Hint for the latter: show
that k[t]→ k[t] is an integral homomorphism, but k[t]→ k[t](t) is not.)
(b) Show that the property of ϕ being an integral extension is preserved by localiza-
tion of B, but not localization or quotient of A. (Hint for the latter: k[t]→ k[t] is an
integral extension, but k[t]→ k[t]/(t) is not.)
(c) In fact the property of ϕ being an integral extension (as opposed to integral ho-
momorphism) is not preserved by taking quotients of B either. (Let B = k[x, y]/(y2)
and A = k[x, y, z]/(z2, xz − y). Then B injects into A, but B/(x) doesn’t inject into
A/(x).) But it is in some cases. Suppose ϕ : B → A is an integral extension, and
J ⊂ B is the restriction of an ideal I ⊂ A. (Side Remark: you can show that this
holds if J is prime.) Show that the induced map B/J → A/JA is an integral ex-
tension. (Hint: show that the composition B/J → A/JA → A/I is an injection.)

The following lemma uses a useful but sneaky trick.
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7.2.1. Lemma. — Suppose ϕ : B → A is a ring homomorphism. Then a ∈ A is
integral over B if and only if it is contained in a subalgebra ofA that is a finitely generated
B-module.

Proof. If a satisfies a monic polynomial equation of degreen, then theB-submodule
of A generated by 1, a, . . . , an−1 is closed under multiplication, and hence a sub-
algebra of A.

Assume conversely that a is contained in a subalgebraA ′ ofA that is a finitely
generated B-module. Choose a finite generating set m1, . . . , mn of A ′ (as a B-
module). Then ami =

∑
bijmj, for some bij ∈ B. Thus

(7.2.1.1) (aIdn×n − [bij]ij)

 m1
...
mn

 =

 0
...
0

 ,
where Idn is the n× n identity matrix in A. We can’t invert the matrix (aIdn×n −
[bij]ij), but we almost can. Recall that an n × n matrix M has an adjugate matrix
adj(M) such that adj(M)M = det(M)Idn. (The (i, j)th entry of adj(M) is the de-
terminant of the matrix obtained from M by deleting the ith column and jth row,
times (−1)i+j. You have likely seen this in the form of a formula for M−1 when
there is an inverse; see for example [DF, p. 440].) The coefficients of adj(M) are
polynomials in the coefficients ofM. Multiplying (7.2.1.1) by adj(aIdn×n−[bij]ij),
we get

det(aIdn×n − [bij]ij)

 m1
...
mn

 =

 0
...
0

 .
So det(aI−[bij]) annihilates the generating elementsmi, and hence every element
of A ′, i.e., det(aI − [bij]) = 0. But expanding the determinant yields an integral
equation for awith coefficients in B. □

7.2.2. Corollary (finite implies integral). — If A is a finite B-algebra (a finitely
generated B-module), then ϕ is an integral homomorphism.

The converse is false: integral does not imply finite, as Q ↪→ Q is an integral
homomorphism, but Q is not a finite Q-module. (A field extension is integral if it
is algebraic.)

7.2.C. EXERCISE. Show that if C → B and B → A are both integral homomor-
phisms, then so is their composition.

7.2.D. EXERCISE. Suppose ϕ : B→ A is a ring morphism. Show that the elements
of A integral over B form a subalgebra of A.

7.2.3. Remark: Transcendence theory. These ideas lead to the main facts about
transcendence theory we will need for a discussion of dimension of varieties, see
Exercise/Definition 11.2.A.

7.2.4. The Lying Over and Going-Up Theorems. The Lying Over Theorem is a
useful property of integral extensions.
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7.2.5. The Lying Over Theorem. — Suppose ϕ : B → A is an integral extension.
Then for any prime ideal q ⊂ B, there is a prime ideal p ⊂ A such that p ∩ B = q.

To be clear on how weak the hypotheses are: B need not be Noetherian, and
A need not be finitely generated over B.

7.2.6. Geometric translation: SpecA → SpecB is surjective. (A map of schemes is
surjective if the underlying map of sets is surjective.)

Although this is a theorem in algebra, the name can be interpreted geometri-
cally: the theorem asserts that the corresponding morphism of schemes is surjec-
tive, and that “above” every prime q “downstairs”, there is a prime p “upstairs”,
see Figure 7.1. (For this reason, it is often said that p “lies over” q if p∩B = q.) The
following exercise sets up the proof.

FIGURE 7.1. A picture of the Lying Over Theorem 7.2.5: ifϕ : B→
A is an integral extension, then SpecA→ SpecB is surjective

7.2.E. ⋆ EXERCISE. Show that the special case where A is a field translates to: if
B ⊂ A is a subring with A integral over B, then B is a field. Prove this. (Hint: you
must show that all nonzero elements in B have inverses in B. Here is the start: If
b ∈ B, then 1/b ∈ A, and this satisfies some integral equation over B.)

⋆ Proof of the Lying Over Theorem 7.2.5. We first make a reduction: by localizing at
q (preserving integrality by Exercise 7.2.B(b)), we can assume that (B, q) is a local
ring. Then let p be any maximal ideal of A. Consider the following diagram.

A // // A/p field

B
?�

OO

// // B/(p ∩ B)
?�

OO

The right vertical arrow is an integral extension by Exercise 7.2.B(c). By Exer-
cise 7.2.E, B/(p ∩ B) is a field too, so p ∩ B is a maximal ideal, hence it is q. □

7.2.F. IMPORTANT EXERCISE (THE Going-Up Theorem).
(a) Suppose ϕ : B → A is an integral homomorphism (not necessarily an integral
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extension). Show that if q1 ⊂ q2 ⊂ · · · ⊂ qn is a chain of prime ideals of B, and
p1 ⊂ · · · ⊂ pm is a chain of prime ideals of A such that pi “lies over” qi (and
1 ≤ m < n), then the second chain can be extended to p1 ⊂ · · · ⊂ pn so that this
remains true. (Hint: reduce to the case m = 1, n = 2; reduce to the case where
q1 = (0) and p1 = (0); use the Lying Over Theorem 7.2.5.)
(b) Draw a picture of this theorem (akin to Figure 7.1).

There are analogous “Going-Down” results (requiring quite different hypothe-
ses); see for example Theorem 11.2.12 and Exercise 24.5.E.

7.2.7. Nakayama’s Lemma.
The trick in the proof of Lemma 7.2.1 can be used to quickly prove Nakayama’s

Lemma, which we will use repeatedly in the future. This name is used for several
different but related results, which we discuss here. (A geometric interpretation
will be given in Exercise 13.7.E.) We may as well prove it while the trick is fresh in
our minds.

7.2.8. Nakayama’s Lemma version 1. — Suppose A is a ring, I is an ideal of A, and
M is a finitely generated A-module, such thatM = IM. Then there exists an a ∈ A with
a ≡ 1 (mod I) with aM = 0. (Equivalently, there is some i ∈ I for which multiplication
by i induces the identity onM: im = m for allm ∈M.)

Proof. Say M is generated by m1, . . . , mn. Then as M = IM, we have mi =∑
j aijmj for some aij ∈ I. Thus

(7.2.8.1) (Idn − Z)

 m1
...
mn

 = 0

where Z = (aij). Multiplying both sides of (7.2.8.1) on the left by adj(Idn −Z), we
obtain

det(Idn − Z)

 m1
...
mn

 = 0.

But when you expand out det(Idn − Z), as Z has entries in I, you get something
that is 1 (mod I). □

Here is why you care. Suppose I is contained in all maximal ideals of A. (The
intersection of all the maximal ideals is called the Jacobson radical, but we won’t
use this phrase. For comparison, recall that the nilradical was the intersection of
the prime ideals of A.) Then any a ≡ 1 (mod I) is invertible. (We are not using
Nakayama yet!) Reason: otherwise (a) ̸= A, so the ideal (a) is contained in some
maximal ideal m — but a ≡ 1 (mod m), contradiction. As a is invertible, we have
the following.

7.2.9. Nakayama’s Lemma version 2. — Suppose A is a ring, I is an ideal of A
contained in all maximal ideals, and M is a finitely generated A-module. (The most inter-
esting case is when A is a local ring, and I is the maximal ideal.) SupposeM = IM. Then
M = 0.
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7.2.G. EXERCISE (NAKAYAMA’S LEMMA VERSION 3). Suppose A is a ring, and I
is an ideal of A contained in all maximal ideals. Suppose M is a finitely generated
A-module, and N ⊂ M is a submodule. If N/IN → M/IM is surjective, then
M = N.

7.2.H. IMPORTANT EXERCISE (NAKAYAMA’S LEMMA VERSION 4: GENERATORS OF
M/mM LIFT TO GENERATORS OFM). Suppose (A,m) is a local ring. SupposeM is
a finitely generated A-module, and f1, . . . , fn ∈M, with (the images of) f1, . . . , fn
generating M/mM. Then f1, . . . , fn generate M. (In particular, taking M = m, if
we have generators of m/m2, they also generate m.)

7.2.I. IMPORTANT EXERCISE GENERALIZING LEMMA 7.2.1. Recall that aB-module
N is said to be faithful if the only element of B acting on N by the identity is 1 (or
equivalently, if the only element of B acting as the 0-map on N is 0). Suppose S is
a subring of a ring A, and r ∈ A. Suppose there is a faithful S[r]-module M that is
finitely generated as an S-module. Show that r is integral over S. (Hint: change a
few words in the proof of version 1 of Nakayama, Lemma 7.2.8.)

7.2.J. EXERCISE. Suppose A is an integral domain, and Ã is the integral closure
ofA in K(A), i.e., those elements of K(A) integral overA, which form a subalgebra
by Exercise 7.2.D. Show that Ã is integrally closed in K(Ã) = K(A).

7.3 A gazillion finiteness conditions on morphisms

By the end of this section, you will have seen the following types of mor-
phisms: quasicompact, quasiseparated, affine, finite, integral, closed, (locally) of
finite type, quasifinite — and possibly, (locally) of finite presentation.

7.3.1. Quasicompact and quasiseparated morphisms.
A morphism π : X → Y of schemes is quasicompact if for every open affine

subset U of Y, π−1(U) is quasicompact. (Equivalently, the preimage of any quasi-
compact open subset is quasicompact. This is the right definition in other parts of
geometry.)

We will like this notion because (i) finite sets have advantages over infinite
sets (e.g., a finite set of integers has a maximum; also, things can be proved induc-
tively), and (ii) most reasonable schemes will be quasicompact.

Along with quasicompactness comes the weird notion of quasiseparatedness.
A morphism π : X → Y is quasiseparated if for every affine open subset U of Y,
π−1(U) is a quasiseparated scheme (§5.1.1). This will be a useful hypothesis in
theorems, usually in conjunction with quasicompactness. (For this reason, “quasi-
compact and quasiseparated” are often abbreviated as qcqs, as we do in the name
of the Qcqs Lemma 7.3.5.) Various interesting kinds of morphisms (locally Noe-
therian source, affine, separated, see Exercises 7.3.B(b), 7.3.D, and 10.1.H resp.)
are quasiseparated, and having the word “quasiseparated” will allow us to state
theorems more succinctly.

7.3.A. EASY EXERCISE. Show that the composition of two quasicompact mor-
phisms is quasicompact. (It is also true — but not easy — that the composition of
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two quasiseparated morphisms is quasiseparated. This is not impossible to show
directly, but will in any case follow easily once we understand it in a more sophis-
ticated way, see Proposition 10.1.13(b).)

7.3.B. EASY EXERCISE.
(a) Show that any morphism from a Noetherian scheme is quasicompact.
(b) Show that any morphism from a quasiseparated scheme is quasiseparated.
Thus by Exercise 5.3.A, any morphism from a locally Noetherian scheme is qua-
siseparated. Thus readers working only with locally Noetherian schemes may
take quasiseparatedness as a standing hypothesis.

7.3.2. Caution. The two parts of the Exercise 7.3.B may lead you to suspect that
any morphism π : X → Y with quasicompact source and target is necessarily qua-
sicompact. This is false, and you may verify that the following is a counterexam-
ple. Let Z be the nonquasiseparated scheme constructed in Exercise 5.1.J, and let
X = Speck[x1, x2, . . . ] as in Exercise 5.1.J. The obvious open embedding π : X→ Z

(identifying X with one of the two pieces glued together to get Z) is not quasicom-
pact. (But once you see the Cancellation Theorem 10.1.19, you will quickly see that
any morphism from a quasicompact source to a quasiseparated target is necessarily
quasicompact.)

7.3.C. EXERCISE. (Obvious hint for both parts: the Affine Communication Lemma 5.3.2.)
(a) (quasicompactness is affine-local on the target) Show that a morphism π : X → Y is
quasicompact if there is a cover of Y by affine open sets Ui such that π−1(Ui) is
quasicompact.
(b) (quasiseparatedness is affine-local on the target) Show that a morphism π : X → Y

is quasiseparated if there is a cover of Y by affine open sets Ui such that π−1(Ui)
is quasiseparated.

Following Grothendieck’s philosophy of thinking that the important notions
are properties of morphisms, not of objects (§7.0.1), we can restate the definition
of quasicompact (resp. quasiseparated) scheme as a scheme that is quasicompact
(resp. quasiseparated) over the final object SpecZ in the category of schemes (Ex-
ercise 6.3.I).

7.3.3. Affine morphisms.
A morphism π : X → Y is affine if for every affine open set U of Y, π−1(U)

(interpreted as an open subscheme of X) is an affine scheme. Trivially, the compo-
sition of two affine morphisms is affine.

7.3.D. FAST EXERCISE. Show that affine morphisms are quasicompact and qua-
siseparated. (Hint for the second: Exercise 5.1.G.)

7.3.4. Proposition (the property of “affineness” of a morphism is affine-local on
the target). — A morphism π : X→ Y is affine if there is a cover of Y by affine open sets
U such that π−1(U) is affine.

This proof is the hardest part of this section. For part of the proof (which will
start in §7.3.7), it will be handy to have a lemma.
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7.3.5. Qcqs Lemma. — If X is a quasicompact quasiseparated scheme and s ∈ Γ(X,OX),
then the natural map Γ(X,OX)s → Γ(Xs,OX) is an isomorphism.

Here Xs means the locus on X where s doesn’t vanish. (By Exercise 4.3.G(a),
Xs is open.) We avoid the notation D(s) to avoid any suggestion that X is affine.
(If X is affine, then Xs is D(s), and we already know the theorem is true — do you
see why?)

7.3.E. EXERCISE (REALITY CHECK). What is the natural map Γ(X,OX)s → Γ(Xs,OX)
of the Qcqs Lemma 7.3.5? (Hint: the universal property of localization, Exer-
cise 1.3.D.)

To repeat the earlier reassuring comment on the “quasicompact quasisepa-
rated” hypothesis: this just means that X can be covered by a finite number of
affine open subsets, any two of which have intersection also covered by a finite
number of affine open subsets (Exercise 5.1.H). The hypothesis applies in lots of
interesting situations, such as if X is affine (Exercise 5.1.G) or Noetherian (Exer-
cise 5.3.A). And conversely, whenever you see quasicompact quasiseparated hy-
potheses (e.g., Exercises 13.3.E, 13.3.H), they are most likely there because of this
lemma. To remind ourselves of this fact, we call it the Qcqs Lemma.

7.3.6. Proof of the Qcqs Lemma 7.3.5. Cover X with finitely many affine open sets
Ui = SpecAi. Let Uij = Ui ∩Uj. Then

0→ Γ(X,OX)→∏
i

Ai →∏
{i,j}

Γ(Uij,OX)

is exact. (See the discussion after (4.1.3.1) for the signs arising in the last map.)
By the quasiseparated hypotheses, we can cover each Uij with a finite number of
affine open sets Uijk = SpecAijk, so we have that

0→ Γ(X,OX)→∏
i

Ai → ∏
{i,j},k

Aijk

is exact. Localizing at s (an exact functor, Exercise 1.6.F(a)) gives

0→ Γ(X,OX)s → (∏
i

Ai

)
s

→
∏

{i,j},k

Aijk


s

As localization commutes with finite products (Exercise 1.3.F(a)),

(7.3.6.1) 0→ Γ(X,OX)s →∏
i

(Ai)si → ∏
{i,j},k

(Aijk)sijk

is exact, where the global function s induces functions si ∈ Ai and sijk ∈ Aijk.
But similarly, the scheme Xs can be covered by affine opens Spec(Ai)si , and

Spec(Ai)si∩Spec(Aj)sj are covered by a finite number of affine opens Spec(Aijk)sijk ,
so we have

(7.3.6.2) 0→ Γ(Xs,OX)→∏
i

(Ai)si → ∏
{i,j},k

(Aijk)sijk .

Notice that the maps
∏
i (Ai)si → ∏{i,j},k (Aijk)sijk in (7.3.6.1) and (7.3.6.2) are

the same, and we have described the kernel of the map in two ways, so Γ(X,OX)s →
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Γ(Xs,OX) is indeed an isomorphism. (Notice how the quasicompact and quasisep-
arated hypotheses were used in an easy way: to obtain finite products, which
would commute with localization.) □

7.3.7. Proof of Proposition 7.3.4. As usual, we use the Affine Communication
Lemma 5.3.2. (We apply it to the condition “π is affine over”.) We check our two
criteria. First, suppose π : X → Y is affine over SpecB, i.e., π−1(SpecB) = SpecA.
Then for any s ∈ B, π−1(SpecBs) = SpecAπ♯s.

Second, suppose we are given π : X → SpecB and (s1, . . . , sn) = B with Xπ♯si

affine (SpecAi, say). (As in the statement of the Qcqs Lemma 7.3.5, Xπ♯si is the
subset of X where π♯si doesn’t vanish.) We wish to show that X is affine too. Let
A = Γ(X,OX). Then X → SpecB factors through the tautological map α : X →
SpecA (arising from the (iso)morphism A→ Γ(X,OX), Exercise 6.3.F).

∪iXπ♯si = X
α //

π
((QQ

QQQ
QQQ

QQQ
QQ

SpecA

βwwnnn
nnn

nnn
nn

∪iD(si) = SpecB

Then β−1(D(si)) = D(β♯si) ∼= SpecAβ♯si (the preimage of a distinguished open
set is a distinguished open set), and π−1(D(si)) = SpecAi. Now X is quasicom-
pact and quasiseparated by the affine-locality of these notions (Exercise 7.3.C), so
the hypotheses of the Qcqs Lemma 7.3.5 are satisfied. Hence we have an induced
isomorphism of Aβ♯si = Γ(X,OX)β♯si

∼= Γ(Xβ♯si ,OX) = Ai. Thus α induces
an isomorphism SpecAi → SpecAβ♯si (an isomorphism of rings induces an iso-
morphism of affine schemes, Exercise 4.3.A). Thus α is an isomorphism over each
SpecAβ♯si , which cover SpecA, and thus α is an isomorphism. Hence X ∼= SpecA,
so is affine as desired. □

The affine-locality of affine morphisms (Proposition 7.3.4) has some nonobvi-
ous consequences, as shown in the next exercise.

7.3.F. USEFUL EXERCISE. Suppose Z is a closed subset of an affine scheme SpecA
locally cut out by one equation. (In other words, SpecA can be covered by smaller
open sets, and on each such set Z is cut out by one equation.) Show that the
complement Y of Z is affine. (This is clear if Z is globally cut out by one equation
f, even set-theoretically; then Y = SpecAf. However, Z is not always of this form,
see §19.11.10.)

7.3.8. Finite and integral morphisms.
Before defining finite and integral morphisms, we give an example to keep in

mind. If L/K is a field extension, then SpecL → SpecK (i) is always affine; (ii) is
integral if L/K is algebraic; and (iii) is finite if L/K is finite.

A morphism π : X→ Y is finite if for every affine open set SpecB of Y, π−1(SpecB)
is the spectrum of a B-algebra that is a finitely generated B-module. By definition,
finite morphisms are affine. Warning about terminology (finite vs. finitely gener-
ated): Recall that if we have a ring morphism B → A such that A is a finitely
generated B-module then we say that A is a finite B-algebra. This is stronger than
being a finitely generated B-algebra.
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7.3.G. EXERCISE (THE PROPERTY OF FINITENESS IS AFFINE-LOCAL ON THE TAR-
GET). Show that a morphism π : X → Y is finite if there is a cover of Y by affine
open sets SpecA such that π−1(SpecA) is the spectrum of a finite A-algebra.

The following four examples will give you some feeling for finite morphisms.
In each example, you will notice two things. In each case, the maps are always
finite-to-one (as maps of sets). We will verify this in general in Exercise 7.3.K. You
will also notice that the morphisms are closed as maps of topological spaces, i.e.,
the images of closed sets are closed. We will show that finite morphisms are always
closed in Exercise 7.3.M (and give a second proof in §8.2.5). Intuitively, you should
think of finite as being closed plus finite fibers, although this isn’t quite true. We
will make this precise in Theorem 29.6.2.

Example 1: Branched covers. Consider the morphism Spec k[t] → Spec k[u]
given by u 7→ p(t), where p(t) ∈ k[t] is a degree n polynomial (see Figure 7.2).
This is finite: k[t] is generated as a k[u]-module by 1, t, t2, . . . , tn−1.

FIGURE 7.2. The “branched cover” A1k → A1k of the “u-line” by
the “t-line” given by u 7→ p(t) is finite

Example 2: Closed embeddings (to be defined soon, in §8.1.1). If I is an ideal of
a ring A, consider the morphism SpecA/I → SpecA given by the obvious map
A → A/I (see Figure 7.3 for an example, with A = k[t], I = (t)). This is a finite
morphism (A/I is generated as a A-module by the element 1 ∈ A/I).

0

FIGURE 7.3. The “closed embedding” Spec k → Spec k[t] given
by t 7→ 0 is finite

Example 3: Normalization (to be defined in §9.7). Consider the morphism Spec k[t]→
Spec k[x, y]/(y2 − x2 − x3) corresponding to k[x, y]/(y2 − x2 − x3)→ k[t] given by
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x 7→ t2 − 1, y 7→ t3 − t (check that this is a well-defined ring map!), see Figure 7.4.
This is a finite morphism, as k[t] is generated as a (k[x, y]/(y2 − x2 − x3))-module
by 1 and t. (The figure suggests that this is an isomorphism away from the “node”
of the target. You can verify this, by checking that it induces an isomorphism be-
tween D(t2 − 1) in the source and D(x) in the target. We will meet this example
again!)

FIGURE 7.4. The “normalization” Speck[t] → Speck[x, y]/(y2 −
x2 − x3) given by (x, y) 7→ (t2 − 1, t3 − t) is finite

7.3.H. IMPORTANT EXERCISE (EXAMPLE 4, FINITE MORPHISMS TO Spec k). Show
that if X → Speck is a finite morphism, then X is a finite union of points with
the discrete topology, each point with residue field a finite extension of k, see
Figure 7.5. (An example is Spec(F8×F4[x, y]/(x2, y4)×F4[t]/(t9)×F2)→ SpecF2.)
Do not just quote some fancy theorem! Possible approach: By Exercise 3.2.G, any
integral domain which is a finite k-algebra must be a field. If X = SpecA, show
that every prime p of A is maximal. Show that the irreducible components of
SpecA are closed points. Show SpecA is discrete and hence finite. Show that the
residue fields K(A/p) of A are finite extensions of k. (See Exercise 7.4.D for an
extension to quasifinite morphisms.)

FIGURE 7.5. A picture of a finite morphism to Speck. Bigger
fields are depicted as bigger points.
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7.3.I. EASY EXERCISE (CF. EXERCISE 7.2.C). Show that the composition of two
finite morphisms is also finite.

7.3.J. EXERCISE (“FINITE MORPHISMS TO SpecA ARE PROJECTIVE”). If R is an
A-algebra, define a graded ring S• by S0 = A, and Sn = R for n > 0. (What is the
multiplicative structure? Hint: you know how to multiply elements of R together,
and how to multiply elements of Awith elements of R.) Describe an isomorphism
ProjS• ∼= SpecR. Show that if R is a finite A-algebra (finitely generated as an A-
module) then S• is a finitely generated graded ring over A, and hence that SpecR
is a projective A-scheme (§4.5.9).

7.3.K. IMPORTANT EXERCISE. Show that finite morphisms have finite fibers. (This
is a useful exercise, because you will have to figure out how to get at points in a
fiber of a morphism: given π : X → Y, and q ∈ Y, what are the points of π−1(q)?
This will be easier to do once we discuss fibers in greater detail, see Remark 9.3.4,
but it will be enlightening to do it now.) Hint: if X = SpecA and Y = SpecB
are both affine, and q = [q], then we can throw out everything in B outside q
by modding out by q; show that the preimage is Spec(A/π♯qA). Then you have
reduced to the case where Y is the Spec of an integral domain B, and [q] = [(0)]
is the generic point. We can throw out the rest of the points of B by localizing at
(0). Show that the preimage is Spec of A localized at π♯(B \ {0}). Show that the
condition of finiteness is preserved by the constructions you have done, and thus
reduce the problem to Exercise 7.3.H.

There is more to finiteness than finite fibers, as is shown by the following two
examples.

7.3.9. Example. The open embedding A2k− {(0, 0)}→ A2k has finite fibers, but is not
affine (as A2k − {(0, 0)} isn’t affine, §4.4.1) and hence not finite.

7.3.L. EASY EXERCISE. Show that the open embedding A1C − {0} → A1C has finite
fibers and is affine, but is not finite.

7.3.10. Definition. A morphism π : X → Y of schemes is integral if π is affine,
and for every affine open subset SpecB ⊂ Y, with π−1(SpecB) = SpecA, the in-
duced map B → A is an integral ring morphism. This is an affine-local condition
by Exercises 7.2.A and 7.2.B, and the Affine Communication Lemma 5.3.2. It is
closed under composition by Exercise 7.2.C. Integral morphisms are mostly useful
because finite morphisms are integral by Corollary 7.2.2. Note that the converse
implication doesn’t hold (witness SpecQ → SpecQ, as discussed after the state-
ment of Corollary 7.2.2).

7.3.M. EXERCISE. Prove that integral morphisms are closed, i.e., that the image
of closed subsets are closed. (Hence finite morphisms are closed. A second proof
will be given in §8.2.5.) Hint: Reduce to the affine case. If π♯ : B→ A is a ring map,
inducing the integral morphism π : SpecA→ SpecB, then suppose I ⊂ A cuts out
a closed set of SpecA, and J = (π♯)−1(I), then note that B/J ⊂ A/I, and apply the
Lying Over Theorem 7.2.5 here.

7.3.N. UNIMPORTANT EXERCISE. Suppose B → A is integral. Show that for any
ring homomorphism B→ C, the induced map C→ A⊗B C is integral. (Hint: We
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wish to show that any
∑n
i=1 ai ⊗ ci ∈ A⊗B C is integral over C. Use the fact that

each of the finitely many ai are integral over B, and then Exercise 7.2.D.) Once we
know what “base change” is, this will imply that the property of integrality of a
morphism is preserved by base change, Exercise 9.4.B(e).

7.3.11. Fibers of integral morphisms. Unlike finite morphisms (Exercise 7.3.K), in-
tegral morphisms don’t always have finite fibers. (Can you think of an example?)
However, once we make sense of fibers as topological spaces (or even schemes)
in §9.3.2, you can check (Exercise 11.1.D) that the fibers have the property that no
point is in the closure of any other point.

7.3.12. Morphisms (locally) of finite type.
A morphism π : X → Y is locally of finite type if for every affine open set

SpecB of Y, and every affine open subset SpecA of π−1(SpecB), the induced
morphism B → A expresses A as a finitely generated B-algebra. By the affine-
locality of finite-typeness of B-schemes (Proposition 5.3.3(b)), this is equivalent to:
π−1(SpecB) can be covered by affine open subsets SpecAi so that each Ai is a
finitely generated B-algebra.

A morphism π is of finite type if it is locally of finite type and quasicompact.
Translation: for every affine open set SpecB of Y, π−1(SpecB) can be covered with
a finite number of open sets SpecAi so that the induced morphismB→ Ai expresses
Ai as a finitely generated B-algebra.

7.3.13. Linguistic side remark. It is a common practice to name properties as follows:
P equals locally P plus quasicompact. Two exceptions are “ringed space” (§6.3)
and “finite presentation” (§7.3.17).

7.3.O. EXERCISE (THE NOTIONS “LOCALLY FINITE TYPE” AND “FINITE TYPE” ARE
AFFINE-LOCAL ON THE TARGET). Show that a morphism π : X → Y is locally of
finite type if there is a cover of Y by affine open sets SpecBi such that π−1(SpecBi)
is locally finite type over Bi.

Example: the “structure morphism” PnA → SpecA is of finite type, as PnA is
covered by n+ 1 open sets of the form SpecA[x1, . . . , xn].

Our earlier definition of schemes of “finite type over k” (or “finite type k-
schemes”) from §5.3.6 is now a special case of this more general notion: the phrase
“a scheme X is of finite type over k” means that we are given a morphism X →
Spec k (the “structure morphism”) that is of finite type.

Here are some properties enjoyed by morphisms of finite type.

7.3.P. EXERCISE (FINITE = INTEGRAL + FINITE TYPE).
(a) (easier) Show that finite morphisms are of finite type.
(b) Show that a morphism is finite if and only if it is integral and of finite type.

7.3.Q. EXERCISES (NOT HARD, BUT IMPORTANT).
(a) Show that every open embedding is locally of finite type, and hence that every
quasicompact open embedding is of finite type. Show that every open embedding
into a locally Noetherian scheme is of finite type.
(b) Show that the composition of two morphisms locally of finite type is locally of
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finite type. (Hence as the composition of two quasicompact morphisms is quasi-
compact, Easy Exercise 7.3.A, the composition of two morphisms of finite type is
of finite type.)
(c) Suppose π : X → Y is locally of finite type, and Y is locally Noetherian. Show
that X is also locally Noetherian. If π : X→ Y is a morphism of finite type, and Y is
Noetherian, show that X is Noetherian.

7.3.14. Definition. A morphism π is quasifinite if it is of finite type, and for
all q ∈ Y, π−1(q) is a finite set. The main point of this definition is the “finite
fiber” part; the “finite type” hypothesis will ensure that this notion is “preserved
by fibered product,” Exercise 9.4.C.

Combining Exercise 7.3.K with Exercise 7.3.P(a), we see that finite morphisms
are quasifinite. There are quasifinite morphisms which are not finite, such as
A2k − {(0, 0)} → A2k (Example 7.3.9). However, we will soon see that quasifinite
morphisms to Spec k are finite (Exercise 7.4.D). A key example of a morphism
with finite fibers that is not quasifinite is SpecC(t)→ SpecC. Another is SpecQ→
SpecQ. (For interesting behavior caused by the fact that SpecQ→ SpecQ is not of
finite type, see Warning 9.1.4.)

7.3.15. How to picture quasifinite morphisms. If π : X → Y is a finite morphism of
locally Noetherian schemes, then for any quasicompact open subset U ⊂ X, the
induced morphism π|U : U → Y is quasifinite. In fact every reasonable quasifinite
morphism arises in this way. (This simple-sounding statement is in fact a deep and
important result — a form of Zariski’s Main Theorem, see Exercise 29.6.E.) Thus
the right way to visualize quasifiniteness is as a finite map with some (closed locus
of) points removed.

7.3.16. Frobenius.

7.3.R. EXERCISE. Suppose p is prime and r ∈ Z+. Let q = pr, and k = Fq. Define
ϕ : k[x1, . . . , xn] → k[x1, . . . , xn] by ϕ(xi) = x

p
i for each i, and let F : Ank → Ank be

the map of schemes corresponding to ϕ.
(a) Show that Fr is the identity on the level of sets, but is not the identity morphism.
(b) Show that F is a bijection, but is not an isomorphism of schemes.
(c) If K = Fp, show that the morphism F : AnK → AnK of K-schemes corresponding
to xi 7→ x

p
i is a bijection, but no power of F is the identity on the level of sets.

7.3.S. EXERCISE. Suppose X is a scheme over Fp. Explain how to define (without
choice) an endomorphism F : X→ X such that for each affine open subset SpecA ⊂
X, F corresponds to the map A→ A given by f 7→ fp for all f ∈ A. (The morphism
F is called the absolute Frobenius morphism.)

7.3.17. ⋆ Morphisms (locally) of finite presentation.
There is a variant often useful to non-Noetherian people. A ringA is a finitely

presented B-algebra (or B→ A is finitely presented) if

A ∼= B[x1, . . . , xn]/(r1(x1, . . . , xn), . . . , rj(x1, . . . , xn))

(“A has a finite number of generators and a finite number of relations over B”).
If B is Noetherian, then finitely presented is the same as finite type, as the “finite
number of relations” comes for free, so most of you will not care. A morphism
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π : X → Y is locally of finite presentation (or locally finitely presented) if for
each affine open set SpecB of Y, π−1(SpecB) = ∪i SpecAi with B → Ai finitely
presented. A morphism is of finite presentation (or finitely presented) if it is
locally of finite presentation and quasicompact and quasiseparated. If Y is locally
Noetherian, then locally of finite presentation is the same as locally of finite type,
and finite presentation is the same as finite type. So if you are a Noetherian person,
you don’t need to worry about this notion.

This definition is a violation of the general principle that erasing “locally” is
the same as adding “quasicompact and” (Remark 7.3.13). But it is well motivated:
finite presentation means “finite in all possible ways” (the algebra corresponding
to each affine open set has a finite number of generators, and a finite number of
relations, and a finite number of such affine open sets cover, and their intersections
are also covered by a finite number affine open sets) — it is all you would hope
for in a scheme without it actually being Noetherian. Exercise 9.3.H makes this
precise, and explains how this notion often arises in practice.

7.3.T. EXERCISE. Show that the notion of “locally of finite presentation” is affine-
local on the target.

7.3.U. ⋆⋆ HARD EXERCISE (BUT REASSURING TO KNOW). Show that if π : X→ Y is
locally of finite presentation, then for any affine open subscheme SpecB of Y and
any affine open subscheme SpecA of X with π(SpecA) ⊂ SpecB, A is a finitely
presented B-algebra. In particular, the notion of “locally of finite presentation” is
affine-local on the source.

7.3.V. EXERCISE. Show that open embeddings are locally finitely presented.

7.3.W. EXERCISE. Show that the composition of two locally finitely presented
morphisms is locally finitely presented. (Then once we show that the composi-
tion of two quasiseparated morphisms is quasiseparated in Proposition 10.1.13(b),
we will know that the composition of two finitely presented morphisms is finitely
presented — recall that the composition of two quasicompact morphisms is quasi-
compact, by Easy Exercise 7.3.A.)

7.3.18. ⋆⋆ Remark. A morphism π : X → Y is locally of finite presentation if and
only if for every projective system of Y-schemes {Sλ}λ∈I with each Sλ an affine
scheme, the natural map

lim−→
λ

HomY(Sλ, X)→ HomY(lim←−
λ

Sλ, X)

is a bijection (see [Gr-EGA, IV3.8.14.2]). This characterization of locally finitely
presented morphisms as “limit-preserving” can be useful.

7.4 Images of morphisms: Chevalley’s Theorem and elimination
theory

In this section, we will answer a question that you may have wondered about
long before hearing the phrase “algebraic geometry”. If you have a number of
polynomial equations in a number of variables with indeterminate coefficients,
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you would reasonably ask what conditions there are on the coefficients for a (com-
mon) solution to exist. Given the algebraic nature of the problem, you might hope
that the answer should be purely algebraic in nature — it shouldn’t be “random”,
or involve bizarre functions like exponentials or cosines. You should expect the an-
swer to be given by “algebraic conditions”. This is indeed the case, and it can be
profitably interpreted as a question about images of maps of varieties or schemes,
in which guise it is answered by Chevalley’s Theorem 7.4.2 (see 7.4.5 for a more
precise proof). Chevalley’s Theorem will give an immediate proof of the Nullstel-
lensatz 3.2.5 (§7.4.3).

In special cases, the image is nicer still. For example, we have seen that fi-
nite morphisms are closed (the image of closed subsets under finite morphisms
are closed, Exercise 7.3.M). We will prove a classical result, the Fundamental The-
orem of Elimination Theory 7.4.7, which essentially generalizes this (as explained
in §8.2.5) to maps from projective space. We will use it repeatedly. In a different di-
rection, in the distant future we will see that in certain good circumstances (“flat”
plus a bit more, see Exercise 24.5.G), morphisms are open (the image of open sub-
sets is open); one example (which you can try to show directly) is AnB → SpecB.

7.4.1. Chevalley’s Theorem.
If π : X → Y is a morphism of schemes, the notion of the image of π as sets is

clear: we just take the points in Y that are the image of points in X. We know that
the image can be open (open embeddings), and we have seen examples where it is
closed, and more generally, locally closed. But it can be weirder still: consider the
morphism A2k → A2k given by (x, y) 7→ (x, xy). The image is the plane, with the
y-axis removed, but the origin put back in (see Figure 7.6). This isn’t so horrible.
We make a definition to capture this phenomenon. A constructible subset of a
Noetherian topological space is a subset which belongs to the smallest family of
subsets such that (i) every open set is in the family, (ii) a finite intersection of family
members is in the family, and (iii) the complement of a family member is also in
the family. For example the image of (x, y) 7→ (x, xy) is constructible.

FIGURE 7.6. The image of (x, y) 7→ (x, xy) = (u, v).

7.4.A. EXERCISE: CONSTRUCTIBLE SUBSETS ARE FINITE DISJOINT UNIONS OF LO-
CALLY CLOSED SUBSETS. Recall that a subset of a topological space X is locally
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closed if it is the intersection of an open subset and a closed subset. (Equivalently,
it is an open subset of a closed subset, or a closed subset of an open subset. We
will later have trouble extending this to open and closed and locally closed sub-
schemes, see Exercise 8.1.M.) Show that a subset of a Noetherian topological space
X is constructible if and only if it is the finite disjoint union of locally closed subsets.
As a consequence, if X→ Y is a continuous map of Noetherian topological spaces,
then the preimage of a constructible set is a constructible set. (Important remark:
the only reason for the hypothesis of the topological space in question being Noe-
therian is because this is the only setting in which we have defined constructible
sets. An extension of the notion of constructibility to more general topological
spaces is mentioned in Exercise 9.3.I.)

7.4.B. EXERCISE (USED IN PROOF 7.4.3 OF THE NULLSTELLENSATZ 3.2.5). Show
that the generic point of A1k does not form a constructible subset of A1k (where k is
a field).

7.4.C. EXERCISE (USED IN EXERCISE 24.5.G).
(a) Show that a constructible subset of a Noetherian scheme is closed if and only if
it is “stable under specialization”. More precisely, if Z is a constructible subset of a
Noetherian scheme X, then Z is closed if and only if for every pair of points y1 and
y2 with y1 ∈ y2, if y2 ∈ Z, then y1 ∈ Z. Hint for the “if” implication: show that Z
can be written as

⨿n
i=1Ui ∩ Zi where Ui ⊂ X is open and Zi ⊂ X is closed. Show

that Z can be written as
⨿n
i=1Ui ∩ Zi (with possibly different n, Ui, Zi) where

each Zi is irreducible and meets Ui. Now use “stability under specialization” and
the generic point of Zi to show that Zi ⊂ Z for all i, so Z = ∪Zi.
(b) Show that a constructible subset of a Noetherian scheme is open if and only if
it is “stable under generization”. (Hint: this follows in one line from (a).)

The image of a morphism of schemes can be stranger than a constructible set.
Indeed if S is any subset of a scheme Y, it can be the image of a morphism: let X
be the disjoint union of spectra of the residue fields of all the points of S, and let
π : X → Y be the natural map. This is quite pathological, but in any reasonable
situation, the image is essentially no worse than arose in the previous example of
(x, y) 7→ (x, xy). This is made precise by Chevalley’s Theorem.

7.4.2. Chevalley’s Theorem. — If π : X → Y is a finite type morphism of Noetherian
schemes, the image of any constructible set is constructible. In particular, the image of π
is constructible.

(For the minority who might care: see §9.3.7 for an extension to locally finitely
presented morphisms.) We discuss the proof after giving some important con-
sequences that may seem surprising, in that they are algebraic corollaries of a
seemingly quite geometric and topological theorem. The first is a proof of the
Nullstellensatz.

7.4.3. Proof of the Nullstellensatz 3.2.5. We wish to show that if K is a field extension
of k that is finitely generated as a k-algebra, say by x1, . . . , xn, then it is a finite
extension of fields. It suffices to show that each xi is algebraic over k. But if xi is not
algebraic over k, then we have an inclusion of rings k[xi] → K, corresponding to
a dominant morphism π : SpecK→ A1k of finite type k-schemes. Of course SpecK
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is a single point, so the image of π is one point. By Chevalley’s Theorem 7.4.2 and
Exercise 7.4.B, the image of π is not the generic point of A1k, so im(π) is a closed
point of A1k, and thus π is not dominant. □

A similar idea can be used in the following exercise.

7.4.D. EXERCISE (QUASIFINITE MORPHISMS TO A FIELD ARE FINITE). Suppose
π : X → Speck is a quasifinite morphism. Show that π is finite. (Hint: deal first
with the affine case, X = SpecA, where A is finitely generated over k. Suppose
A contains an element x that is not algebraic over k, i.e., we have an inclusion
k[x] ↪→ A. Exercise 7.3.H may help.)

7.4.E. EXERCISE (“FOR MAPS OF VARIETIES, SURJECTIVITY CAN BE CHECKED ON
CLOSED POINTS”). Assume Chevalley’s Theorem 7.4.2. Show that a morphism
of affine k-varieties π : X → Y is surjective if and only if it is surjective on closed
points (i.e., if every closed point of Y is the image of a closed point of X). (Once we
define varieties in general, in Definition 10.1.7, you will see that your argument
works without change with the adjective “affine” removed.)

In order to prove Chevalley’s Theorem 7.4.2 (in Exercise 7.4.O), we introduce
a useful idea of Grothendieck’s. For the purposes of this discussion only, we say a
B-algebra A satisfies (†) if for each finitely generated A-module M, there exists a nonzero
f ∈ B such thatMf is a free Bf-module.

7.4.4. Grothendieck’s Generic Freeness Lemma. — Suppose B is a Noetherian
integral domain. Then every finitely generated B-algebra satisfies (†).

Proof. We prove the Generic Freeness Lemma 7.4.4 in a series of exercises. We
assume that B is a Noetherian integral domain until Lemma 7.4.4 is proved, at the
end of Exercise 7.4.K.

7.4.F. EXERCISE. Show that B itself satisfies (†).

7.4.G. EXERCISE. Reduce the proof of Lemma 7.4.4 to the following statement: if
A is a finitely-generated B-algebra satisfying (†), then A[T ] does too. (Hint: induct
on the number of generators of A as a B-algebra.)

We now prove this statement. Suppose A satisfies (†), and let M be a finitely
generated A[T ]-module, generated by the finite set S. Let M0 = 0, and let M1 be
the sub-A-module ofM generated by S. For n > 0, inductively define

Mn+1 =Mn + TMn,

a sub-A-module ofM. Note thatM is the increasing union of the A-modulesMn.

7.4.H. EXERCISE. Show that multiplication by T induces a surjection

ψn : Mn/Mn−1 →Mn+1/Mn.

7.4.I. EXERCISE. Show that for n ≫ 0, ψn is an isomorphism. Hint: use the
ascending chain condition onM1.
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7.4.J. EXERCISE. Show that there is a nonzero f ∈ B such that (Mi+1/Mi)f is free
as a Bf-module, for all i. Hint: as i varies, Mi+1/Mi passes through only finitely
many isomorphism classes.

The following result concludes the proof of the Generic Freeness Lemma 7.4.4.

7.4.K. EXERCISE (NOT REQUIRING NOETHERIAN HYPOTHESES). Suppose M is
a B-module that is an increasing union of submodules Mi, with M0 = 0, and
that every Mi+1/Mi is free. Show that M is free. Hint: first construct compatible
isomorphisms ϕn : ⊕n−1i=0 Mi+1/Mi → Mn by induction on n. Then show that
the colimit ϕ := lim−→ϕn : ⊕∞i=0Mi+1/Mi → M is an isomorphism. Side Remark:
More generally, your argument will show that if the Mi+1/Mi are all projective
modules (to be defined in §23.2.1), then M is (non-naturally) isomorphic to their
direct sum.

□
We now set up the proof of Chevalley’s Theorem 7.4.2.

7.4.L. EXERCISE. Suppose π : X → Y is a finite type morphism of Noetherian
schemes, and Y is irreducible. Show that there is a dense open subset U of Y
such that the image of π either contains U or else does not meet U. (Hint: sup-
pose π : SpecA → SpecB is such a morphism. Then by the Generic Freeness
Lemma 7.4.4, there is a nonzero f ∈ B such that Af is a free Bf-module. It must
have zero rank or positive rank. In the first case, show that the image of π does not
meetD(f) ⊂ SpecB. In the second case, show that the image of π containsD(f).)

There are more direct ways of showing the content of the above hint. For
example, another proof in the case of varieties will turn up in the proof of Theo-
rem 11.4.1. We only use the Generic Freeness Lemma because we will use it again
in the future (§24.5.9).

7.4.M. EXERCISE. Show that to prove Chevalley’s Theorem, it suffices to prove
that if π : X → Y is a finite type morphism of Noetherian schemes, the image of π
is constructible.

7.4.N. EXERCISE. Reduce further to the case where Y is affine, say Y = SpecB.
Reduce further to the case where X is affine.

We now give the rest of the proof by waving our hands, and leave it to you
to make it precise. The idea is to use Noetherian induction, and to reduce the
problem to Exercise 7.4.L.

We can deal with each of the components of Y separately, so we may assume
that Y is irreducible. We can then take B to be an integral domain. By Exercise 7.4.L,
there is a dense open subset U of Y where either the image of π includes it, or is
disjoint from it. If U = Y, we are done. Otherwise, it suffices to deal with the
complement of U. Renaming this complement Y, we return to the start of the
paragraph.

7.4.O. EXERCISE. Complete the proof of Chevalley’s Theorem 7.4.2, by making
the above argument precise.
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7.4.5. ⋆ Elimination of quantifiers. A basic sort of question that arises in any
number of contexts is when a system of equations has a solution. Suppose for
example you have some polynomials in variables x1, . . . , xn over an algebraically
closed field k, some of which you set to be zero, and some of which you set to
be nonzero. (This question is of fundamental interest even before you know any
scheme theory!) Then there is an algebraic condition on the coefficients which will
tell you if there is a solution. Define the Zariski topology on k

n
in the obvious way:

closed subsets are cut out by equations. (A mild generalization of this appears in
Exercise 11.2.I.)

7.4.P. EXERCISE (ELIMINATION OF QUANTIFIERS, OVER AN ALGEBRAICALLY CLOSED
FIELD). Fix an algebraically closed field k. Suppose

f1, . . . , fp, g1, . . . , gq ∈ k[W1, . . . ,Wm, X1, . . . Xn]

are given. Show that there is a (Zariski-)constructible subset Y of k
m

such that

(7.4.5.1) f1(w1, . . . , wm, X1, . . . , Xn) = · · · = fp(w1, . . . , wm, X1, . . . , Xn) = 0

and

(7.4.5.2) g1(w1, . . . , wm, X1, . . . , Xn) ̸= 0 · · · gq(w1, . . . , wm, X1, . . . , Xn) ̸= 0

has a solution (X1, . . . , Xn) = (x1, . . . , xn) ∈ k
n

if and only if (w1, . . . , wm) ∈ Y.
Hints: if Z is a finite type scheme over k, and the closed points are denoted Zcl (“cl”
is for either “closed” or “classical”), then under the inclusion of topological spaces
Zcl ↪→ Z, the Zariski topology on Z induces the Zariski topology on Zcl. Note that
we can identify (Ap

k
)cl with k

p
by the Nullstellensatz (Exercise 5.3.F). If X is the

locally closed subset of Am+n cut out by the equalities and inequalities (7.4.5.1)
and (7.4.5.2), we have the diagram

Xcl

πcl

��

� � // X

π

��

� � loc. cl. // Am+n

{{ww
ww
ww
ww
w

k
m � � // Am

where Y = imπcl. By Chevalley’s Theorem 7.4.2, imπ is constructible, and hence
so is (imπ) ∩ km. It remains to show that (imπ) ∩ km = Y (= imπcl). You might
use the Nullstellensatz.

This is called “elimination of quantifiers” because it gets rid of the quantifier
“there exists a solution”. The analogous statement for real numbers, where inequal-
ities are also allowed, is a special case of Tarski’s celebrated theorem of elimination
of quantifiers for real closed fields (see, for example, [Ta]).

7.4.6. The Fundamental Theorem of Elimination Theory.
In the case of projective space (and later, projective morphisms), one can do

better than Chevalley (at least in describing images of closed subsets).

7.4.7. Theorem (Fundamental Theorem of Elimination Theory). — The morphism
π : PnA → SpecA is closed (sends closed sets to closed sets).

Note that no Noetherian hypotheses are needed.
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A great deal of classical algebra and geometry is contained in this theorem as
special cases. Here are some examples.

First, let A = k[a, b, c, . . . , i], and consider the closed subset of P2A (taken with
coordinates x, y, z) corresponding to ax+by+ cz = 0, dx+ ey+ fz = 0, gx+hy+
iz = 0. Then we are looking for the locus in SpecA where these equations have a
nontrivial solution. This indeed corresponds to a Zariski-closed set — where

det

a b c

d e f

g h i

 = 0.

Thus the idea of the determinant is embedded in elimination theory.
As a second example, let A = k[a0, a1, . . . , am, b0, b1, . . . , bn]. Now consider

the closed subset of P1A (taken with coordinates x and y) corresponding to a0xm+
a1x

m−1y+ · · ·+amym = 0 and b0xn+b1x
n−1y+ · · ·+bnyn = 0. Then there is a

polynomial in the coefficients a0, . . . , bn (an element of A) which vanishes if and
only if these two polynomials have a common nonzero root — this polynomial is
called the resultant.

More generally, given a number of homogeneous equations in n+ 1 variables
with indeterminate coefficients, Theorem 7.4.7 implies that one can write down
equations in the coefficients that precisely determine when the equations have a
nontrivial solution.

7.4.8. Proof of the Fundamental Theorem of Elimination Theory 7.4.7. Suppose Z ↪→ PnA
is a closed subset. We wish to show that π(Z) is closed.

By the definition of the Zariski topology on ProjA[x0, . . . , xn] (§4.5.7), Z is cut
out (set-theoretically) by some homogeneous elements f1, f2, · · · ∈ A[x0, . . . , xn].
We wish to show that the points p ∈ SpecA that are in π(Z) form a closed subset.
Equivalently, we want to show that those p for which f1, f2, . . . have a common
zero in Projκ(p)[x0, . . . , xn] form a closed subset of SpecA.

To motivate our argument, we consider a related question. Suppose that S• :=
k[x0, . . . , xn], and that g1, g2, · · · ∈ k[x0, . . . , xn] are homogeneous polynomials.
How can we tell if g1, g2, . . . have a common zero in ProjS• = Pnk ?

They would have a common zero if and only if in

An+1k = Spec S•,

they cut out (set-theoretically) more than the origin, i.e., if set-theoretically

V(g1, g2, . . . ) ̸⊂ V(x0, . . . , xn).
By the inclusion-reversing bijection between closed subsets and radical ideals (The-
orem 3.7.1), this is true if and only if√

(g1, g2, . . . ) ̸⊃
√

(x0, . . . , xn).

But (x0, . . . , xn) is radical, so this is true if and only if√
(g1, g2, . . . ) ̸⊃ (x0, . . . , xn).

This is true if and only if not all of the generators x0, . . . , xn of the ideal (x0, . . . , xn)
are in

√
(g1, g2, . . . ), which is true if only if there is some i such that no power of

xi is in (g1, g2, . . . ). This is true if and only if

(x0, . . . , xn)
N ̸⊂ (g1, g2, . . . ) for all N.
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(Do you see why this implication goes both ways?) This is equivalent to

SN ̸⊂ (g1, g2, . . . ) for all N,

which may be rewritten as

(7.4.8.1) SN ̸⊂ g1SN−degg1
⊕ g2SN−degg2

⊕ · · ·
for all N. In other words, this is equivalent to the statement that the k-linear map

SN−degg1
⊕ SN−degg2

⊕ · · ·→ SN

is not surjective. This map is given by a matrix with dimSN rows. (It may have an
infinite number of columns, but this will not bother us.) To check that this linear
map is not surjective, we need only check that all the “maximal” (dimSN×dimSN)
determinants are zero. (Of course, we need to check this for all N.) Thus the
condition that g1, g2, . . . have no common zeros in Pnk is the same as checking
some (admittedly infinite) number of equations. In other words, it is a Zariski-
closed condition on the coefficients of the polynomials g1, g2, . . . .

7.4.Q. EXERCISE. Complete the proof of the Fundamental Theorem of Elimination
Theory 7.4.7. (Hint: follow precisely the same argument, with k replaced byA, and
the gi replaced by the fi. How and why does this prove the theorem?) □

Notice that projectivity was crucial to the proof: we used graded rings in an
essential way. Notice also that the proof is essentially just linear algebra.





CHAPTER 8

Closed embeddings and related notions

8.1 Closed embeddings and closed subschemes

The scheme-theoretic analog of closed subsets has a surprisingly different fla-
vor from the analog of open sets (open embeddings). However, just as open em-
beddings (the scheme-theoretic version of open set) are locally modeled on open
sets U ⊂ Y, the analog of closed subsets also has a local model. This was foreshad-
owed by our understanding of closed subsets of SpecB as roughly corresponding
to ideals. If I ⊂ B is an ideal, then SpecB/I ↪→ SpecB is a morphism of schemes,
and we have checked that on the level of topological spaces, this describes SpecB/I
as a closed subset of SpecB, with the subspace topology (Exercise 3.4.I). This mor-
phism is our “local model” of a closed embedding.

8.1.1. Definition. A morphism π : X → Y is a closed embedding (or closed im-
mersion) if it is an affine morphism, and for every affine open subset SpecB ⊂ Y,
with π−1(SpecB) ∼= SpecA, the map B→ A is surjective (i.e., of the form B→ B/I,
our desired local model). (“Embedding” is preferable to “immersion”, because the
differential geometric notion of immersion is closer to what algebraic geometers
call unramified, which we will define in §21.6.) The symbol ↪→ often is used to in-
dicate that a morphism is a closed embedding (or more generally, a locally closed
embedding, §8.1.2).

If X is a subset of Y (and π on the level of sets is the inclusion), we say that
X is a closed subscheme of Y. The difference between a closed embedding and a
closed subscheme is confusing and unimportant; the same issue for open embed-
dings/subschemes was discussed in §7.1.1. In case it helps: a closed embedding is
the same thing as an isomorphism with a closed subscheme.

8.1.A. EXERCISE. Show that a closed embedding identifies the topological space
of X with a closed subset of the topological space of Y. (Caution: The closed em-
beddings Speck[x]/(x) ↪→ Speck[x] and Speck[x]/(x2) ↪→ Speck[x] show that the
closed subset does not determine the closed subscheme. The “infinitesimal” infor-
mation, or “fuzz”, is lost.)

8.1.B. EASY EXERCISE. Show that closed embeddings are finite morphisms, hence
of finite type.

8.1.C. EASY EXERCISE. Show that the composition of two closed embeddings is a
closed embedding.

225
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8.1.D. EXERCISE. Show that the property of being a closed embedding is affine-
local on the target.

8.1.E. EXERCISE. Suppose B → A is a surjection of rings. Show that the induced
morphism SpecA → SpecB is a closed embedding. (Our definition would be a
terrible one if this were not true!)

A closed embedding π : X ↪→ Y determines an ideal sheaf on Y, as the kernel
IX/Y of the map of OY-modules

OY → π∗OX.

An ideal sheaf on Y is what it sounds like: it is a sheaf of ideals. It is a sub-
OY-module I of OY . On each open subset, it gives an ideal I (U) of the ring
OY(U). We thus have an exact sequence (of OY-modules) 0 → IX/Y → OY →
π∗OX → 0. (On SpecB, the epimorphism OY → π∗OX is the surjection B → A of
Definition 8.1.1.)

Thus for each affine open subset SpecB ↪→ Y, we have an ideal I(B) ⊂ B, and
we can recover X from this information: the I(B) (as SpecB ↪→ Y varies over the
affine open subsets) defines an O-module on the base, hence an OY-module on
Y, and the cokernel of I ↪→ OY is π∗OX. It will be useful to understand when
the information of the I(B) (for all affine opens SpecB ↪→ Y) actually determines
a closed subscheme. Our life is complicated by the fact that the answer is “not
always”, as shown by the following example.

8.1.F. UNIMPORTANT EXERCISE. Let X = Speck[x](x), the germ of the affine line at
the origin, which has two points, the closed point and the generic point η. Define
I (X) = {0} ⊂ OX(X) = k[x](x), and I (η) = k(x) = OX(η). Show that this sheaf
of ideals does not correspond to a closed subscheme. (Possible approach: do the
next exercise first.)

The next exercise gives a necessary condition.

8.1.G. EXERCISE. Suppose IX/Y is a sheaf of ideals corresponding to a closed
embedding X ↪→ Y. Suppose SpecB ↪→ Y is an affine open subscheme, and f ∈ B.
Show that the natural map I(B)f → I(Bf) is an isomorphism. (First state what the
“natural map” is!)

It is an important and useful fact that this is also sufficient:

8.1.H. ESSENTIAL (HARD) EXERCISE: A USEFUL CRITERION FOR WHEN IDEALS IN
AFFINE OPEN SETS DEFINE A CLOSED SUBSCHEME. Suppose Y is a scheme, and for
each affine open subset SpecB of Y, I(B) ⊂ B is an ideal. Suppose further that for
each affine open subset SpecB ↪→ Y and each f ∈ B, restriction of functions from
B → Bf induces an isomorphism I(Bf) ∼= I(B)f. Show that these data arise from a
(unique) closed subscheme X ↪→ Y by the above construction. In other words, the
closed embeddings SpecB/I ↪→ SpecB glue together in a well-defined manner to
obtain a closed embedding X ↪→ Y.

This is a hard exercise, so as a hint, here are three different ways of proceed-
ing; some combination of them may work for you. Approach 1. For each affine
open SpecB, we have a closed subscheme SpecB/I ↪→ SpecB. (i) For any two
affine open subschemes SpecA and SpecB, show that the two closed subschemes
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SpecA/I(A) ↪→ SpecA and SpecB/I(B) ↪→ SpecB restrict to the same closed sub-
scheme of their intersection. (Hint: cover their intersection with open sets simulta-
neously distinguished in both affine open sets, Proposition 5.3.1.) Thus for exam-
ple we can glue these two closed subschemes together to get a closed subscheme
of SpecA ∪ SpecB. (ii) Use Exercise 4.4.A on gluing schemes (or the ideas therein)
to glue together the closed embeddings in all affine open subschemes simultane-
ously. You will only need to worry about triple intersections. Approach 2. (i) Use
the data of the ideals I(B) to define a sheaf of ideals I ↪→ O . (ii) For each affine
open subscheme SpecB, show that I (SpecB) is indeed I(B), and (O/I )(SpecB)
is indeed B/I(B), so the data of I recovers the closed subscheme on each SpecB
as desired. Approach 3. (i) Describe X first as a subset of Y. (ii) Check that X is
closed. (iii) Define the sheaf of functions OX on this subset, perhaps using compat-
ible germs. (iv) Check that this resulting ringed space is indeed locally the closed
subscheme given by SpecB/I ↪→ SpecB.

We will see (in §13.5.4) that closed subschemes correspond to quasicoherent
sheaves of ideals; the mathematical content of this statement will turn out to be
precisely Exercise 8.1.H.

8.1.I. IMPORTANT EXERCISE/DEFINITION: THE VANISHING SCHEME.
(a) Suppose Y is a scheme, and s ∈ Γ(Y,OY). Define the closed subscheme cut out
by s. We call this the vanishing scheme V(s) of s, as it is the scheme-theoretic
version of our earlier (set-theoretical) version of V(s) (§3.4). (Hint: on affine open
SpecB, we just take SpecB/(sB), where sB is the restriction of s to SpecB. Use
Exercise 8.1.H to show that this yields a well-defined closed subscheme.)
(b) If u is an invertible function, show that V(s) = V(su).
(c) If S is a set of functions, define V(S).

8.1.J. IMPORTANT EXERCISE.
(a) In analogy with closed subsets, define the notion of a finite union of closed
subschemes of X, and an arbitrary (not necessarily finite) intersection of closed
subschemes of X. (Exercise 8.1.H may help.) Hint: If X is affine, then you might
expect that the union of closed subschemes corresponding to I1 and I2 would be
the closed subscheme corresponding to either I1∩ I2 or I1I2 — but which one? We
would want the union of a closed subscheme with itself to be itself, so the right
choice is I1 ∩ I2.
(b) Describe the scheme-theoretic intersection of V(y − x2) and V(y) in A2. See
Figure 4.5 for a picture. (For example, explain informally how this corresponds
to two curves meeting at a single point with multiplicity 2 — notice how the 2 is
visible in your answer. Alternatively, what is the nonreducedness telling you —
both its “size” and its “direction”?) Describe their scheme-theoretic union.
(c) Show that the underlying set of a finite union of closed subschemes is the finite
union of the underlying sets, and similarly for arbitrary intersections.
(d) Describe the scheme-theoretic intersection of V(y2 − x2) and V(y) in A2. Draw
a picture. (Did you expect the intersection to have multiplicity one or multiplicity
two?) Hence show that if X, Y, and Z are closed subschemes of W, then (X ∩ Z) ∪
(Y ∩Z) ̸= (X∪Y)∩Z in general. In particular, not all properties of intersection and
union carry over from sets to schemes.
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8.1.K. ⋆ HARD EXERCISE (NOT USED LATER). In the literature, the usual def-
inition of a closed embedding is a morphism π : X → Y such that π induces a
homeomorphism of the underlying topological space of X onto a closed subset of
the topological space of Y, and the induced map π♯ : OY → π∗OX of sheaves on Y
is surjective. (By “surjective” we mean that the ring homomorphism on stalks is
surjective.) Show that this definition agrees with the one given above. (To show
that our definition involving surjectivity on the level of affine open sets implies
this definition, you can use the fact that surjectivity of a morphism of sheaves can
be checked on a suitably chosen base, Exercise 2.5.E.)

We have now defined the analog of open subsets and closed subsets in the
land of schemes. Their definition is slightly less “symmetric” than in the classical
topological setting: the “complement” of a closed subscheme is a unique open
subscheme, but there are many “complementary” closed subschemes to a given
open subscheme in general. (We will soon define one that is “best”, that has a
reduced structure, §8.3.9.)

8.1.2. Locally closed embeddings and locally closed subschemes.
Now that we have defined analogs of open and closed subsets, it is natural to

define the analog of locally closed subsets. Recall that locally closed subsets are
intersections of open subsets and closed subsets. Hence they are closed subsets of
open subsets, or equivalently open subsets of closed subsets. The analog of these
equivalences will be a little problematic in the land of schemes.

We say a morphism π : X→ Y is a locally closed embedding (or locally closed
immersion) if π can be factored into

X
ρ // Z

τ // Y

where ρ is a closed embedding and τ is an open embedding. For example, the
morphism Speck[t, t−1] → Spec k[x, y] given by (x, y) 7→ (t, 0) is a locally closed
embedding (Figure 8.1). The symbol ↪→ is often used to indicate that a morphism
is a locally closed embedding.

FIGURE 8.1. The locally closed embedding Speck[t, t−1] →
Speck[x, y] (t 7→ (t, 0) = (x, y), i.e., (x, y)→ (t, 0))
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(Warning: The term immersion is often used instead of locally closed embedding
or locally closed immersion, but this is unwise terminology, for reasons that already
arose for closed embeddings in Definition 8.1.1: The differential geometric notion
of immersion is closer to what algebraic geometers call unramified, which we will
define in §21.6. Also, the naked term embedding should be avoided, because it is
needlessly imprecise.)

If X is a subset of Y (and π on the level of sets is the inclusion), we say X is a
locally closed subscheme of Y.

8.1.L. EASY EXERCISE. Show that locally closed embeddings are locally of finite
type.

At this point, you could define the intersection of two locally closed embed-
dings in a scheme X (which will also be a locally closed embedding in X). But
it would be awkward, as you would have to show that your construction is in-
dependent of the factorizations of each locally closed embedding into a closed
embedding and an open embedding. Instead, we wait until Exercise 9.2.C, when
recognizing the intersection as a fibered product will make this easier.

Clearly an open subschemeU of a closed subscheme V of X can be interpreted
as a closed subscheme of an open subscheme: as the topology on V is induced
from the topology on X, the underlying set of U is the intersection of some open
subset U ′ on X with V . We can take V ′ = V ∩ U ′, and then V ′ → U ′ is a closed
embedding, and U ′ → X is an open embedding.

It is not clear that a closed subscheme V ′ of an open subscheme U ′ can be
expressed as an open subscheme of a closed subscheme V . In the category of
topological spaces, we would take V as the closure of V ′, so we are now motivated
to define the analogous construction, which will give us an excuse to introduce
several related ideas, in §8.3. We will then resolve this issue in good cases (e.g., if
X is Noetherian) in Exercise 8.3.C.

We formalize our discussion in an exercise.

8.1.M. EXERCISE. Suppose V → X is a morphism. Consider three conditions:

(i) V is the intersection of an open subscheme of X and a closed subscheme
of X (you will have to define the meaning of “intersection” here, see Ex-
ercise 7.1.B, or else see the hint below).

(ii) V is an open subscheme of a closed subscheme of X, i.e., it factors into an
open embedding followed by a closed embedding.

(iii) V is a closed subscheme of an open subscheme of X, i.e., V is a locally
closed embedding.

Show that (i) and (ii) are equivalent, and both imply (iii). (Remark: (iii) does not
always imply (i) and (ii), see the pathological example [Stacks, tag 01QW].) Hint:
It may be helpful to think of the problem as follows. You might hope to think of a
locally closed embedding as a fibered diagram

V
� � open emb. //� _

closed emb.
��

K� _

closed emb.
��

U
� �

open emb.
// X.
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Interpret (i) as the existence of the diagram. Interpret (ii) as this diagram minus
the lower left corner. Interpret (iii) as the diagram minus the upper right corner.

8.1.N. EXERCISE. Show that the composition of two locally closed embeddings is
a locally closed embedding. (Hint: you might use (ii) implies (iii) in the previous
exercise.)

8.1.3. Unimportant remark. It may feel odd that in the definition of a locally closed
embedding, we had to make a choice (as a composition of a closed embedding
followed by an open embedding, rather than vice versa), but this type of issue
comes up earlier: a subquotient of a group can be defined as the quotient of a sub-
group, or a subgroup of a quotient. Which is the right definition? Or are they the
same? (Hint: compositions of two subquotients should certainly be a subquotient,
cf. Exercise 8.1.N.)

8.2 More projective geometry

We now interpret closed embeddings in terms of graded rings. Don’t worry;
most of the annoying foundational discussion of graded rings is complete, and we
now just take advantage of our earlier work.

8.2.1. Example: Closed embeddings in projective space PnA. Recall the definition
of projective space PnA given in §4.4.10 (and the terminology defined there). Any
homogeneous polynomial f in x0, . . . , xn defines a closed subscheme. (Thus even if
f doesn’t make sense as a function, its vanishing scheme still makes sense.) On
the open set Ui, the closed subscheme is V(f(x0/i, . . . , xn/i)), which we privately
think of as V(f(x0, . . . , xn)/x

deg f
i ). On the overlap

Ui ∩Uj = SpecA[x0/i, . . . , xn/i, x−1j/i]/(xi/i − 1),

these functions on Ui and Uj don’t exactly agree, but they agree up to a nonva-
nishing scalar, and hence cut out the same closed subscheme of Ui ∩ Uj (Exer-
cise 8.1.I(b)):

f(x0/i, . . . , xn/i) = x
deg f
j/i

f(x0/j, . . . , xn/j).

Similarly, a collection of homogeneous polynomials in A[x0, . . . , xn] cuts out a
closed subscheme of PnA. (Exercise 8.2.C will show that all closed subschemes of
PnA are of this form.)

8.2.2. Definition. As usual, let k be a field. A closed subscheme of Pnk cut out
by a single (nonzero, homogeneous) equation is called a hypersurface (in Pnk ). Of
course, a hypersurface is not cut out by a single global function on Pnk : there are
no nonconstant global functions (Exercise 4.4.E). The degree of a hypersurface is
the degree of the polynomial. (Implicit in this is that this notion can be determined
from the subscheme itself. You may have the tools to prove this now, but we won’t
formally prove it until Exercise 18.6.H.) A hypersurface of degree 1 (resp. degree
2, 3, . . . ) is called a hyperplane (resp. quadric, cubic, quartic, quintic, sextic,
septic, octic, . . . hypersurface). If n = 2, hypersurfaces are called curves; a degree
1 hypersurface is called a line, and a degree 2 hypersurface is called a conic curve,
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or a conic for short. If n = 3, a hypersurface is called a surface. (In Chapter 11, we
will justify the terms curve and surface.)

8.2.A. EXERCISE.
(a) Show that wz = xy, x2 = wy, y2 = xz describes an irreducible subscheme in
P3k. In fact it is a curve, a notion we will define once we know what dimension
is. This curve is called the twisted cubic. (The twisted cubic is a good nontrivial
example of many things, so you should make friends with it as soon as possible.
It implicitly appeared earlier in Exercise 3.6.F.)
(b) Show that the twisted cubic is isomorphic to P1k.

We now extend this discussion to projective schemes in general.

8.2.B. EXERCISE. Suppose that S• // // R• is a surjection of graded rings. Show
that the domain of the induced morphism (Exercise 6.4.A) is ProjR•, and that the
induced morphism ProjR• → ProjS• is a closed embedding.

8.2.C. EXERCISE (CONVERSE TO EXERCISE 8.2.B). Suppose that X ↪→ ProjS• is
a closed embedding in a projective A-scheme (where S• is a finitely generated
graded A-algebra). Show that X is projective by describing it as Proj(S•/I), where
I is a homogeneous ideal, of “projective functions” vanishing on X. Many find this
easier if S• is generated in degree 1, and this case is the most important, so you
may wish to deal only with this case. (Another approach to this problem is given
in Exercise 15.4.H.)

8.2.D. EXERCISE. Show that an injective linear map of k-vector spaces V ↪→
W induces a closed embedding PV ↪→ PW. (This is another justification for the
definition of PV in Example 4.5.12 in terms of the dual of V .)

8.2.3. Definition. The closed subscheme defined in Exercise 8.2.D is called a lin-
ear space. Once we know about dimension, we will call this closed subscheme a
linear space of dimension dimV − 1 = dimPV . More explicitly, a linear space of
dimension n in PN is any closed subscheme cut out by N − n k-linearly indepen-
dent homogeneous linear polynomials in x0, . . . , xN. A linear space of dimension
1 (resp. 2, n, dimPW − 1) is called a line (resp. plane, n-plane, hyperplane). (If
the linear map in the previous exercise is not injective, then the hypothesis (6.4.0.1)
of Exercise 6.4.A fails.)

8.2.E. EXERCISE (A SPECIAL CASE OF BÉZOUT’S THEOREM). Suppose X ⊂ Pnk is
a degree d hypersurface cut out by f = 0, and ℓ is a line not contained in X. A
very special case of Bézout’s Theorem (Exercise 18.6.K) implies that X and ℓ meet
with multiplicity d, “counted correctly”. Make sense of this, by restricting the
homogeneous degree d polynomial f to the line ℓ, and using the fact that a degree
d polynomial in k[x] has d roots, counted properly. (If it makes you feel better,
assume k = k.)

8.2.F. EXERCISE. Show that the map of graded rings k[w, x, y, z] → k[s, t] given
by (w, x, y, z) 7→ (s3, s2t, st2, t3) induces a closed embedding P1k ↪→ P3k, which
yields an isomorphism of P1k with the twisted cubic (defined in Exercise 8.2.A —
in fact, this will solve Exercise 8.2.A(b)). Doing this in a hands-on way will set
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you up well for the general Veronese construction of §8.2.6; see Exercise 8.2.J for a
generalization.

8.2.4. A particularly nice case: when S• is generated in degree 1.
Suppose S• is a finitely generated graded ring generated in degree 1. Then

S1 is a finitely generated S0-module, and the irrelevant ideal S+ is generated in
degree 1 (cf. Exercise 4.5.D(a)).

8.2.G. EXERCISE. Show that if S• is generated (as anA-algebra) in degree 1 by n+1
elements x0, . . . , xn, then ProjS• may be described as a closed subscheme of PnA as
follows. Consider A⊕(n+1) as a free module with generators t0, . . . , tn associated
to x0, . . . , xn. The surjection of

Sym• (
A⊕(n+1)

)
= A[t0, t1, . . . , tn] // // S•

ti
� // xi

implies S• = A[t0, t1, . . . tn]/I, where I is a homogeneous ideal. (In particular,
ProjS• can always be interpreted as a closed subscheme of some PnA if S• is finitely
generated in degree 1. Then using Exercises 6.4.D and 6.4.G, you can remove the
hypothesis of generation in degree 1.)

This is analogous to the fact that if R is a finitely generated A-algebra, then
choosing n generators of R as an algebra is the same as describing SpecR as a
closed subscheme of AnA. In the affine case this is “choosing coordinates”; in the
projective case this is “choosing projective coordinates”.

Recall (Exercise 4.4.F) that if k is algebraically closed, then we can interpret the
closed points of Pn as the lines through the origin in (n+ 1)-space. The following
exercise states this more generally.

8.2.H. EXERCISE. Suppose S• is a finitely generated graded ring over an alge-
braically closed field k, generated in degree 1 by x0, . . . , xn, inducing closed em-
beddings ProjS• ↪→ Pn and Spec S• ↪→ An+1. Give a bijection between the closed
points of ProjS• and the “lines through the origin” in SpecS• ⊂ An+1.

8.2.5. A second proof that finite morphisms are closed. This interpretation of ProjS• as
a closed subscheme of projective space (when it is generated in degree 1) yields the
following second proof of the fact (shown in Exercise 7.3.M) that finite morphisms
are closed. Suppose π : X → Y is a finite morphism. The question is local on the
target, so it suffices to consider the affine case Y = SpecB. It suffices to show that
π(X) is closed. Then by Exercise 7.3.J, X is a projective B-scheme, and hence by the
Fundamental Theorem of Elimination Theory 7.4.7, its image is closed.

8.2.6. Important classical construction: The Veronese embedding.
Suppose S• = k[x, y], so ProjS• = P1k. Then S2• = k[x2, xy, y2] ⊂ k[x, y] (see

§6.4.4 on the Veronese subring). We identify this subring as follows.

8.2.I. EXERCISE. Let u = x2, v = xy,w = y2. Show that S2• ∼= k[u, v,w]/(uw−v2),
by mapping u, v, w to x2, xy, y2, respectively.
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We have a graded ring generated by three elements in degree 1. Thus we think
of it as sitting “in” P2, via the construction of §8.2.G. This can be interpreted as “P1
as a conic in P2”.

8.2.7. Thus if k is algebraically closed of characteristic not 2, using the fact that
we can diagonalize quadratics (Exercise 5.4.J), the conics in P2, up to change of
coordinates, come in only a few flavors: sums of 3 squares (e.g., our conic of the
previous exercise), sums of 2 squares (e.g., y2−x2 = 0, the union of 2 lines), a single
square (e.g., x2 = 0, which looks set-theoretically like a line, and is nonreduced),
and 0 (perhaps not a conic at all). Thus we have proved: any plane conic (over an
algebraically closed field of characteristic not 2) that can be written as the sum of
three nonzero squares is isomorphic to P1. (See Exercise 6.5.F for a closely related
fact.)

We now soup up this example.

8.2.J. EXERCISE. We continue to take S• = k[x, y]. Show that ProjSd• is given by
the equations that (

y0 y1 · · · yd−1
y1 y2 · · · yd

)
is rank 1 (i.e., that all the 2× 2minors vanish). This is called the degree d rational
normal curve “in” Pd. You did the twisted cubic case d = 3 in Exercises 8.2.A and
8.2.F.

8.2.8. Definition. More generally, if S• = k[x0, . . . , xn], then ProjSd• ⊂ PN−1

(where N is the dimension of the vector space of homogeneous degree d polyno-
mials in x0, . . . , xn) is called the d-uple embedding or d-uple Veronese embed-
ding. (Combining Exercise 6.4.E with Exercise 8.2.G shows that ProjS• → PN−1 is
a closed embedding.)

8.2.K. COMBINATORIAL EXERCISE (CF. REMARK 4.5.3). Show that N =
(
n+d
d

)
.

8.2.L. UNIMPORTANT EXERCISE. Find six linearly independent quadratic equa-
tions vanishing on the Veronese surface ProjS2• where S• = k[x0, x1, x2], which
sits naturally in P5. (You needn’t show that these equations generate all the equa-
tions cutting out the Veronese surface, although this is in fact true.) Possible hint:
use the identity

det

 x0x0 x0x1 x0x2
x1x0 x1x1 x1x2
x2x0 x2x1 x2x2

 = 0.

8.2.9. Rulings on the quadric surface. We return to rulings on the quadric surface,
which first appeared in the optional (starred) section §4.4.12.

8.2.M. USEFUL GEOMETRIC EXERCISE: THE RULINGS ON THE QUADRIC SURFACE
wz = xy. This exercise is about the lines on the quadric surface X given by
wz − xy = 0 in P3k (where the projective coordinates on P3k are ordered w, x, y, z).
This construction arises all over the place in nature.
(a) Suppose a0 and b0 are given elements of k, not both zero. Make sense of the
statement: as [c, d] varies in P1, [a0c, b0c, a0d, b0d] is a line in the quadric surface.
(This describes “a family of lines parametrized by P1”, although we can’t yet make
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this precise.) Find another family of lines. These are the two rulings of the smooth
quadric surface.
(b) Show that through every k-valued point of the quadric surface X, there passes
one line from each ruling.
(c) Show there are no other lines. (There are many ways of proceeding. At risk
of predisposing you to one approach, here is a germ of an idea. Suppose L is a
line on the quadric surface, and [1, x, y, z] and [1, x ′, y ′, z ′] are distinct points on
it. Because they are both on the quadric, z = xy and z ′ = x ′y ′. Because all of L
is on the quadric, (1 + t)(z + tz ′) − (x + tx ′)(y + ty ′) = 0 for all t. After some
algebraic manipulation, this translates into (x − x ′)(y − y ′) = 0. How can this be
made watertight? Another possible approach uses Bézout’s Theorem, in the form
of Exercise 8.2.E.)

FIGURE 8.2. One of the two rulings on the quadric surface V(wz−
xy) ⊂ P3. One ruling contains the line V(w, x), and the other
contains the line V(w,y).

Hence by Exercise 5.4.J, if we are working over an algebraically closed field
of characteristic not 2, we have shown that all rank 4 quadric surfaces have two
rulings of lines. (In Example 9.6.2, we will recognize this quadric as P1 × P1.)

8.2.10. Side Remark. The existence of these two rulings is the first chapter of a
number of important and beautiful stories. The second chapter is often the fol-
lowing. If k is an algebraically closed field, then a “maximal rank” (Exercise 5.4.J)
quadric hypersurface X of dimension m contains no linear spaces of dimension
greater than m/2. (We will see in Exercise 12.3.D that the maximal rank quadric
hypersurfaces are the “smooth” quadrics.) If m = 2a + 1, then X contains an ir-
reducible

(
a+2
2

)
-dimensional family of a-planes. If m = 2a, then X contains two

irreducible
(
a+1
2

)
-dimensional families of a-planes, and furthermore two a-planes
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Λ and Λ ′ are in the same family if and only if dim(Λ ∩ Λ ′) ≡ a (mod 2). These
families of linear spaces are also called rulings. (For more information, see [GH1,
§6.1, p. 735, Prop.].) You already know enough to think through the examples of
m = 0, 1, and 2. The casem = 3 is discussed in Exercise 16.7.K.

8.2.11. Weighted projective space. If we put a nonstandard weighting on the
variables of k[x1, . . . , xn] — say we give xi degree di — then Projk[x1, . . . , xn] is
called weighted projective space P(d1, d2, . . . , dn).

8.2.N. EXERCISE. Show that P(m,n) is isomorphic to P1. Show that P(1, 1, 2) ∼=
Projk[u, v,w, z]/(uw − v2). Hint: do this by looking at the even-graded parts of
k[x0, x1, x2], cf. Exercise 6.4.D. (This is a projective cone over a conic curve. Over a
field of characteristic not 2, it is isomorphic to the traditional cone x2 + y2 = z2 in
P3, see Figure 8.3.)

FIGURE 8.3. The cone x2 + y2 = z2.

8.2.12. Affine and projective cones.
If S• is a finitely generated graded ring, then the affine cone of ProjS• is

Spec S•. Caution: this terminology is not ideal, as this construction depends on S•,
not just on ProjS•. As motivation, consider the graded ring S• = C[x, y, z]/(z2 −
x2 − y2). Figure 8.3 is a sketch of SpecS•. (Here we draw the “real picture” of
z2 = x2 + y2 in R3.) It is a cone in the traditional sense; the origin (0, 0, 0) is the
“cone point”.

This gives a useful way of picturing Proj (even over arbitrary rings, not just
C). Intuitively, you could imagine that if you discarded the origin, you would
get something that would project onto ProjS•. The following exercise makes that
precise.

8.2.O. EXERCISE. If ProjS• is a projective scheme over a field k, describe a natural
morphism SpecS• \ V(S+) → ProjS•. (Can you see why V(S+) is a single point,
and should reasonably be called the origin?)

This readily generalizes to the following exercise, which again motivates the
terminology “irrelevant”.

8.2.P. EASY EXERCISE. If S• is a finitely generated graded ring over a base ring A,
describe a natural morphism SpecS• \ V(S+)→ ProjS•.
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In fact, it can be made precise that ProjS• is the quotient (by the multiplicative
group of scalars) of the affine cone minus the origin.

8.2.13. Definition. The projective cone of ProjS• is ProjS•[T ], where T is a new vari-
able of degree 1. For example, the cone corresponding to the conic Projk[x, y, z]/(z2−
x2 − y2) is Projk[x, y, z, T ]/(z2 − x2 − y2). The projective cone is sometimes called
the projective completion of SpecS•. (Note: this depends on S•, not just on
ProjS•.)

8.2.Q. LESS IMPORTANT EXERCISE (CF. §4.5.1). Show that the “projective cone”
ProjS•[T ] of ProjS• has a closed subscheme isomorphic to ProjS• (informally, cor-
responding to T = 0), whose complement (the distinguished open set D(T)) is
isomorphic to the affine cone SpecS•.

This construction can be usefully pictured as the affine cone union some points
“at infinity”, and the points at infinity form the Proj. (The reader may wish to start
with Figure 8.3, and try to visualize the conic curve “at infinity”, and then compare
this visualization to Figure 4.9.)

We have thus completely described the algebraic analog of the classical picture
of §4.5.1.

8.3 The (closed sub)scheme-theoretic image

We now define a series of notions that are all of the form “the smallest closed
subscheme such that something or other is true”. One example will be the notion
of scheme-theoretic closure of a locally closed embedding, which will allow us
to interpret locally closed embeddings in three equivalent ways (open subscheme
intersect closed subscheme; open subscheme of closed subscheme; and closed sub-
scheme of open subscheme — cf. Exercise 8.1.M).

8.3.1. Scheme-theoretic image.
We start with the notion of scheme-theoretic image. Set-theoretic images are

badly behaved in general (§7.4.1), and even with reasonable hypotheses such as
those in Chevalley’s Theorem 7.4.2, things can be confusing. For example, there is
no reasonable way to impose a scheme structure on the image of A2k → A2k given
by (x, y) 7→ (x, xy). It will be useful (e.g., Exercise 8.3.C) to define a notion of
a closed subscheme of the target that “best approximates” the image. This will
incorporate the notion that the image of something with nonreduced structure
(“fuzz”) can also have nonreduced structure. As usual, we will need to impose
reasonable hypotheses to make this notion behave well (see Theorem 8.3.4 and
Corollary 8.3.5).

8.3.2. Definition. Suppose i : Z ↪→ Y is a closed subscheme, giving an exact se-
quence 0 → IZ/Y → OY → i∗OZ → 0. We say that the image of π : X → Y lies
in Z if the composition IZ/Y → OY → π∗OX is zero. Informally, locally, functions
vanishing on Z pull back to the zero function on X. If the image of π lies in some
subschemes Zj (as j runs over some index set), it clearly lies in their intersection
(cf. Exercise 8.1.J(a) on intersections of closed subschemes). We then define the
scheme-theoretic image of π, a closed subscheme of Y, as the “smallest closed
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subscheme containing the image”, i.e., the intersection of all closed subschemes
containing the image. In particular (and in our first examples), if Y is affine, the
scheme-theoretic image is cut out by functions on Y that are 0when pulled back to
X.

Example 1. Consider π : Speck[ϵ]/(ϵ2) → Spec k[x] = A1k given by x 7→ ϵ.
Then the scheme-theoretic image of π is given by Spec k[x]/(x2) (the polynomials
pulling back to 0 are precisely multiples of x2). Thus the image of the fuzzy point
still has some fuzz.

Example 2. Consider π : Spec k[ϵ]/(ϵ2)→ Spec k[x] = A1k given by x 7→ 0. Then
the scheme-theoretic image is given by Speck[x]/(x): the image is reduced. In this
picture, the fuzz is “collapsed” by π.

Example 3. Consider π : Speck[t, t−1] = A1 − {0} → A1 = Speck[u] given by
u 7→ t. Any function g(u) which pulls back to 0 as a function of t must be the
zero-function. Thus the scheme-theoretic image is everything. The set-theoretic
image, on the other hand, is the distinguished open set A1 − {0}. Thus in not-too-
pathological cases, the underlying set of the scheme-theoretic image is not the set-
theoretic image. But the situation isn’t terrible: the underlying set of the scheme-
theoretic image must be closed, and indeed it is the closure of the set-theoretic
image. We might imagine that in reasonable cases this will be true, and in even
nicer cases, the underlying set of the scheme-theoretic image will be set-theoretic
image. We will later see that this is indeed the case (§8.3.6).

But sadly pathologies can sometimes happen in, well, pathological situations.

Example 4 (see Figure 8.4). Let X =
⨿

Spec k[ϵn]/((ϵn)n) (a scheme which
appeared in the hint to Exercise 5.2.E) and Y = Spec k[x], and define X → Y by
x → ϵn on the nth component of X. If a function g(x) on Y pulls back to 0 on
X, then its Taylor expansion is 0 to order n (by examining the pullback to the
nth component of X) for all n, so g(x) must be 0. (This argument will be vastly
generalized in Exercise 12.9.A(b).) Thus the scheme-theoretic image is V(0) on Y,
i.e., Y itself, while the set-theoretic image is easily seen to be just the origin (the
closed point 0). (This morphism implicitly arises in Caution/Example 8.3.11.)

FIGURE 8.4. Yuck (Example 4 of Definition 8.3.2)
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8.3.3. Criteria for computing scheme-theoretic images affine-locally. Example 4 clearly
is weird though, and we can show that in “reasonable circumstances” such pathol-
ogy doesn’t occur.

In the special case where the target Y is affine (which covers Examples 1 through
3), say Y = SpecB, almost by definition the scheme-theoretic image of π : X→ Y is
cut out by the ideal I ⊂ B of functions on Y which pull back to zero on X.

It would be great to use this to compute the scheme-theoretic image affine
by affine (affine-locally). On the affine open set SpecB ⊂ Y, define the ideal
I(B) ⊂ B of functions which pull back to 0 on X. Formally, I(B) := ker(B →
Γ(SpecB, π∗(OX)). Then if for each such B, and each g ∈ B, I(B) ⊗B Bg → I(Bg)
is an isomorphism, then we will have defined the scheme-theoretic image as a
closed subscheme (see Exercise 8.1.H). Clearly each function on SpecB that van-
ishes when pulled back to π−1(SpecB) also vanishes when restricted to D(g) and
then pulled back to π−1(D(g)). So the question is: given a function r/gn on D(g)
that pulls back to zero on π−1(D(g)), is it true that for some m, rgm = 0 when
pulled back to π−1(SpecB)? Here are three cases where the answer is “yes”. (I
would like to add a picture here, but I can’t think of one that would enlighten
more people than it would confuse. So you should try to draw one that suits you.)
For each affine in the source, there is somemwhich works. There is one that works
for all affines in a cover (i) if m = 1 always works, or (ii) if there are only a finite
number of affines in the cover.

(i) The answer is yes if π−1(SpecB) is reduced: we simply take m = 1 (as r
vanishes on SpecBg and g vanishes on V(g), so rg vanishes on SpecB = SpecBg∪
V(g).)

(ii) The answer is also yes if π−1(SpecB) is affine, say SpecA: if r ′ = π♯r and
g ′ = π♯g in A, then if r ′ = 0 on D(g ′), then there is an m such that r ′(g ′)m = 0 (as
the statement r ′ = 0 in D(g ′) means precisely this fact — the functions on D(g ′)
are Ag ′).

(ii)’ More generally, the answer is yes if π−1(SpecB) is quasicompact: cover
π−1(SpecB) with finitely many affine open sets. For each one there will be some
mi so that rgmi = 0 when pulled back to this open set. Then let m = max(mi).
(We see again that quasicompactness is our friend!)

In conclusion, we have proved the following (subtle) theorem.

8.3.4. Theorem. — Suppose π : X → Y is a morphism of schemes. If X is reduced or π
is quasicompact, then the scheme-theoretic image of π may be computed affine-locally: on
SpecA ⊂ Y, it is cut out by the functions (elements of A) that pull back to the function 0
(on π−1(SpecA)).

8.3.5. Corollary. — Under the hypotheses of Theorem 8.3.4, the closure of the set-
theoretic image of π is the underlying set of the scheme-theoretic image.

(Example 4 above shows that we cannot excise these hypotheses.)

8.3.6. In particular, if the set-theoretic image is closed (e.g., if π is finite or projec-
tive), the set-theoretic image is the underlying set of the scheme-theoretic image,
as promised in Example 3 above.
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8.3.7. Proof of Corollary 8.3.5. The set-theoretic image is in the underlying set
of the scheme-theoretic image. (Check this!) The underlying set of the scheme-
theoretic image is closed, so the closure of the set-theoretic image is contained in
the underlying set of the scheme-theoretic image. On the other hand, if U is the
complement of the closure of the set-theoretic image, π−1(U) = ∅. Under these
hypotheses, the scheme theoretic image can be computed locally, so the scheme-
theoretic image is the empty set on U. □

We conclude with a few stray remarks.

8.3.A. EASY EXERCISE. If X is reduced, show that the scheme-theoretic image of
π : X→ Y is also reduced.

More generally, you might expect there to be no unnecessary nonreduced
structure on the image not forced by nonreduced structure on the source. We
make this precise in the locally Noetherian case, when we can talk about associ-
ated points.

8.3.B. ⋆ UNIMPORTANT EXERCISE. If π : X → Y is a quasicompact morphism of
locally Noetherian schemes, show that the associated points of the image sub-
scheme are a subset of the image of the associated points of X. (The example of⨿
a∈C SpecC[t]/(t− a)→ SpecC[t] shows what can go wrong if you give up qua-

sicompactness — note that reducedness of the source doesn’t help.) Hint: reduce
to the case where X and Y are affine. (Can you develop your geometric intuition
so that this becomes plausible to you?)

8.3.8. Scheme-theoretic closure of a locally closed subscheme.
We define the scheme-theoretic closure of a locally closed embedding π : X→

Y as the scheme-theoretic image of π. (A shorter phrase for this is schematic closure,
although this more elegant nomenclature has not caught on.)

8.3.C. EXERCISE. If a locally closed embedding V → X is quasicompact (e.g., if
V is Noetherian, Exercise 7.3.B(a)), or if V is reduced, show that (iii) implies (i)
and (ii) in Exercise 8.1.M. Thus in this fortunate situation, a locally closed embed-
ding can be thought of in three different ways, whichever is convenient. (Hint:
Corollary 8.3.5.)

8.3.D. UNIMPORTANT EXERCISE, USEFUL FOR INTUITION. If π : X→ Y is a locally
closed embedding into a locally Noetherian scheme (so X is also locally Noether-
ian), then the associated points of the scheme-theoretic closure are (naturally in
bijection with) the associated points of X. (Hint: Exercise 8.3.B.) Informally, we get
no nonreduced structure on the scheme-theoretic closure not “forced by” that on
X.

8.3.9. The (reduced) subscheme structure on a closed subset.
Suppose Xset is a closed subset of a scheme Y. Then we can define a canonical

scheme structure X on Xset that is reduced. We could describe it as being cut out
by those functions whose values are zero at all the points of Xset. On the affine
open set SpecB of Y, if the set Xset corresponds to the radical ideal I = I(Xset)
(recall the I(·) function from §3.7), the scheme X corresponds to SpecB/I. You can
quickly check that this behaves well with respect to any distinguished inclusion
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SpecBf ↪→ SpecB. We could also consider this construction as an example of a
scheme-theoretic image in the following crazy way: let W be the scheme that is a
disjoint union of all the points of Xset, where the point corresponding to p in Xset

is Spec of the residue field of OY,p. Let ρ : W → Y be the “canonical” map sending
“p to p”, and giving an isomorphism on residue fields. Then the scheme structure
on X is the scheme-theoretic image of ρ. A third definition: it is the smallest closed
subscheme whose underlying set contains Xset.

8.3.E. EXERCISE. Show that all three definitions are the same.

This construction is called the (induced) reduced subscheme structure on the
closed subset Xset. (Vague exercise: Make a definition of the reduced subscheme
structure precise and rigorous to your satisfaction.)

8.3.F. EXERCISE. Show that the underlying set of the induced reduced subscheme
X→ Y is indeed the closed subset Xset. Show that X is reduced.

8.3.10. Reduced version of a scheme.
In the main interesting case where Xset is all of Y, we obtain a reduced closed

subscheme Yred → Y, called the reduction of Y. On the affine open subset SpecB ↪→
Y, Yred ↪→ Y corresponds to the nilradical N(B) of B. The reduction of a scheme is
the “reduced version” of the scheme, and informally corresponds to “shearing off
the fuzz”.

An alternative equivalent definition: on the affine open subset SpecB ↪→ Y,
the reduction of Y corresponds to the ideal N(B) ⊂ B of nilpotents. As for any
f ∈ B, N(B)f = N(Bf), by Exercise 8.1.H this defines a closed subscheme.

8.3.G. EXERCISE. Show that this alternative definition is indeed equivalent to the
actual one.

8.3.11. ⋆ Caution/Example. It is not true that for every open subsetU ⊂ Y, Γ(U,OYred)
is Γ(U,OY) modulo its nilpotents. For example, on Y =

⨿
Speck[x]/(xn), the

function x is not nilpotent, but is 0 on Yred, as it is “locally nilpotent”. This may
remind you of Example 4 after Definition 8.3.2.

8.3.12. Scheme-theoretic support of a quasicoherent sheaf. Similar ideas are
used in the definition of the scheme-theoretic support of a quasicoherent sheaf,
see Exercise 18.9.B.

8.4 Effective Cartier divisors, regular sequences and regular
embeddings

We now introduce regular embeddings, an important class of locally closed
embeddings. Locally closed embeddings of regular schemes in regular schemes
are one important example of regular embeddings (Exercise 12.2.L(b)). Effective
Cartier divisors, basically the codimension 1 case, will turn out to be repeatedly
useful as well — to see how useful, notice how often it appears in the index. We
begin with this case.
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8.4.1. Locally principal closed subschemes, and effective Cartier divisors. (The
motivating example to keep in mind of a locally principal closed subscheme is the
closed subscheme cut out by x2 = 0 in P2, defined in Example 8.2.1.) A closed sub-
scheme is locally principal if on each open set in a small enough open cover it is
cut out by a single equation (i.e., by a principal ideal, hence the terminology). More
specifically, a locally principal closed subscheme is a closed embedding π : X → Y

for which there is an open cover {Ui : i ∈ I} of Y for which for each i, the restricted
morphism π−1(Ui)→ Ui is (isomorphic as a Ui-scheme to) the closed subscheme
V(si) of Ui for some si ∈ Γ(Ui,OX). In particular, if π : X→ Y is a locally principal
closed subscheme, then the open cover of Y can be chosen to be affine opens: Sim-
ply cover each open set Ui by open affines, and restrict each si to each affine open
subset.

For example, hypersurfaces in Pnk (Definition 8.2.2) are locally principal: each
homogeneous polynomial in n + 1 variables defines a locally principal closed
subscheme of PnA. (Warning: unlike “local principality”, “principality” is not an
affine-local condition, see §19.11.10! Also, the example of a projective hypersur-
face, §8.2.1, shows that a locally principal closed subscheme need not be cut out by
a globally-defined function.)

If the ideal sheaf is locally generated near every point by a function that is
not a zerodivisor, we call the closed subscheme an effective Cartier divisor. More
precisely: if π : X → Y is a closed embedding, and there is a cover Y by affine
open subsets SpecAi ⊂ Y, and there exist non-zerodivisors ti ∈ Ai with V(ti) =
X|SpecAi

(scheme-theoretically — i.e., the ideal sheaf of X over SpecAi is generated
by ti), then we say that X is an effective Cartier divisor on Y. (We will not explain
the origin of the phrase, as it is not relevant for this point of view.)

8.4.A. EXERCISE. Suppose t ∈ A is a non-zerodivisor. Show that t is a non-
zerodivisor in Ap for each prime p.

8.4.2. Caution. If D is an effective Cartier divisor on an affine scheme SpecA,
it is not necessarily true that D = V(t) for some t ∈ A (see Exercise 14.2.M —
§19.11.10 gives a different flavor of example). In other words, the condition of a
closed subscheme being an effective Cartier divisor can be verified on an affine
cover, but cannot be checked on an arbitrary affine cover — it is not an affine-local
condition in this obvious a way.

8.4.B. EXERCISE. Suppose X is a locally Noetherian scheme, and t ∈ Γ(X,OX) is
a function on it. Show that t (or more precisely the closed subscheme V(t)) is an
effective Cartier divisor if and only if it doesn’t vanish on any associated point of
X.

8.4.C. UNIMPORTANT EXERCISE. Suppose V(t) = V(t ′) ↪→ SpecA is an effective
Cartier divisor, with t and t ′ non-zerodivisors in A. Show that t is an invertible
function times t ′.

The idea of an effective Cartier divisor leads us to the notion of regular se-
quences. (We will close the loop in Exercise 8.4.H, where we will interpret effective
Cartier divisors on any reasonable scheme as regular embeddings of codimension
1.)



242 The Rising Sea: Foundations of Algebraic Geometry

8.4.3. Regular sequences.
The notion of “regular sequence”, like so much else, is due to Serre, [Se2]. The

definition of regular sequence is the algebraic version of the following geometric
idea: locally, we take an effective Cartier divisor (a non-zerodivisor); then an ef-
fective Cartier divisor on that; then an effective Cartier divisor on that; and so on,
a finite number of times. A little care is necessary; for example, we might want
this to be independent of the order of the equations imposed, and this is true only
when we say this in the right way.

We make the definition of regular sequence for a ring A, and more generally
for an A-moduleM.

8.4.4. Definition. If M is an A-module, a sequence x1, . . . , xr ∈ A is called an M-
regular sequence (or a regular sequence for M) if the following two conditions
are satisfied.

(i) For each i, xi is not a zerodivisor for M/(x1, . . . , xi−1)M. (The case i =
1 should be interpreted as: “x1 is not a zerodivisor of M.” Recall that
zerodivisors were defined in Exercise 1.3.C.)

(ii) We have a proper inclusion (x1, . . . , xr)M ⊊M.

In the case most relevant to us, when M = A, this should be seen as a reason-
able approximation of a “complete intersection”, and indeed we will use this as
the definition (§8.4.7). An A-regular sequence is just called a regular sequence.

8.4.D. EXERCISE. If M is an A-module, show that an M-regular sequence con-
tinues to satisfy condition (i) of the Definition 8.4.4 of regular sequence upon any
localization.

8.4.E. EXERCISE. If x, y is an M-regular sequence, show that xN, y is an M-
regular sequence. Hint: the difficult part is showing that y is not a zerodivisor of
M/(xNM). Show this by induction on N. If y is a zerodivisor of M/(xNM), then
ym ≡ 0 (mod xN) for some m ∈ M \ xNM. Hence ym = xNk for some k ∈ M.
Use the fact that x, y is a regular sequence to show thatm is a multiple of x. (Your
argument will easily extend to show more generally that if x1, . . . , xn is a regular
sequence, and a1, . . . , an ∈ Z+, then xa1

1 , . . . , xan
n is a regular sequence.)

8.4.5. Interesting example. We now give an example ([E, Example 17.3]) showing
that the order of a regular sequence matters. SupposeA = k[x, y, z]/(x−1)z, soX =
SpecA is the union of the z = 0 plane and the x = 1 plane — X is reduced and has
two components (see Figure 8.5). You can readily verify that x is a non-zerodivisor
of A (x = 0 misses one component of X, and doesn’t vanish entirely on the other),
and that the corresponding effective Cartier divisor X ′ = Spec k[x, y, z]/(x, z) (on
X) is integral. Then (x − 1)y gives an effective Cartier divisor on X ′ (it doesn’t
vanish entirely onX ′), so x, (x−1)y is a regular sequence forA. However, (x−1)y is
not a non-zerodivisor ofA, as it does vanish entirely on one of the two components.
Thus (x − 1)y, x is not a regular sequence. The reason that reordering the regular
sequence x, (x−1)y ruins regularity is clear: there is a locus on which (x−1)y isn’t
effective Cartier, but it disappears if we enforce x = 0 first. The problem is one of
“nonlocality” — “near” x = y = z = 0 there is no problem. This may motivate
the fact that in the (Noetherian) local situation, this problem disappears. We now
make this precise.
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FIGURE 8.5. Order matters in a regular sequence (in the “non-
local” situation), for silly reasons

8.4.6. Theorem. — Suppose (A,m) is a Noetherian local ring, and M is a finitely
generated A-module. Then any M-regular sequence (x1, . . . , xr) in m remains a regular
sequence upon any reordering.

(In [Di], Dieudonné gives a half-page example showing that Noetherian hy-
potheses are necessary in Theorem 8.4.6.)

Before proving Theorem 8.4.6 (in Exercise 8.4.F), we prove the first nontrivial
case, when r = 2. This discussion is secretly a baby case of the Koszul complex.

Suppose x, y ∈ m, and x, y is an M-regular sequence. Translation: x ∈ m is a
non-zerodivisor onM, and y ∈ m is a non-zerodivisor onM/xM.

Consider the double complex

(8.4.6.1) M
×(−x) //M

M

×y

OO

×x //M

×y

OO

where the bottom left is considered to be in position (0, 0). (The only reason for
the minus sign in the top row is solely our arbitrary preference for anti-commuting
rather than commuting squares in §1.7.1, but it really doesn’t matter.)

We compute the cohomology of the total complex using a (simple) spectral
sequence, beginning with the rightward orientation. (The gratuitous use of spec-
tral sequences here, as in many of our other applications, is overkill; we do this
partially in order to get practice with the machine.) On the first page, we have

(0 : (x)) M/xM

(0 : (x))

×y

OO

M/xM

×y

OO

The entries (0 : (x)) in the first column are 0, as x is a non-zerodivisor onM. Taking
homology in the vertical direction to obtain the second page, we find

(8.4.6.2) 0 M/(x, y)M

0 0
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using the fact that y is a non-zerodivisor on M/xM. The sequence clearly con-
verges here. Thus the original double complex (8.4.6.1) only has nonzero cohomol-
ogy in degree 2, where it isM/(x, y)M.

Now we run the spectral sequence on (8.4.6.1) using the upward orientation.
The first page of the sequence is:

M/yM
×(−x) //M/yM

(0 : (y))
×x // (0 : (y))

The sequence must converge to (8.4.6.2) after the next step. From the top row, we
see that multiplication by x must be injective on M/yM, so x is a non-zerodivisor
on M/yM. From the bottom row, multiplication by x gives an isomorphism of
(0 : (y)) with itself. As x ∈ m, by version 2 of Nakayama’s Lemma (Lemma 7.2.9),
this implies that (0 : (y)) = 0, so y is a non-zerodivisor onM. Thus we have shown
that y, x is a regular sequence onM— the r = 2 case of Theorem 8.4.6.

8.4.F. EASY EXERCISE. Prove Theorem 8.4.6. (Hint: show it first in the case of
a reordering where only two adjacent xi are swapped, using the r = 2 case just
discussed.) Where are the Noetherian hypotheses used?

8.4.7. Regular embeddings.
Suppose π : X ↪→ Y is a locally closed embedding. We say that π is a regular

embedding (of codimension r) at a point p ∈ X if in the local ring OY,p, the ideal
of X is generated by a regular sequence (of length r). We say that π is a regular
embedding (of codimension r) if it is a regular embedding (of codimension r) at
all p ∈ X. (Another reasonable name for a regular embedding might be “local
complete intersection”. Unfortunately, “local complete intersection morphism”,
or “lci morphism”, is already used for a related notion, see [Stacks, tag 068E].)

Our terminology uses the word “codimension”, which we have not defined as
a word on its own. The reason for using this word will become clearer once you
meet Krull’s Principal Ideal Theorem 11.3.3 and Krull’s Height Theorem 11.3.7.

8.4.G. EXERCISE (THE CONDITION OF A LOCALLY CLOSED EMBEDDING BEING A
REGULAR EMBEDDING IS OPEN). Show that if a locally closed embedding π : X ↪→
Y of locally Noetherian schemes is a regular embedding at p, then it is a regular
embedding in some open neighborhood of p in X. Hint: reduce to the case where
π is a closed embedding, and then where Y (hence X) is affine — say Y = SpecB,
X = SpecB/I, and p = [p] — and there are f1, . . . , fr such that in OY,p, the images
of the fi are a regular sequence generating Ip. We wish to show that (f1, . . . , fr) = I
“in an open neighborhood of p”. Prove the following fact in algebra: if I and J are
ideals of a Noetherian ring A, and p ⊂ A is a prime ideal such that Ip = Jp, show
that there exists a ∈ A \ p such that Ia = Ja in Aa. To do this, show that it suffices
to consider the special case I ⊂ J, by considering I ∩ J and J instead of I and J. To
show this special case, let K = J/I, a finitely generated module, and show that if
Kp = 0 then Ka = 0 for some a ∈ A \ p.

Hence if X is quasicompact, then to check that a closed embedding π is a regu-
lar embedding it suffices to check at closed points of X.
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Exercise 12.1.F(b) will show that not all closed embeddings are regular embed-
dings.

8.4.H. EXERCISE. Show that a closed embedding X ↪→ Y of locally Noetherian
schemes is a regular embedding of codimension 1 if and only if X is an effective
Cartier divisor on Y. Unimportant remark: the Noetherian hypotheses can be re-
placed by requiring OY to be coherent, and essentially the same argument applies.
It is interesting to note that “effective Cartier divisor” implies “regular embedding
of codimension 1” always, but that the converse argument requires Noetherian(-
like) assumptions. (See [MO129242] for a counterexample to the converse.)

8.4.8. Definition. A codimension r complete intersection in a scheme Y is a
closed subscheme X that can be written as the scheme-theoretic intersection of r
effective Cartier divisors D1, . . . , Dr, such that at every point p ∈ X, the equa-
tions corresponding to D1, . . . , Dr form a regular sequence. The phrase complete
intersection means “codimension r complete intersection for some r”.





CHAPTER 9

Fibered products of schemes, and base change

9.1 They exist

Before we get to products, we note that coproducts exist in the category of
schemes: just as with the category of sets (Exercise 1.3.T), coproduct is disjoint
union. The next exercise makes this precise (and directly extends to coproducts of
an infinite number of schemes).

9.1.A. EASY EXERCISE. Suppose X and Y are schemes. Let X
⨿
Y be the scheme

whose underlying topological space is the disjoint union of the topological spaces
of X and Y, and with structure sheaf on (the part corresponding to) X given by OX,
and similarly for Y. Show that X

⨿
Y is the coproduct of X and Y (justifying the

use of the coproduct symbol
⨿

).

We will now construct the fibered product in the category of schemes.

9.1.1. Theorem: Fibered products exist. — Suppose α : X → Z and β : Y → Z are
morphisms of schemes. Then the fibered product

X×Z Y
α ′

//

β ′

��

Y

β

��
X

α // Z

exists in the category of schemes.

Note: if A is a ring, people often sloppily write ×A for ×SpecA. If B is an A-
algebra, and X is anA-scheme, people often write XB or X×AB for X×SpecASpecB.

9.1.2. Warning: products of schemes aren’t products of sets. Before showing existence,
here is a warning: the product of schemes isn’t a product of sets (and more gen-
erally for fibered products). We have made a big deal about schemes being sets,
endowed with a topology, upon which we have a structure sheaf. So you might
think that we will construct the product in this order. But we won’t, because prod-
ucts behave oddly on the level of sets. You may have checked (Exercise 6.6.E(a))
that the product of two affine lines over your favorite algebraically closed field k
is the affine plane: A1

k
×k A1k

∼= A2
k

. But the underlying set of the latter is not the
underlying set of the former —- we get additional points, corresponding to curves
in A2 that are not lines parallel to the axes!

247
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9.1.3. On the other hand, W-valued points (where W is a scheme, Definition 6.3.9)
do behave well under (fibered) products (as mentioned in §6.3.10). This is just the
universal property definition of fibered product: an W-valued point of a scheme
X is defined as an element of Hom(W,X), and the fibered product is defined (via
Yoneda, see §1.3.1) by

(9.1.3.1) Hom(W,X×Z Y) = Hom(W,X)×Hom(W,Z) Hom(W,Y).

This is one justification for making the definition of scheme-valued point. For
this reason, those classical people preferring to think only about varieties over
an algebraically closed field k (or more generally, finite type schemes over k), and
preferring to understand them through their closed points — or equivalently, the k-
valued points, by the Nullstellensatz (Exercise 5.3.F) — needn’t worry: the closed
points of the product of two finite type k-schemes over k are (naturally identified
with) the product of the closed points of the factors. This will follow from the fact
that the product is also finite type over k, which we verify in Exercise 9.2.D. This
is one of the reasons that varieties over algebraically closed fields can be easier
to work with. But over a nonalgebraically closed field, things become even more
interesting; Example 9.2.3 is a first glimpse.

(Fancy remark: You may feel that (i) “products of topological spaces are prod-
ucts on the underlying sets” is natural, while (ii) “products of schemes are not
necessarily products on the underlying sets” is weird. But really (i) is the lucky
consequence of the fact that the underlying set of a topological space can be in-
terpreted as set of p-valued points, where p is a point, so it is best seen as a con-
sequence of paragraph 9.1.3, which is the “more correct” — i.e., more general —
fact.)

9.1.4. Warning on Noetherianness. The fibered product of Noetherian schemes need
not be Noetherian. You will later be able to verify that Exercise 9.2.E gives an ex-
ample, i.e., that A := Q ⊗Q Q is not Noetherian, as follows. By Exercise 11.1.G(a),
dimA = 0. A Noetherian dimension 0 scheme has a finite number of points (Exer-
cise 11.1.C). But by Exercise 9.2.E, SpecA has an infinite number of points.

On the other hand, the fibered product of finite type k-schemes over finite
type k-schemes is a finite type k-scheme (Exercise 9.2.D), so this pathology does
not arise for varieties.

9.1.5. Philosophy behind the proof of Theorem 9.1.1. The proof of Theorem 9.1.1
can be confusing. The following comments may help a little.

We already basically know existence of fibered products in two cases: the case
where X, Y, and Z are affine (stated explicitly below), and the case where β : Y → Z

is an open embedding (Exercise 7.1.B).

9.1.B. EXERCISE (PROMISED IN REMARK 6.3.5). Use Exercise 6.3.F (HomSch(W, SpecA) =
HomRings(A, Γ(W,OW))) to show that given ring maps C→ A and C→ B,

Spec(A⊗C B) ∼= SpecA×SpecC SpecB.

(Interpret tensor product as the “fibered coproduct” in the category of rings.) Hence
the fibered product of affine schemes exists (in the category of schemes). (This gen-
eralizes the fact that the product of affine lines exist, Exercise 6.6.E(a).)
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The main theme of the proof of Theorem 9.1.1 is that because schemes are
built by gluing affine schemes along open subsets, these two special cases will be
all that we need. The argument will repeatedly use the same ideas — roughly,
that schemes glue (Exercise 4.4.A), and that morphisms of schemes glue (Exer-
cise 6.3.A). This is a sign that something more structural is going on; §9.1.6 de-
scribes this for experts.

Proof of Theorem 9.1.1. The key idea is this: we cut everything up into affine open
sets, do fibered products there, and show that everything glues nicely. The concep-
tually difficult part of the proof comes from the gluing, and the realization that we
have to check almost nothing. We divide the proof up into a number of bite-sized
pieces.

Step 1: fibered products of affine with “almost-affine” over affine. We begin by com-
bining the affine case with the open embedding case as follows. Suppose X and Z

are affine, and β : Y → Z factors as Y �
� ι // Y ′ // Z where ι is an open embed-

ding and Y ′ is affine. Then X×Z Y exists. This is because if the two small squares
of

W //� _

open
��

Y� _

open
��

W ′ //

��

Y ′

��
X // Z

are fibered diagrams, then the “outside rectangle” is also a fibered diagram. (This
was Exercise 1.3.Q, although you should be able to see this on the spot.) It will be
important to remember (from Important Exercise 7.1.B) that “open embeddings”
are “preserved by fibered product”: the fact that Y → Y ′ is an open embedding
implies thatW →W ′ is an open embedding.

Key Step 2: fibered product of affine with arbitrary over affine exists. We now come
to the key part of the argument: if X and Z are affine, and Y is arbitrary. This is
confusing when you first see it, so we first deal with a special case, when Y is the
union of two affine open sets Y1 ∪ Y2. Let Y12 = Y1 ∩ Y2.

Now for i = 1 and 2, X ×Z Yi exists by the affine case, Exercise 9.1.B. Call
this Wi. Also, X ×Z Y12 exists by Step 1 (call it W12), and comes with canonical
open embeddings intoW1 andW2 (by construction of fibered products with open
embeddings, see the last sentence of Step 1). Thus we can glue W1 to W2 along
W12; call this resulting schemeW.

We check that the result is the fibered product by verifying that it satisfies the
universal property. Suppose we have maps α ′′ : V → X, β ′′ : V → Y that compose
(with α and β respectively) to the same map V → Z. We need to construct a unique
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map γ : V →W, so that α ′ ◦ γ = β ′′ and β ′ ◦ γ = α ′′.

(9.1.5.1) V

∃!γ?
AA

A

  A
AA
β ′′

''PP
PPP

PPP
PPP

PPP
P

α ′′

��0
00
00
00
00
00
00
0

W

β ′

��

α ′
// Y

β

��
X

α
// Z

For i = 1, 2, define Vi := (β ′′)−1(Yi). Define V12 := (β ′′)−1(Y12) = V1 ∩ V2. Then
there is a unique map Vi →Wi such that the composed maps Vi → X and Vi → Yi
are as desired (by the universal property of the fibered product X ×Z Yi = Wi),
hence a unique map γi : Vi → W. Similarly, there is a unique map γ12 : V12 → W

such that the composed maps V12 → X and V12 → Y are as desired. But the
restriction of γi to V12 is one such map, so it must be γ12. Thus the maps γ1 and
γ2 agree on V12, and glue together to a unique map γ : V → W. We have shown
existence and uniqueness of the desired γ.

We have thus shown that if Y is the union of two affine open sets, and X and
Z are affine, then X×Z Y exists.

We now tackle the general case. (You may prefer to first think through the
case where “two” is replaced by “three”.) We now cover Y with open sets Yi, as
i runs over some index set (not necessarily finite!). As before, we define Wi and
Wij. We can glue these together to produce a scheme W along with open sets
we identify with Wi (Exercise 4.4.A — you should check the triple intersection
“cocycle” condition).

As in the two-affine case, we show that W is the fibered product by show-
ing that it satisfies the universal property. Suppose we have maps α ′′ : V → X,
β ′′ : V → Y that compose to the same map V → Z. We construct a unique map
γ : V → W, so that α ′ ◦ γ = β ′′ and β ′ ◦ γ = α ′′. Define Vi = (β ′′)−1(Yi) and
Vij := (β ′′)−1(Yij) = Vi ∩ Vj. Then there is a unique map Vi → Wi such that
the composed maps Vi → X and Vi → Yi are as desired, hence a unique map
γi : Vi → W. Similarly, there is a unique map γij : Vij → W such that the com-
posed maps Vij → X and Vij → Y are as desired. But the restriction of γi to Vij
is one such map, so it must be γij. Thus the maps γi and γj agree on Vij. Thus
the γi glue together to a unique map γ : V → W. We have shown existence and
uniqueness of the desired γ, completing this step.

Step 3: Z affine, X and Y arbitrary. We next show that if Z is affine, and X and
Y are arbitrary schemes, then X ×Z Y exists. We just follow Step 2, with the roles
of X and Y reversed, using the fact that by the previous step, we can assume that
the fibered product of an affine scheme with an arbitrary scheme over an affine
scheme exists.

Step 4: Z “almost-affine”, X and Y arbitrary. This is akin to Step 1. Let Z ↪→ Z ′

be an open embedding into an affine scheme. Then X ×Z Y satisfies the universal
property of X×Z ′ Y.

Step 5: the general case. We employ the same trick yet again. Suppose α : X→ Z,
β : Y → Z are two morphisms of schemes. Cover Z with affine open subschemes
Zi, and let Xi = α−1(Zi) and Yi = β−1(Zi). Define Zij := Zi ∩ Zj, Xij := α−1(Zij),
and Yij := β−1(Zij). Then Wi := Xi ×Zi

Yi exists for all i (Step 3), and Wij :=
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Xij×Zij
Yij exists for all i, j (Step 4), and for each i and j,Wij comes with a canoni-

cally open immersion into bothWi andWj (see the last sentence in Step 1). AsWi
satisfies the universal property of X×Z Yi (do you see why?), we may canonically
identifyWi (which we know to exist by Step 3) with X×ZYi. Similarly, we identify
Wij with X×Z Yij.

We then proceed exactly as in Step 2: theWi’s can be glued together along the
Wij (the cocycle condition can be readily checked to be satisfied), and W can be
checked to satisfy the universal property of X×ZY (again, exactly as in Step 2). □

9.1.6. ⋆⋆ Describing the existence of fibered products using the high-falutin’
language of representable functors. The proof above can be described more
cleanly in the language of representable functors (§6.6). This will be enlightening
only after you have absorbed the above argument and meditated on it for a long
time. It may be most useful to shed light on representable functors, rather than on
the existence of the fibered product.

Until the end of §9.1 only, by functor, we mean contravariant functor from the cate-
gory Sch of schemes to the category of Sets. For each scheme X, we have a functor hX,
taking a scheme Y to the set Mor(Y, X) (§1.2.20). Recall (§1.3.10, §6.6) that a functor
is representable if it is naturally isomorphic to some hX. If a functor is representable,
then the representing scheme is unique up to unique isomorphism (Exercise 6.6.C).
This can be usefully extended as follows:

9.1.C. EXERCISE (Yoneda’s Lemma). If X and Y are schemes, describe a bijection
between morphisms of schemes X → Y and natural transformations of functors
hX → hY . Hence show that the category of schemes is a fully faithful subcategory
(§1.2.15) of the “functor category” (all contravariant functors Sch → Sets). Hint:
this has nothing to do with schemes; your argument will work in any category.
This is the contravariant version of Exercise 1.3.Z(c).

One of Grothendieck’s insights is that we should try to treat such functors as
“geometric spaces”, without worrying about representability. Many notions carry
over to this more general setting without change, and some notions are easier. For
example, fibered products of functors always exist: h×h ′′ h ′ may be defined by

(h×h ′′ h ′)(W) = h(W)×h ′′(W) h
′(W),

where the fibered product on the right is a fibered product of sets, which always
exists. (This isn’t quite enough to define a functor; we have only described where
objects go. You should work out where morphisms go too.) We didn’t use any-
thing about schemes; this works with Sch replaced by any category.

Then “X×Z Y exists” translates to “hX ×hZ
hY is representable”.

9.1.7. Representable functors are Zariski sheaves. Because “morphisms to schemes
glue” (Exercise 6.3.A), we have a necessary condition for a functor to be repre-
sentable. We know that if {Ui} is an open cover of Y, a morphism Y → X is deter-
mined by its restrictions Ui → X, and given morphisms Ui → X that agree on the
overlap Ui ∩Uj → X, we can glue them together to get a morphism Y → X. In the
language of equalizer exact sequences (§2.2.7),

· // hX(Y) //∏hX(Ui)
////
∏
hX(Ui ∩Uj)



252 The Rising Sea: Foundations of Algebraic Geometry

is exact. Thus morphisms to X (i.e., the functor hX) form a sheaf on every scheme
Y. If this holds, we say that the functor is a Zariski sheaf. (You can impress your
friends by telling them that this is a sheaf on the big Zariski site.) We can repeat this
discussion with Sch replaced by the category SchS of schemes over a given base
scheme S. We have proved (or observed) that in order for a functor to be representable,
it is necessary for it to be a Zariski sheaf.

The fibered product passes this test:

9.1.D. EXERCISE. If X, Y → Z are schemes, show that hX ×hZ
hY is a Zariski sheaf.

(Do not use the fact that hX ×hZ
hY is representable! The point of this section is to

recover representability from a more sophisticated perspective.)

We can make some other definitions that extend notions from schemes to
functors. We say that a map (i.e., natural transformation) of functors h ′ → h ex-
presses h ′ as an open subfunctor of h if for all representable functors hX and maps
hX → h, the fibered product hX ×h h ′ is representable, by U say, and hU → hX
corresponds to an open embedding of schemes U → X. The following Cartesian
square may help.

hU

��

open // hX

��
h ′ // h

9.1.E. EXERCISE. Show that a map of representable functors hW → hZ is an open
subfunctor if and only ifW → Z is an open embedding, so this indeed extends the
notion of open embedding to (contravariant) functors (Sch→ Sets).

9.1.F. EXERCISE (THE GEOMETRIC NATURE OF THE NOTION OF “OPEN SUBFUNC-
TOR”).
(a) Show that an open subfunctor of an open subfunctor is also an open subfunc-
tor.
(b) Suppose h ′ → h and h ′′ → h are two open subfunctors of h. Define the inter-
section of these two open subfunctors, which should also be an open subfunctor
of h.
(c) Suppose U and V are two open subschemes of a scheme X, so hU → hX and
hV → hX are open subfunctors. Show that the intersection of these two open
subfunctors is, as you would expect, hU∩V .

9.1.G. EXERCISE. Suppose α : X → Z and β : Y → Z are morphisms of schemes,
and U ⊂ X, V ⊂ Y, W ⊂ Z are open embeddings, where U and V map to W.
Interpret hU ×hW

hV as an open subfunctor of hX ×hZ
hY . (Hint: given a map

hT → hX×ZY , what open subset of T should correspond to U×W V?)

A collection hi of open subfunctors of h is said to cover h if for every map
hX → h from a representable subfunctor, the corresponding open subsets Ui ↪→ X

cover X.
Given that functors do not have an obvious underlying set (let alone a topol-

ogy), it is rather amazing that we are talking about when one is an “open subset”
of another, or when some functors “cover” another!
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9.1.H. EXERCISE. Suppose {Zi}i is an affine cover of Z, {Xij}j is an affine cover of
the preimage of Zi in X, and {Yik}k is an affine cover of the preimage of Zi in Y.
Show that {hXij

×hZi
hYik

}ijk is an open cover of the functor hX ×hZ
hY . (Hint:

consider a map hT → hX ×hZ
hY , and extend your solution to Exercise 9.1.G.)

We now come to a key point: a Zariski sheaf that is “locally representable”
must be representable:

9.1.I. KEY EXERCISE. If a functor h is a Zariski sheaf that has an open cover by
representable functors (“is covered by schemes”), then h is representable. (Hint:
use Exercise 4.4.A to glue together the schemes representing the open subfunctors.)

This immediately leads to the existence of fibered products as follows. Ex-
ercise 9.1.D shows that hX ×hZ

hY is a Zariski sheaf. But hXij
×hZi

hYik
is rep-

resentable for each i, j, k (fibered products of affines over an affine exist, Exer-
cise 9.1.B), and these functors are an open cover of hX×hZ

hY by Exercise 9.1.H, so
by Key Exercise 9.1.I we are done.

9.2 Computing fibered products in practice

Before giving some examples, we first see how to compute fibered products
in practice. There are four types of morphisms (1)–(4) that it is particularly easy
to take fibered products with, and all morphisms can be built from these atomic
components. More precisely, (1) will imply that we can compute fibered products
locally on the source and target. Thus to understand fibered products in general,
it suffices to understand them on the level of affine sets, i.e., to be able to compute
A ⊗B C given ring maps B → A and B → C. Any map B → A (and similarly
B→ C) may be expressed as B→ B[t1, . . . ]/I, so if we know how to base change by
“adding variables” (2) and “taking quotients” (3), we can “compute” any fibered
product (at least in theory). The fourth type of morphism (4), corresponding to
localization, is useful to understand explicitly as well.

(1) Base change by open embeddings.
We have already done this (Exercise 7.1.B), and we used it in the proof that

fibered products of schemes exist.

(2) Adding an extra variable.

9.2.A. EASY ALGEBRA EXERCISE. Show that A⊗B B[t] ∼= A[t], so the following is a
fibered diagram. (Your argument might naturally extend to allow the addition of
infinitely many variables, but we won’t need this generality.) Hint: show that A[t]
satisfies an appropriate universal property.

SpecA[t]

��

// SpecB[t]

��
SpecA // SpecB
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9.2.1. Definition (affine space over an arbitrary scheme). If X is any scheme, we define
AnX as X ×Z SpecZ[x1, . . . , xn]. Clearly AnSpecA is canonically the same as AnA as
defined in Example 8 of §3.2.3.

(3) Base change by closed embeddings.

9.2.B. EXERCISE. Suppose ϕ : B → A is a ring morphism, and I ⊂ B is an ideal.
Let Ie := ⟨ϕ(i)⟩i∈I ⊂ A be the extension of I toA. Describe a natural isomorphism
A/Ie ∼= A⊗B (B/I). (Hint: consider I→ B→ B/I→ 0, and use the right-exactness
of ⊗BA, Exercise 1.3.H.)

9.2.2. As an immediate consequence: the fibered product with a closed subscheme
is a closed subscheme of the fibered product in the obvious way. We say that
“closed embeddings are preserved by base change”.

9.2.C. EXERCISE.
(a) Interpret the intersection of two closed embeddings into X (cf. Exercise 8.1.J) as
their fibered product over X.
(b) Show that “locally closed embeddings” are preserved by base change.
(c) Define the intersection of n locally closed embeddings Xi ↪→ Z (1 ≤ i ≤ n) by
the fibered product of the Xi over Z (mapping to Z). Show that the intersection of
(a finite number of) locally closed embeddings is also a locally closed embedding.

As an application of Exercise 9.2.B, we can compute tensor products of finitely
generated k-algebras over k. For example, we have

k[x1, x2]/(x
2
1 − x2)⊗k k[y1, y2]/(y31 + y32) ∼= k[x1, x2, y1, y2]/(x

2
1 − x2, y

3
1 + y

3
2).

9.2.D. EXERCISE. Suppose X and Y are locally of finite typeA-schemes. Show that
X ×A Y is also locally of finite type over A. Prove the same thing with “locally”
removed from both the hypothesis and conclusion.

9.2.3. Example. We can use these ideas to compute C⊗R C:

C⊗R C ∼= C⊗R (R[x]/(x2 + 1))
∼= (C⊗R R[x])/(x2 + 1) by §9.2(3)
∼= C[x]/(x2 + 1) by §9.2(2)
∼= C[x]/ ((x− i)(x+ i))
∼= C[x]/(x− i)× C[x]/(x+ i) by the Chinese Remainder Theorem
∼= C× C

Thus SpecC ×R SpecC ∼= SpecC
⨿

SpecC. This example is the first example of
many different behaviors. Notice for example that two points somehow corre-
spond to the Galois group of C over R; for one of them, x (the “i” in one of the
copies of C) equals i (the “i” in the other copy of C), and in the other, x = −i.

9.2.4. ⋆ Remark. Here is a clue that there is something deep going on behind Ex-
ample 9.2.3. If L/K is a (finite) Galois extension with Galois group G, then L ⊗K L
is isomorphic to LG (the product of |G| copies of L). This turns out to be a restate-
ment of the classical form of linear independence of characters! In the language of
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schemes, SpecL×K SpecL is a union of a number of copies of SpecL that naturally
form a torsor over the Galois group G; but we will not define torsor here.

9.2.E. ⋆ HARD BUT FASCINATING EXERCISE FOR THOSE FAMILIAR WITH Gal(Q/Q).
Show that the points of SpecQ ⊗Q Q are in natural bijection with Gal(Q/Q), and
the Zariski topology on the former agrees with the profinite topology on the latter.
(Some hints: first do the case of finite Galois extensions. Relate the topology on
Spec of a direct limit of rings to the inverse limit of Specs. Can you see which point
corresponds to the identity of the Galois group?)

At this point, we can compute anyA⊗BC (whereA andC are B-algebras): any
map of rings ϕ : B→ A can be interpreted by adding variables (perhaps infinitely
many) to B, and then imposing relations. But in practice (4) is useful, as we will
see in examples.

(4) Base change of affine schemes by localization.

9.2.F. EXERCISE. Suppose ϕ : B→ A is a ring morphism, and S ⊂ B is a multiplica-
tive subset of B, which implies that ϕ(S) is a multiplicative subset of A. Describe
a natural isomorphism ϕ(S)−1A ∼= A⊗B (S−1B).

Informal translation: “the fibered product with a localization is the localiza-
tion of the fibered product in the obvious way”. We say that “localizations are
preserved by base change”. This is handy if the localization is of the form B ↪→ Bf
(corresponding to taking distinguished open sets) or (if B is an integral domain)
B ↪→ K(B) (corresponding to taking the generic point), and various things in be-
tween.

9.2.5. Examples. These four facts let you calculate lots of things in practice, and
we will use them freely.

9.2.G. EXERCISE: THE THREE IMPORTANT TYPES OF MONOMORPHISMS OF SCHEMES.
Show that the following are monomorphisms (Definition 1.3.9): open embeddings,
closed embeddings, and localization of affine schemes. As monomorphisms are
closed under composition, Exercise 1.3.V, compositions of the above are also monomor-
phisms — for example, locally closed embeddings, or maps from “Spec of stalks
at points of X” to X. (Caution: if p is a point of a scheme X, the natural morphism
Spec OX,p → X, cf. Exercise 6.3.K, is a monomorphism but is not in general an
open embedding.)

9.2.H. EXERCISE. Prove that AnA ∼= AnZ ×Spec Z SpecA. Prove that PnA ∼= PnZ ×Spec Z
SpecA. Thus affine space and projective space are pulled back from their “univer-
sal manifestation” over the final object SpecZ.

9.2.6. Extending the base field. One special case of base change is called extending
the base field: if X is a k-scheme, and ℓ is a field extension (often ℓ is the algebraic
closure of k), then X ×Speck Spec ℓ (sometimes informally written X ×k ℓ or Xℓ) is
an ℓ-scheme. Often properties of X can be checked by verifying them instead on
Xℓ. This is the subject of descent — certain properties “descend” from Xℓ to X. We
have already seen that the property of being the Spec of a normal integral domain
descends in this way (Exercise 5.4.M). Exercises 9.2.I and 9.2.J give other examples
of properties which descend: the property of two morphisms being equal, and the
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property of a(n affine) morphism being a closed embedding, both descend in this
way. Those interested in schemes over non-algebraically closed fields will use this
repeatedly, to reduce results to the algebraically closed case.

9.2.I. EXERCISE. Suppose π : X → Y and ρ : X → Y are morphisms of k-schemes,
ℓ/k is a field extension, and πℓ : X×Speck Spec ℓ→ Y ×Speck Spec ℓ and ρℓ : X×Speck
Spec ℓ → Y ×Speck Spec ℓ are the induced maps of ℓ-schemes. (Be sure you under-
stand what this means!) Show that if πℓ = ρℓ then π = ρ. (Hint: show that π and ρ
are the same on the level of sets. To do this, you may use that X×Speck Spec ℓ→ X

is surjective, which we will soon prove in Exercise 9.4.D. Then reduce to the case
where X and Y are affine.)

9.2.J. EASY EXERCISE. Suppose π : X→ Y is an affine morphism over k, and ℓ/k is
a field extension. Show that π is a closed embedding if and only if π×k ℓ : X×k ℓ→
Y ×k ℓ is. (The affine hypothesis is not necessary for this result, but it makes the
proof easier, and this is the situation in which we will most need it.)

9.2.K. UNIMPORTANT BUT FUN EXERCISE. Show that SpecQ(t) ⊗Q C has closed
points in natural correspondence with the transcendental complex numbers. (If
the description SpecQ(t)⊗Q[t]C[t] is more striking, you can use that instead.) This
scheme doesn’t come up in nature, but it is certainly neat! A related idea comes
up in Remark 11.2.16.

9.3 Interpretations: Pulling back families, and fibers of
morphisms

9.3.1. Pulling back families.
We can informally interpret fibered product in the following geometric way.

Suppose Y → Z is a morphism. We interpret this as a “family of schemes parametrized
by a base scheme (or just plain base) Z.” Then if we have another morphism
ψ : X → Z, we interpret the induced map X×Z Y → X as the “pulled back family”
(see Figure 9.1).

X×Z Y //

pulled back family
��

Y

family
��

X
ψ // Z

We sometimes say that X ×Z Y is the scheme-theoretic pullback of Y, scheme-
theoretic inverse image, or inverse image scheme of Y. (Our forthcoming discus-
sion of fibers may give some motivation for this.) For this reason, fibered product
is often called base change or change of base or pullback. In addition to the vari-
ous names for a Cartesian diagram given in §1.3.6, in algebraic geometry it is often
called a base change diagram or a pullback diagram, and X ×Z Y → X is called
the pullback of Y → Z by ψ, and X ×Z Y is called the pullback of Y by ψ. One
often uses the phrase “over X” or “above X” when discussing X×Z Y, especially if
X is a locally closed subscheme of Z. (Random side remark: scheme-theoretic pull-
back always makes sense, while the notion of scheme-theoretic image is somehow
problematic, as discussed in §8.3.1.)
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FIGURE 9.1. A picture of a pulled back family

Before making any definitions, we give a motivating informal example. Con-
sider the “family of curves” y2 = x3+ tx in the xy-plane parametrized by t. Trans-
lation: consider Speck[x, y, t]/(y2 − x3 − tx)→ Speck[t]. If we pull back to a fam-
ily parametrized by the uv-plane via uv = t (i.e., Spec k[u, v]→ Speck[t] given by
t 7→ uv), we get y2 = x3+uvx, i.e., Speck[x, y, u, v]/(y2−x3−uvx)→ Spec k[u, v].
If instead we set t to 3 (i.e., pull back by Speck[t]/(t − 3) → Spec k[t], we get the
curve y2 = x3 + 3x (i.e., Spec k[x, y]/(y2 − x3 − 3x)→ Spec k), which we interpret
as the fiber of the original family above t = 3. We will soon be able to interpret
these constructions in terms of fibered products.

9.3.2. Fibers of morphisms.
(If you did Exercise 7.3.K, that finite morphisms have finite fibers, you will not

find the following discussion surprising.) A special case of pullback is the notion
of a fiber of a morphism. We motivate this with the notion of fiber in the category
of topological spaces.

9.3.A. EXERCISE. Show that if Y → Z is a continuous map of topological spaces,
and X is a point p of Z, then the fiber of Y over p (the set-theoretic fiber, with the
induced topology) is naturally identified with X×Z Y.

More generally, for any π : X→ Z, the fiber of X×Z Y → X over a point p of X
is naturally identified with the fiber of Y → Z over π(p).

Motivated by topology, we return to the category of schemes. Suppose p→ Z

is the inclusion of a point (not necessarily closed). More precisely, if p is a point
with residue field K, consider the map SpecK → Z sending SpecK to p, with the
natural isomorphism of residue fields. Then if g : Y → Z is any morphism, the base
change with p → Z is called the (scheme-theoretic) fiber (or fibre) of g above p or
the (scheme-theoretic) preimage of p, and is denoted g−1(p). If Z is irreducible,
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the fiber above the generic point of Z is called the generic fiber (of g). In an affine
open subscheme SpecA containing p, p corresponds to some prime ideal p, and
the morphism SpecK → Z corresponds to the ring map A → Ap/pAp. This is the
composition of localization and closed embedding, and thus can be computed by
the tricks above. (Note that p→ Z is a monomorphism, by Exercise 9.2.G.)

9.3.B. EXERCISE. Show that the underlying topological space of the (scheme-
theoretic) fiber of X→ Y above a point p is naturally identified with the topological
fiber of X→ Y above p.

9.3.C. EXERCISE (ANALOG OF EXERCISE 9.3.A). Suppose that π : Y → Z and
τ : X→ Z are morphisms, and p ∈ X is a point. Show that the fiber of X×Z Y → X

over p is (isomorphic to) the base change to p of the fiber of π : Y → Z over τ(p).

FIGURE 9.2. The map C→ C given by y 7→ y2

9.3.3. Example (enlightening in several ways). Consider the projection of the parabola
y2 = x to the x-axis over Q, corresponding to the map of rings Q[x] → Q[y], with
x 7→ y2. If Q alarms you, replace it with your favorite field and see what happens.
(You should look at Figure 9.2, which is a flipped version of the parabola of Fig-
ure 3.6, and figure out how to edit it to reflect what we glean here.) Writing Q[y]
as Q[x, y]/(y2 − x) helps us interpret the morphism conveniently.

(i) Then the preimage of 1 is two points:

SpecQ[x, y]/(y2 − x)⊗Q[x] Q[x]/(x− 1) ∼= SpecQ[x, y]/(y2 − x, x− 1)

∼= SpecQ[y]/(y2 − 1)

∼= SpecQ[y]/(y− 1)
⨿

SpecQ[y]/(y+ 1).

(ii) The preimage of 0 is one nonreduced point:

SpecQ[x, y]/(y2 − x, x) ∼= SpecQ[y]/(y2).

(iii) The preimage of −1 is one reduced point, but of “size 2 over the base
field”.

SpecQ[x, y]/(y2 − x, x+ 1) ∼= SpecQ[y]/(y2 + 1) ∼= SpecQ[i] = SpecQ(i).

(iv) The preimage of the generic point is again one reduced point, but of “size
2 over the residue field”, as we verify now.

SpecQ[x, y]/(y2 − x)⊗Q[x] Q(x) ∼= SpecQ[y]⊗Q[y2] Q(y2)
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i.e., (informally) the Spec of the ring of polynomials in y divided by polynomials
in y2. A little thought shows you that in this ring you may invert any polynomial
in y, as if f(y) is any polynomial in y, then

1

f(y)
=

f(−y)

f(y)f(−y)
,

and the latter denominator is a polynomial in y2. Thus

Q[x, y]/(y2 − x)⊗Q[x] Q(x) ∼= Q(y)

which is a degree 2 field extension of Q(x) (note that Q(x) = Q(y2)).
(You might want to work through the preimages of other points of A1Q, such

as [(x3 − 4)] and [(x2 − 2)].)
Notice the following interesting fact: in each of the four cases, the number of

preimages can be interpreted as 2, where you count to two in several ways: you
can count points (as in the case of the preimage of 1); you can get nonreduced
behavior (as in the case of the preimage of 0); or you can have a field extension of
degree 2 (as in the case of the preimage of −1 or the generic point). In each case, the
fiber is an affine scheme whose dimension as a vector space over the residue field
of the point is 2. Number theoretic readers may have seen this behavior before.
We will discuss this example again in §17.4.9. This is going to be symptomatic of
a very important kind of morphism (a finite flat morphism, see Remark 24.4.8 and
§24.4.12).

Try to draw a picture of this morphism if you can, so you can develop a picto-
rial shorthand for what is going on. A good first approximation is the parabola of
Figure 9.2, but you will want to somehow depict the peculiarities of (iii) and (iv).

9.3.4. Remark: Finite morphisms have finite fibers. If you haven’t done Exercise 7.3.K,
that finite morphisms have finite fibers, now would be a good time to do it, as you
will find it more straightforward given what you know now.

9.3.D. EXERCISE (IMPORTANT FOR THOSE WITH MORE ARITHMETIC BACKGROUND).
What is the scheme-theoretic fiber of SpecZ[i]→ SpecZ over the prime (p)? Your
answer will depend on p, and there are four cases, corresponding to the four cases
of Example 9.3.3. (Can you draw a picture?)

9.3.E. EXERCISE. (This exercise will give you practice in computing a fibered
product over something that is not a field.) Consider the morphism of schemes
X = Speck[t] → Y = Speck[u] corresponding to k[u] → k[t], u 7→ t2, where
chark ̸= 2. Show that X ×Y X has two irreducible components. (What happens if
chark = 2? See Exercise 9.5.A for a clue.)

9.3.5. A first view of a blow-up.

9.3.F. IMPORTANT CONCRETE EXERCISE. (The discussion here immediately gen-
eralizes to AnA.) Define a closed subscheme Bl(0,0) A2k of A2k ×k P1k as follows (see
Figure 9.3). If the coordinates on A2k are x, y, and the projective coordinates on P1k
are u, v, this subscheme is cut out in A2k×kP1k by the single equation xv = yu. (You
may wish to interpret Bl(0,0) A2k as follows. The P1k parametrizes lines through the
origin. The blow-up corresponds to ordered pairs of (point p, line ℓ) such that
(0, 0) and p both lie on ℓ.) Describe the fiber of the morphism Bl(0,0) A2k → P1k over
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each closed point of P1k. Show that the morphism Bl(0,0) A2k → A2k is an isomor-
phism away from (0, 0) ∈ A2k. Show that the fiber over (0, 0) is an effective Cartier
divisor (§8.4.1, a closed subscheme that is locally cut out by a single equation,
which is not a zerodivisor). It is called the exceptional divisor. We will discuss
blow-ups in Chapter 22. This particular example will come up in the motivating
example of §22.1, and in Exercise 20.2.D.

FIGURE 9.3. A first example of a blow-up

We haven’t yet discussed regularity, but here is a hand-waving argument sug-
gesting that the Bl(0,0) A2k is “smooth”: the preimage above either standard open
set Ui ⊂ P1 is isomorphic to A2. Thus “the blow-up is a surgery that takes the
smooth surface A2k, cuts out a point, and glues back in a P1, in such a way that the
outcome is another smooth surface.”

9.3.6. General fibers, generic fibers, generically finite morphisms.
The phrases “generic fiber” and “general fiber” parallel the phrases “generic

point” and “general point” (Definition 3.6.11). Suppose π : X→ Y is a morphism of
schemes. When one says the general fiber (or a general fiber) of π a has a certain
property, this means that there exists a dense open subset U ⊂ Y such that the
fibers above any point in U have that property.

When one says the generic fiber of π : X → Y, this implicitly means that Y
is irreducible, and the phrase refers to the fiber over the generic point. General
fiber and generic fiber are not the same thing! Clearly if something holds for the
general fiber, then it holds for the generic fiber, but the converse is not always true.
However, in good circumstances, it can be — properties of the generic fiber extend
to an honest open neighborhood. For example, if Y is irreducible and Noetherian,
and π is finite type, then if the generic fiber of π is empty (resp. nonempty), then
the general fiber is empty (resp. nonempty), by Chevalley’s Theorem 7.4.2 (or more
simply, by Exercise 7.4.L).

If π : X → Y is finite type, we say π is generically finite if π is finite after base
change to the generic point of each irreducible component (or equivalently, by
Exercise 7.4.D, if the preimage of the generic point of each irreducible component
of Y is a finite set). (The notion of generic finiteness can be defined in more general
circumstances, see [Stacks, tag 073A].)
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9.3.G. EXERCISE (“GENERICALLY FINITE” USUALLY MEANS “GENERALLY FINITE”).
Suppose π : X → Y is an affine, finite type, generically finite morphism of locally
Noetherian schemes, and Y is reduced. Show that there is an open neighborhood
of each generic point of Y over which π is actually finite. (The hypotheses can be
weakened considerably, see [Stacks, tag 02NW].) Hint: reduce to the case where Y
is SpecB, where B is an integral domain. Then X is affine, say X = SpecA. Write
A = B[x1, . . . , xn]/I. Now A ⊗B K(B) is a finite K(B)-module (finite-dimensional
vector space) by hypothesis, so there are monic polynomials fi(t) ∈ K(B)[t] such
that fi(xi) = 0 in A⊗B K(B). Let b be the product of the (finite number of) denom-
inators appearing in the coefficients in the fi(x). By replacing B by Bb, argue that
you can assume that fi(t) ∈ B[t]. Then fi(xi) = 0 inA⊗BK(B), meaning that fi(xi)
is annihilated by some nonzero element of B. By replacing B by its localization at
the product of these n nonzero elements (“shrinking SpecB further”), argue that
fi(xi) = 0 in A. Then conclude.

9.3.7. ⋆⋆ Finitely presented families (morphisms) are locally pullbacks of partic-
ularly nice families. If you are macho and are embarrassed by Noetherian rings,
the following exercise can be used to extend results from the Noetherian case to
locally finitely presented situations. Exercise 9.3.I, an extension of Chevalley’s The-
orem 7.4.2, is a good example.

9.3.H. EXERCISE. Suppose π : X→ SpecB is a finitely presented morphism. Show
that there exists a base change diagram of the form

X

π

��

// X ′

π ′

��
SpecB

ρ // SpecZ[x1, . . . , xN]

where N is some integer, and π ′ is finitely presented (= finite type as the target
is Noetherian, see §7.3.17). Thus each finitely presented morphism is locally (on
the base) a pullback of a finite type morphism to a Noetherian scheme. Hence
any result proved for Noetherian schemes and stable under base change is auto-
matically proved for locally finitely presented morphisms to arbitrary schemes.
Hint: think about the case where X is affine first. If X = SpecA, then A =
B[y1, . . . , yn]/(f1, . . . , fr). Choose one variable xi for each coefficient of fi ∈ B[y1, . . . , yn].
What is X ′ in this case? Then consider the case where X is the union of two affine
open sets, that intersect in an affine open set. Then consider more general cases
until you solve the full problem. You will need to use every part of the definition
of finite presentation. (Exercise 28.2.L extends this result.)

9.3.I. EXERCISE (CHEVALLEY’S THEOREM FOR LOCALLY FINITELY PRESENTED MOR-
PHISMS).
(a) Suppose that A is a finitely presented B-algebra (B not necessarily Noetherian),
so A = B[x1, . . . , xn]/(f1, . . . , fr). Show that the image of SpecA → SpecB is a
finite union of locally closed subsets of SpecB. Hint: Exercise 9.3.H (the simpler
affine case).
(b) Show that if π : X → Y is a quasicompact locally finitely presented morphism,
and Y is quasicompact, then π(X) is a finite union of locally closed subsets. (For



262 The Rising Sea: Foundations of Algebraic Geometry

hardened experts only: [Gr-EGA, 0III.9.1] gives a definition of local constructibil-
ity, and of constructibility in more generality. The general form of Chevalley’s
Constructibility Theorem [Gr-EGA, IV1.1.8.4] is that the image of a locally con-
structible subset, under a finitely presented map, is also locally constructible.)

9.4 Properties preserved by base change

All reasonable properties of morphisms are preserved under base change. (In
fact, one might say that a property of morphisms cannot be reasonable if it is not
preserved by base change, cf. §7.1.1.) We discuss this, and in §9.5 we will explain
how to fix those that don’t fit this pattern.

We have already shown that the notion of “open embedding” is preserved by
base change (Exercise 7.1.B). We did this by explicitly describing what the fibered
product of an open embedding is: if Y ↪→ Z is an open embedding, and ψ : X→ Z

is any morphism, then we checked that the open subscheme ψ−1(Y) of X satisfies
the universal property of fibered products.

We have also shown that the notion of “closed embedding” is preserved by
base change (§9.2 (3)). In other words, given a Cartesian diagram

W //

��

Y � _

cl. emb.
��

X // Z

where Y ↪→ Z is a closed embedding,W → X is as well.

9.4.A. EASY EXERCISE. Show that locally principal closed subschemes (Defini-
tion 8.4.1) pull back to locally principal closed subschemes.

Similarly, other important properties are preserved by base change.

9.4.B. EXERCISE. Show that the following properties of morphisms are preserved
by base change.

(a) quasicompact
(b) quasiseparated
(c) affine morphism
(d) finite
(e) integral
(f) locally of finite type
(g) finite type

⋆⋆ (h) locally of finite presentation
⋆⋆ (i) finite presentation

9.4.C. ⋆ EXERCISE. Show that the notion of “quasifinite morphism” (finite type +
finite fibers, Definition 7.3.14) is preserved by base change. (Warning: the notion
of “finite fibers” is not preserved by base change. SpecQ → SpecQ has finite
fibers, but SpecQ ⊗Q Q → SpecQ has one point for each element of Gal(Q/Q),
see Exercise 9.2.E.) Hint: reduce to the case SpecA → SpecB. Reduce to the case
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ϕ : SpecA→ Speck. By Exercise 7.4.D, such ϕ are actually finite, and finiteness is
preserved by base change.

9.4.D. EXERCISE. Show that surjectivity is preserved by base change. (Surjectivity
has its usual meaning: surjective as a map of sets.) You may end up showing that
for any fields k1 and k2 containing k3, k1 ⊗k3

k2 is nonzero, and using the Axiom
of Choice to find a maximal ideal in k1 ⊗k3

k2.

9.4.1. On the other hand, injectivity is not preserved by base change — witness the
bijection SpecC → SpecR, which loses injectivity upon base change by SpecC →
SpecR (see Example 9.2.3). This can be rectified (see §9.5.24).

9.4.E. EXERCISE (CF. EXERCISE 9.2.D). Suppose X and Y are integral finite type k-
schemes. Show that X×kY is an integral finite type k-scheme. (Once we define “va-
riety”, this will become the important fact that the product of irreducible varieties
over an algebraically closed field is an irreducible variety, Exercise 10.1.E. The fact
that the base field k is algebraically closed is important, see §9.5. See Exercise 9.5.M
for an improvement.) Hint: reduce to the case where X and Y are both affine, say
X = SpecA and Y = SpecB with A and B integral domains. You might flip ahead
to Easy Exercise 9.5.L to see how to do this. Suppose (

∑
ai ⊗ bi)

(∑
a ′
j ⊗ b ′

j

)
= 0

in A ⊗k B with ai, a ′
j ∈ A, bi, b ′

j ∈ B, where both {bi} and {b ′
j} are linearly in-

dependent over k, and a1 and a ′
1 are nonzero. Show that D(a1a

′
1) ⊂ SpecA is

nonempty. By the Weak Nullstellensatz 3.2.4, there is a maximal m ⊂ A inD(a1a
′
1)

with A/m = k. By reducing modulo m, deduce (
∑
ai ⊗ bi)

(∑
a ′
j ⊗ b ′

j

)
= 0 in B,

where the overline indicates residue modulo m. Show that this contradicts the fact
that B is an integral domain.

9.4.F. EXERCISE. If P is a property of morphisms preserved by base change and
composition, and X → Y and X ′ → Y ′ are two morphisms of S-schemes with
property P, show that X×S X ′ → Y ×S Y ′ has property P as well.

9.5 ⋆ Properties not preserved by base change, and how to fix
them

There are some notions that you should reasonably expect to be preserved by
pullback based on your geometric intuition. Given a family in the topological cate-
gory, fibers pull back in reasonable ways. So for example, any pullback of a family
in which all the fibers are irreducible will also have this property; ditto for con-
nected. Unfortunately, both of these fail in algebraic geometry, as Example 9.2.3
shows:

SpecC
⨿

SpecC //

��

SpecC

��
SpecC // SpecR

The family on the right (the vertical map) has irreducible and connected fibers, and
the one on the left doesn’t. The same example shows that the notion of “integral
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fibers” also doesn’t behave well under pullback. And we used it in 9.4.1 to show
that injectivity isn’t preserved by Base Change.

9.5.A. EXERCISE. Suppose k is a field of characteristic p, so k(u)/k(up) is an
inseparable extension. By considering k(u) ⊗k(up) k(u), show that the notion of
“reduced fibers” does not necessarily behave well under pullback. (We will soon
see that this happens only in characteristic p, in the presence of inseparability.)

We rectify this problem as follows.

9.5.1. A geometric point of a scheme X is defined to be a morphism Speck → X

where k is an algebraically closed field. Awkwardly, this is now the third kind
of “point” of a scheme! There are just plain points, which are elements of the
underlying set; there are Z-valued points (Z a scheme), which are maps Z → X,
§6.3.9; and there are geometric points. Geometric points are clearly a flavor of a
scheme-valued point, but they are also an enriched version of a (plain) point: they
are the data of a point with an inclusion of the residue field of the point in an
algebraically closed field.

A geometric fiber of a morphism X → Y is defined to be the fiber over a geo-
metric point of Y, i.e., the fibered product with the geometric point Speck→ Y. A
morphism has connected (resp. irreducible, integral, reduced) geometric fibers
if all its geometric fibers are connected (resp. irreducible, integral, reduced). One
usually says that the morphism has geometrically connected (resp. geometrically
irreducible, geometrically integral, geometrically reduced) fibers. A k-scheme X
is geometrically connected (resp. geometrically irreducible, geometrically inte-
gral, geometrically reduced) if the structure morphism X → Spec k has geometri-
cally connected (resp. irreducible, integral, reduced) fibers. We will soon see that
to check any of these conditions, we need only base change to k.

(Warning: in some sources, in the definition of “geometric point”, “algebraically
closed” is replaced by “separably closed”.)

9.5.B. EXERCISE. Show that the notion of “connected (resp. irreducible, integral,
reduced) geometric fibers” behaves well under base change.

9.5.C. EXERCISE FOR THE ARITHMETICALLY-MINDED. Show that for the mor-
phism SpecC → SpecR, all geometric fibers consist of two reduced points. (Cf.
Example 9.2.3.) Thus SpecC is a geometrically reduced but not geometrically irre-
ducible R-scheme.

9.5.D. EASY EXERCISE. Give examples of k-schemes that:

(a) are reduced but not geometrically reduced;
(b) are connected but not geometrically connected;
(c) are integral but not geometrically integral.

9.5.E. EXERCISE (TO CONVINCE GEOMETERS WHY GEOMETRIC FIBERS ARE MEAN-
INGFUL). Recall Example 9.3.3, the projection of the parabola y2 = x to the x-axis,
corresponding to the map of rings Q[x] → Q[y], with x 7→ y2. Show that the geo-
metric fibers of this map are always two points, except for those geometric fibers
“over 0 = [(x)]”. (Note that SpecC → SpecQ[x] and SpecQ → SpecQ[x], both
corresponding to ring maps with x 7→ 0, are both geometric points “above 0”.)
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Checking whether a k-scheme is geometrically connected etc. seems annoying:
you need to check every single algebraically closed field containing k. However, in
each of these four cases, the failure of nice behavior of geometric fibers can already
be detected after a finite extension of fields. For example, SpecQ(i) → SpecQ is
not geometrically connected, and in fact you only need to base change by SpecQ(i)
to see this. We make this precise as follows.

Suppose X is a k-scheme. If K/k is a field extension, define XK = X×k SpecK.
Consider the following twelve statements.

• XK is reduced:
(Ra) for all fields K,
(Rb) for all algebraically closed fields K (X is geometrically reduced),
(Rc) for K = k,
(Rd) for K = kp (where kp is the perfect closure of k)

• XK is irreducible:
(Ia) for all fields K,
(Ib) for all algebraically closed fields K (X is geometrically irreducible),
(Ic) for K = k,
(Id) for K = ks (where ks is the separable closure of k).

• XK is connected:
(Ca) for all fields K,
(Cb) for all algebraically closed fields K (X is geometrically connected),
(Cc) for K = k,
(Cd) for K = ks.

Trivially (Ra) implies (Rb) implies (Rc), and (Ra) implies (Rd), and similarly with
“reduced” replaced by “irreducible” and “connected”. Note also that if chark = 0,
then k = kp = ks.

9.5.F. EXERCISE.
(a) Suppose that E/F is a field extension, and A is an F-algebra. Show that A is a
subalgebra of A⊗F E. (Hint: think of these as vector spaces over F.)
(b) Show that: (Rb) implies (Ra) and (Rc) implies (Rd).
(c) Show that: (Ib) implies (Ia) and (Ic) implies (Id).
(d) Show that: (Cb) implies (Ca) and (Cc) implies (Cd).
Possible hint: You may use the fact that if Y is a nonempty F-scheme, then Y ×F
SpecE is nonempty, cf. Exercise 9.4.D.

Thus for example a k-scheme is geometrically integral if and only if it remains
integral under any field extension.

9.5.2. Hard fact. In fact, (Rd) implies (Ra), and thus (Ra) through (Rd) are all equiv-
alent, and similarly for the other two rows. The explanation is below. On a first
reading, you may want to read only Corollary 9.5.11 on connectedness, Proposi-
tion 9.5.14 on irreducibility, Proposition 9.5.20 on reducedness, and Theorem 9.5.23
on varieties, and then to use them to solve Exercise 9.5.N. You can later come back
and read the proofs, which include some useful tricks turning questions about
general schemes over a field to questions about finite type schemes.
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The following exercise may help even the geometrically-minded reader appre-
ciate the utility of these notions. (There is nothing important about the dimension
2 and the degree 4 in this exercise!)

9.5.G. ⋆ EXERCISE. Recall from Remark 4.5.3 that the quartic curves in P2k are
parametrized by a P14k . (This will be made much more precise in §28.3.5.) Show
that the points of P14k corresponding to geometrically irreducible curves form an
open subset. Explain the necessity of the modifier “geometrically” (even if k is
algebraically closed).

9.5.3. ⋆⋆ The rest of §9.5 is double-starred.

9.5.4. Proposition. — Suppose A and B are finite type k-algebras. Then SpecA ×k
SpecB→ SpecB is an open map.

This is the one fact we will not prove here. We could (it isn’t too hard), but
instead we leave it until Remark 24.5.3.

9.5.5. Preliminary discussion.

9.5.6. Lemma. — Suppose X is a k-scheme. Then X → Spec k is universally open, i.e.,
remains open after any base change.

Proof. If S is an arbitrary k-scheme, we wish to show thatXS → S is open. It suffices
to consider the case X = SpecA and S = SpecB. To show that ϕ : SpecA ⊗k B →
SpecB is open, it suffices to show that the image of a distinguished open set D(f)
(f ∈ A⊗k B) is open.

We come to a trick we will use repeatedly, which we will call the tensor-
finiteness trick. Write f =

∑
ai ⊗ bi, where the sum is finite. It suffices to replace

A by the subring generated by the ai. (Reason: if this ring is A ′, then factor ϕ
through Spec(A ′⊗kB).) Thus we may assumeA is finitely generated over k. Then
use Proposition 9.5.4. □

9.5.7. Lemma. — Suppose the field extension E/F is purely inseparable polynomial
over F with only one root, perhaps with multiplicity). Suppose X is any F-scheme. Then
ϕ : XE → X is a homeomorphism.

Proof. The morphism ϕ is a bijection, so we may identify the points of X and XE.
(Reason: for any point p ∈ X, the scheme-theoretic fiber ϕ−1(p) is a single point,
by the definition of pure inseparability.) The morphism ϕ is continuous (so opens
in X are open in XE), and by Lemma 9.5.6, ϕ is open (so opens in X are open in
XE). □

9.5.8. Connectedness.
Recall that a connected component of a topological space is a maximal con-

nected subset §3.6.12.

9.5.H. EXERCISE (PROMISED IN REMARK 3.6.13). Show that every point is con-
tained in a connected component, and that connected components are closed. (Hint:
see the hint for Exercise 3.6.O.)
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9.5.I. TOPOLOGICAL EXERCISE. Suppose ϕ : X → Y is open, and has nonempty
connected fibers. Then ϕ induces a bijection of connected components.

9.5.9. Lemma. — Suppose X is geometrically connected over k. Then for any scheme
Y/k, X×k Y → Y induces a bijection of connected components.

Proof. Combine Lemma 9.5.6 and Exercise 9.5.I. □

9.5.J. EXERCISE (PROMISED IN REMARK 3.6.3). Show that a scheme X is discon-
nected if and only if there exists a function e ∈ Γ(X,OX) that is an idempotent
(e2 = e) distinct from 0 and 1. (Hint: if X is the disjoint union of two open sets X0
and X1, let e be the function that is 0 on X0 and 1 on X1. Conversely, given such
an idempotent, define X0 = V(e) and X1 = V(1− e).)

9.5.10. Proposition. — Suppose k is separably closed, and A is a k-algebra with SpecA
connected. Then SpecA is geometrically connected over k.

Proof. We wish to show that SpecA ⊗k K is connected for any field extension K/k.
It suffices to assume that K is algebraically closed (as SpecA⊗k K→ SpecA⊗k K
is surjective). By choosing an embedding k ↪→ K and considering the diagram

SpecA⊗k K //

��

SpecA⊗k k

��

homeo.

by Lem. 9.5.7
// SpecA

��
SpecK // Spec k // Speck

it suffices to assume k is algebraically closed.
If SpecA⊗kK is disconnected, thenA⊗kK contains an idempotent e ̸= 0, 1 (by

Exercise 9.5.J). By the tensor-finiteness trick, we may assume thatA is a finitely gen-
erated algebra over k, and K is a finitely generated field extension. Write K = K(B)
for some integral domain B of finite type over k. Then by the tensor-finiteness
trick, by considering the finite number of denominators appearing in a represen-
tative of e as a sum of decomposable tensors, e ∈ A ⊗k B[1/b] for some nonzero
b ∈ B, so SpecA ⊗k B[1/b] is disconnected, say with open subsets U and V with
U
⨿
V = SpecA⊗k B[1/b].

Now ϕ : SpecA ⊗k B[1/b] → SpecB[1/b] is an open map (Proposition 9.5.4),
so ϕ(U) and ϕ(V) are nonempty open sets. As SpecB[1/b] is connected, the in-
tersection ϕ(U) ∩ ϕ(V) is a nonempty open set, which has a closed point p (with
residue field k, as k = k). But then ϕ−1(p) ∼= SpecA, and we have covered SpecA
with two disjoint open sets, yielding a contradiction. □

9.5.11. Corollary. — If k is separably closed, and Y is a connected k-scheme, then Y is
geometrically connected.

Proof. We wish to show that for any field extension K/k, YK is connected. By Propo-
sition 9.5.10, SpecK is geometrically connected over k. Then apply Lemma 9.5.9
with X = SpecK. □

9.5.12. Irreducibility.
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9.5.13. Proposition. — Suppose k is separably closed, A is a k-algebra with SpecA
irreducible, and K/k is a field extension. Then SpecA⊗k K is irreducible.

Proof. We follow the philosophy of the proof of Proposition 9.5.10. As in the first
paragraph of that proof, it suffices to assume that K and k are algebraically closed.
IfA⊗kK is not irreducible, then we can find x and ywith V(x), V(y) ̸= SpecA⊗kK
and V(x) ∪ V(y) = SpecA ⊗k K. As in the second paragraph of the proof of
Proposition 9.5.10, we may assume that A is a finitely generated algebra over k,
and K = K(B) for an integral domain B of finite type over k, and x, y ∈ A⊗kB[1/b]
for some nonzero b ∈ B. Then D(x) and D(y) are nonempty open subsets of
SpecA⊗k B[1/b], whose image in SpecB[1/b] are nonempty opens, and thus their
intersection is nonempty and contains a closed point p. But then ϕ−1(p) ∼= SpecA,
and we have covered SpecA with two proper closed sets (the restrictions of V(x)
and V(y)), yielding a contradiction. □

9.5.K. EXERCISE. Suppose k is separably closed, and A and B are k-algebras, both
irreducible (with irreducible Spec, i.e., with one minimal prime). Show thatA⊗kB
is irreducible too. (Hint: reduce to the case where A and B are finite type over k.
Extend the proof of the previous proposition.)

9.5.L. EASY EXERCISE. Show that a scheme X is irreducible if and only if there
exists an open cover X = ∪Ui with Ui irreducible for all i, and Ui ∩Uj ̸= ∅ for all
i, j.

9.5.14. Proposition. — Suppose K/k is a field extension of a separably closed field and
Xk is irreducible. Then XK is irreducible.

Proof. Take an open cover Xk = ∪Ui by pairwise intersecting irreducible affine
open subsets. The base change of each Ui to K is irreducible by Proposition 9.5.13,
and they pairwise intersect. The result then follows from Exercise 9.5.L. □

9.5.M. EXERCISE. Suppose B is a geometrically integral k-algebra, and A is an
integral k-algebra. Show that A ⊗k B is integral. (Once we define “variety”, this
will imply that the product of a geometrically integral variety with an integral
variety is an integral variety.) Hint: revisit the proof of Exercise 9.4.E.

9.5.15. Reducedness.
We recall the following fact from field theory, which is a refined version of

the basics of transcendence theory developed in Exercise 11.2.A. Because this is a
starred section, we content ourselves with a reference rather than a proof.

9.5.16. Algebraic Fact: finitely generated extensions of perfect fields are separa-
bly generated, see [E, Cor. 16.17(b)] or [vdW, §19.7]. — Suppose E/F is a finitely
generated extension of a perfect field. Then it can be factored into a finite separable part
and a purely transcendent part: E/F(t1, . . . , tn)/F.

9.5.17. Proposition. — Suppose B is a geometrically reduced k-algebra, and A is a
reduced k-algebra. Then A⊗k B is reduced.

(Compare this to Exercise 9.5.M.)
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Proof. Reduce to the case where A is finitely generated over k using the tensor-
finiteness trick. (Suppose we have x ∈ A ⊗k B with xn = 0. Then x =

∑
ai ⊗ bi.

Let A ′ be the finitely generated subring of A generated by the ai. Then A ′ ⊗k B
is a subring of A ⊗k B. Replace A by A ′.) Then A is a subring of the product∏
Ki of the function fields of its irreducible components. (One can see this as

follows: the kernel of A → ∏
A/pi is the intersection of the primes pi, which

is the ideal of nilpotents N by Theorem 3.2.12; but n = 0 as A is reduced. And
A/pi ↪→ K(A/pi) = Ki clearly. Alternatively, this is clear from our discussion of
associated points: Theorem 5.5.10(b), see also Exercise 5.5.G). So it suffices to prove
it for A a product of fields. Then it suffices to prove it when A is a field. But then
we are done, by the definition of geometric reducedness. □

9.5.18. Proposition. — Suppose A is a reduced k-algebra. Then:

(a) A⊗k k(t) is reduced.
(b) If E/k is a finite separable extension, then A⊗k E is reduced.

Proof. (a) Clearly A ⊗ k[t] is reduced, and localization preserves reducedness (as
reducedness is stalk-local, Exercise 5.2.A).

(b) Working inductively, we can assume E is generated by a single element,
with minimal polynomial p(t). By the tensor-finiteness trick, we can assume A
is finitely generated over k. Then by the same trick as in the proof of Proposi-
tion 9.5.17, we can replaceA by the product of its function fields of its components,
and then we can assume A is a field. But thenA[t]/p(t) is reduced by the definition
of separability of p. □

9.5.19. Lemma. — Suppose E/k is a field extension of a perfect field, and A is a reduced
k-algebra. Then A⊗k E is reduced.

Proof. By the tensor-finiteness trick, we may assume E is finitely generated over
k. By Algebraic Fact 9.5.16, we can factor E/k into extensions of the forms of
Proposition 9.5.18 (a) and (b). We then apply Proposition 9.5.18. □

9.5.20. Proposition. — Suppose E/k is an extension of a perfect field, and X is a reduced
k-scheme. Then XE is reduced.

Proof. Reduce to the case where X is affine. Use Lemma 9.5.19. □

9.5.21. Corollary. — Suppose k is perfect, and A and B are reduced k-algebras. Then
A⊗k B is reduced.

Proof. By Lemma 9.5.19, A is a geometrically reduced k-algebra. Then apply
Lemma 9.5.17. □

9.5.N. EXERCISE (COMPLETING HARD FACT 9.5.2). Show that (Rd) implies (Ra),
(Id) implies (Ia), and (Cd) implies (Ca).

9.5.O. EXERCISE. Suppose that A and B are two integral domains that are k-
algebras. Show that A⊗k B is an integral domain.
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9.5.22. Varieties.

9.5.23. Theorem. —
(a) If k is perfect, the product of affine k-varieties (over Speck) is an affine k-variety.
(b) If k is separably closed, the product of irreducible affine k-varieties is an irreducible
affine k-variety.
(c) If k is separably closed, the product of connected affine k-varieties is a connected affine
k-variety.

Once we define varieties in general, in Definition 10.1.7, you will be able to
remove the adjective “affine” throughout this statement of Theorem 9.5.23. (We
also remark that (b) was proven in Exercise 9.4.E under the stronger hypothesis
that k is algebraically closed.)

Proof. (a) The finite type and separated statements are straightforward, as both
properties are preserved by base change and composition. For reducedness, re-
duce to the affine case, then use Corollary 9.5.21.

(b) It only remains to show irreducibility. Reduce to the affine case using Exer-
cise 9.5.L (as in the proof of Proposition 9.5.14). Then use Exercise 9.5.K.

(c) This follows from Corollary 9.5.11. □

9.5.24. Universally injective (radicial) morphisms. As remarked in §9.4.1, in-
jectivity is not preserved by base change. A better notion is that of universally
injective morphisms: morphisms that are injections of sets after any base change.
In keeping with the traditional agricultural terminology (sheaves, germs, ..., cf.
Remark 2.4.4), these morphisms were named radicial after one of the lesser root
vegetables. As a first example: all locally closed embeddings are universally in-
jective (as they are injective, and remain locally closed embeddings upon any base
change). If you wish, you can show more generally that all monomorphisms are
universally injective. (Hint: show that monomorphisms are injective, and that the
class of monomorphisms is preserved by base change.)

Universal injectivity is the algebro-geometric generalization of the notion of
purely inseparable extensions of fields. A field extension K/L is purely insepara-
ble if L is separably closed in K, or equivalently, if for every α ∈ K \L, the minimal
polynomial of α is not a separable polynomial. This is obviously more interesting
in positive characteristic.

9.5.P. EXERCISE. If K/L is an extension of fields. Show that SpecK → SpecL is
universally injective if and only if K/L is purely inseparable.

9.5.Q. EXERCISE. Suppose π : X → Y is a morphism of schemes. Show that the
following are equivalent.

(i) The morphism π is universally injective.
(ii) For every field K, the induced map Hom(SpecK,X)→ Hom(SpecK, Y) is

injective.
(iii) The morphism π is injective, and for each p ∈ X, the field extension

κ(p)/κ(π(p)) is purely inseparable.
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Possible hint: Connect i) and ii), and connect ii) and iii). Side Remark: in ii), you
can show that it suffices to take K to be algebraically closed, so “universally injec-
tive” is the same as “injective on geometric points”.

9.5.R. EASY EXERCISE. Show that the class of universally injective morphisms
is stable under composition, base change, and products. Show that this notion is
local on the target. Thus the class of universally injective morphisms is reasonable
in the sense of §7.1.1.

Exercise 10.1.P shows that universal injectivity is really a property of the diag-
onal morphism, and explores the consequences of this.

9.6 Products of projective schemes: The Segre embedding

We next describe products of projective A-schemes over A. (The case of great-
est initial interest is ifA = k.) To do this, we need only describe PmA ×APnA, because
any projective A-scheme has a closed embedding in some PmA , and closed embed-
dings behave well under base change, so if X ↪→ PmA and Y ↪→ PnA are closed
embeddings, then X ×A Y ↪→ PmA ×A PnA is also a closed embedding, cut out by
the equations of X and Y (§9.2(3)). We will describe PmA ×A PnA, and see that it too
is a projective A-scheme. (Hence if X and Y are projective A-schemes, then their
product X×A Y over A is also a projective A-scheme.)

Before we do this, we will get some motivation from classical projective spaces
(nonzero vectors modulo nonzero scalars, Exercise 4.4.F) in a special case. Our
map will send [x0, x1, x2]× [y0, y1] to a point in P5, whose coordinates we think of
as being entries in the “multiplication table”

[ x0y0, x1y0, x2y0,

x0y1, x1y1, x2y1 ].

This is indeed a well-defined map of sets. Notice that the resulting matrix is rank
one, and from the matrix, we can read off [x0, x1, x2] and [y0, y1] up to scalars. For
example, to read off the point [x0, x1, x2] ∈ P2, we take the first row, unless it is
all zero, in which case we take the second row. (They can’t both be all zero.) In
conclusion: in classical projective geometry, given a point of Pm and Pn, we have
produced a point in Pmn+m+n, and from this point in Pmn+m+n, we can recover
the points of Pm and Pn.

Suitably motivated, we return to algebraic geometry. We define a map

PmA ×A PnA → Pmn+m+n
A

by
([x0, . . . , xm], [y0, . . . , yn]) 7→ [z00, z01, . . . , zij, . . . , zmn]

= [x0y0, x0y1, . . . , xiyj, . . . xmyn].

More explicitly, we consider the map from the affine open setUi×Vj (whereUi =
D(xi) and Vj = D(yj) to the affine open setWij = D(zij) by

(x0/i, . . . , xm/i, y0/j, . . . , yn/j) 7→ (x0/iy0/j, . . . , xi/iyj/j, . . . , xm/iyn/j)

or, in terms of algebras, zab/ij 7→ xa/iyb/j.
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9.6.A. EXERCISE. Check that these maps glue to give a well-defined morphism
PmA ×A PnA → Pmn+m+n

A .

9.6.1. We next show that this morphism is a closed embedding. We can check this
on an open cover of the target (the notion of being a closed embedding is affine-
local, Exercise 8.1.D). Let’s check this on the open set where zij ̸= 0. The preimage
of this open set in PmA × PnA is the locus where xi ̸= 0 and yj ̸= 0, i.e., Ui × Vj. As
described above, the map of rings is given by zab/ij 7→ xa/iyb/j; this is clearly a
surjection, as zaj/ij 7→ xa/i and zib/ij 7→ yb/j. (A generalization of this ad hoc
description will be given in Exercise 16.4.D.)

This map is called the Segre morphism or Segre embedding. If A is a field,
the image is called the Segre variety.

9.6.B. EXERCISE. Show that the Segre scheme (the image of the Segre embedding)
is cut out (scheme-theoretically) by the equations corresponding to

rank

a00 · · · a0n
...

. . .
...

am0 · · · amn

 = 1,

i.e., that all 2 × 2 minors vanish. Hint: suppose you have a polynomial in the aij
that becomes zero upon the substitution aij = xiyj. Give a recipe for subtracting
polynomials of the form “monomial times 2× 2 minor” so that the end result is 0.
(The analogous question for the Veronese embedding in special cases is the content
of Exercises 8.2.J and 8.2.L.)

9.6.2. Important Example. Let’s consider the first nontrivial example, when m =
n = 1. We get P1k ×k P1k ↪→ P3k (where k is a field). We get a single equation

rank
(
a00 a01
a10 a11

)
= 1,

i.e., a00a11 − a01a10 = 0. We again meet our old friend, the quadric surface
(§8.2.9)! Hence: the smooth quadric surfacewz− xy = 0 (Figure 8.2) is isomorphic
to P1k ×k P1k. Recall from Exercise 8.2.M that the quadric surface has two families
(rulings) of lines. You may wish to check that one family of lines corresponds to
the image of {x}×kP1k as x varies, and the other corresponds to the image P1k×k {y}
as y varies.

If k is an algebraically closed field of characteristic not 2, then by diagonaliz-
ability of quadratics (Exercise 5.4.J), all rank 4 (“full rank”) quadratics in 4 vari-
ables are isomorphic, so all rank 4 quadric surfaces over an algebraically closed
field of characteristic not 2 are isomorphic to P1k ×k P1k.

Note that this is not true over a field that is not algebraically closed. For exam-
ple, over R, w2 + x2 + y2 + z2 = 0 (in P3R) is not isomorphic to P1R ×R P1R. Reason:
the former has no real points, while the latter has lots of real points.

You may wish to do the next two exercises in either order. The second can be
used to show the first, but the first may give you insight into the second.

9.6.C. EXERCISE: A COORDINATE-FREE DESCRIPTION OF THE SEGRE EMBEDDING.
Show that the Segre embedding can be interpreted as PV × PW → P(V ⊗W) via
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the surjective map of graded rings

Sym•(V∨ ⊗W∨) // // ⊕∞i=0
(

Symi
V∨
)
⊗
(

Symi
W∨

)
“in the opposite direction”.

9.6.D. EXERCISE: A COORDINATE-FREE DESCRIPTION OF PRODUCTS OF PROJEC-
TIVE A-SCHEMES IN GENERAL. Suppose that S• and T• are finitely generated
graded rings over A. Describe an isomorphism

(ProjS•)×A (Proj T•) ∼= Proj⊕∞n=0 (Sn ⊗A Tn)
(where hopefully the definition of multiplication in the graded ring ⊕∞n=0(Sn ⊗A
Tn) is clear).

9.7 Normalization

We discuss normalization now only because the central construction gives
practice with the central idea behind the construction in §9.1 of the fibered product
(see Exercises 9.7.B and 9.7.I).

Normalization is a means of turning a reduced scheme into a normal scheme.
(Unimportant remark: reducedness is not a necessary hypothesis, and is included
only to avoid distraction. If you care, you can follow through the construction,
and realize that the normalization of a scheme factors through the reduction, and
is the normalization of the reduction.) A normalization of a reduced scheme X is a
morphism ν : X̃ → X from a normal scheme, where ν induces a bijection of irre-
ducible components of X̃ and X, and ν gives a birational morphism on each of the
irreducible components. It will satisfy a universal property, and hence it will be
unique up to unique isomorphism. Figure 7.4 is an example of a normalization.

We begin with the case where X is irreducible, and hence (by Exercise 5.2.F)
integral. (We will then deal with a more general case, and also discuss normaliza-
tion in a function field extension.) In this case of irreducible X, the normalization
ν : X̃→ X is a dominant morphism (not just dominant rational map!) from an irre-
ducible normal scheme to X, such that any other such morphism factors through
ν:

normal Y

dominant ��=
==

==
==

=
∃! // X̃

ν dominant����
��
��
��

normal

X

Thus if the normalization exists, then it is unique up to unique isomorphism.
We now have to show that it exists, and we do this in a way that will look familiar.
We deal first with the case where X is affine, say X = SpecA, whereA is an integral
domain. Then let Ã be the integral closure of A in its fraction field K(A).

9.7.A. EXERCISE. (Recall that A is an integral domain.) Show that ν : Spec Ã →
SpecA satisfies the universal property of normalization. (En route, you might
show that the global sections of an irreducible normal scheme are also “normal”,
i.e., integrally closed.)
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9.7.B. IMPORTANT (BUT SURPRISINGLY EASY) EXERCISE. Show that normaliza-
tions of integral schemes exist in general. (Hint: Ideas from the existence of fibered
products, §9.1, may help.)

9.7.C. EASY EXERCISE. Show that normalizations are integral and surjective.
(Hint for surjectivity: the Lying Over Theorem, see §7.2.6.)

We will soon see that normalization of integral finite type k-schemes is always
a birational morphism, in Exercise 9.7.N.

9.7.D. EXERCISE. Explain (by defining a universal property) how to extend the
notion of normalization to the case where X is a reduced scheme, with possibly
more than one component, but under the hypothesis that every affine open subset
of X has finitely many irreducible components. Note that this includes all locally
Noetherian schemes. (If you wish, you can show that the normalization exists in
this case. See [Stacks, tag 035Q] for more.)

Here are some examples.

9.7.E. EXERCISE (NORMALIZATION OF THE NODAL CUBIC). Suppose that chark ̸=
2. Show that Spec k[t] → Speck[x, y]/(y2 − x2(x + 1)) given by (x, y) 7→ (t2 −
1, t(t2− 1)) (see Figure 7.4) is a normalization. The target curve is called the nodal
cubic curve. (Hint: show that k[t] and k[x, y]/(y2 − x2(x + 1)) have the same
fraction field. Show that k[t] is integrally closed. Show that k[t] is contained in the
integral closure of k[x, y]/(y2 − x2(x+ 1)).)

You will see from the previous exercise that once we guess what the normal-
ization is, it isn’t hard to verify that it is indeed the normalization. Perhaps a few
words are in order as to where the polynomials t2 − 1 and t(t2 − 1) arose in the
previous exercise. The key idea is to guess t = y/x. (Then t2 = x + 1 and y = xt

quickly.) This idea comes from three possible places. We begin by sketching the
curve, and noticing the “node” at the origin. (“Node” will be formally defined in
§29.3.1.) (a) The function y/x is well-defined away from the node, and at the node,
the two branches have “values” y/x = 1 and y/x = −1. (b) We can also note that if
t = y/x, then t2 is a polynomial, so we will need to adjoin t in order to obtain the
normalization. (c) The curve is cubic, so we expect a general line to meet the cubic
in three points, counted with multiplicity. (We will make this precise when we dis-
cuss Bézout’s Theorem, Exercise 18.6.K, but in this case we have already gotten a
hint of this in Exercise 6.5.G.) There is a P1 parametrizing lines through the origin
(with coordinate equal to the slope of the line, y/x), and most such lines meet the
curve with multiplicity two at the origin, and hence meet the curve at precisely
one other point of the curve. So this “coordinatizes” most of the curve, and we try
adding in this coordinate.

9.7.F. EXERCISE. Find the normalization of the cusp y2 = x3 (see Figure 9.4).
(“Cusp” will be formally defined in Definition 29.3.3.)

9.7.G. EXERCISE. Suppose chark ̸= 2. Find the normalization of the tacnode
y2 = x4, and draw a picture analogous to Figure 9.4. (“Tacnode” will be formally
defined in Definition 29.3.3.)
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FIGURE 9.4. Normalization of a cusp

(Although we haven’t defined “singularity”, “smooth”, “curve”, or “dimen-
sion”, you should still read this.) Notice that in the previous examples, normaliza-
tion “resolves” the singularities (“non-smooth” points) of the curve. In general, it
will do so in dimension one (in reasonable Noetherian circumstances, as normal lo-
cal Noetherian integral domains of dimension one are all discrete valuation rings,
§12.5), but won’t do so in higher dimension (the cone z2 = x2 + y2 over a field k
of characteristic not 2 is normal, Exercise 5.4.I(b)).

9.7.H. EXERCISE. Suppose X = SpecZ[15i]. Describe the normalization X̃ → X.
(Hint: Z[i] is a unique factorization domain, §5.4.6(0), and hence is integrally
closed by Exercise 5.4.F.) Over what points of X is the normalization not an iso-
morphism?

Another exercise in a similar vein is the normalization of the “pinched plane”,
Exercise 12.5.I.

9.7.I. EXERCISE (NORMALIZATION IN A FUNCTION FIELD EXTENSION, AN IMPOR-
TANT GENERALIZATION). Suppose X is an integral scheme. The normalization
ν : X̃→ X of X in a given algebraic field extension L of the function field K(X) of
X is a dominant morphism from a normal integral scheme X̃ with function field L,
such that ν induces the inclusion K(X) ↪→ L, and that is universal with respect to
this property.

SpecL

KKK
KKK

KKK

KKK
KKK

KKK
SpecK(Y) //

∼

��

Y

∃!
��

��

normal

SpecK(X̃) //

��

X̃

��

normal

SpecK(X) // X

Show that the normalization in a finite extension of fields exists.

The following two examples, one arithmetic and one geometric, show that this
is an interesting construction.
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9.7.J. EXERCISE. Suppose X = SpecZ (with function field Q). Find its integral clo-
sure in the field extension Q(i). (There is no “geometric” way to do this; it is purely
an algebraic problem, although the answer should be understood geometrically.)

9.7.1. Remark: Rings of integers in number fields. A finite extension K of Q is called a
number field, and the integral closure of Z in K the ring of integers in K, denoted
OK. (This notation is awkward given our other use of the symbol O .)

SpecK

��

// Spec OK

��
SpecQ // SpecZ

By the previous exercises, OK is a normal integral domain, and we will see soon
(Theorem 9.7.3(a)) that it is Noetherian, and later (Exercise 11.1.F) that it has “di-
mension 1”. This is an example of a Dedekind domain, see §12.5.15. We will think
of it as a “smooth” curve as soon as we define what “smooth” (really, regular) and
“curve” mean.

9.7.K. EXERCISE. Find the ring of integers in Q(
√
n), where n is square-free and

n ≡ 3 (mod 4). (Hint: Exercise 5.4.I(a), where you will also be able to figure out
the answer for square-free n in general.)

9.7.L. EXERCISE. Suppose char k ̸= 2 for convenience (although it isn’t necessary).
(a) Suppose X = Speck[x] (with function field k(x)). Find its normalization in the
field extension k(y), where y2 = x2 + x. (Again we get a Dedekind domain.) Hint:
this can be done without too much pain. Show that Speck[x, y]/(x2 + x − y2)
is normal, possibly by identifying it as an open subset of P1k, or possibly using
Exercise 5.4.H.
(b) Suppose X = P1, with distinguished open Speck[x]. Find its normalization
in the field extension k(x, y), where y2 = x2 + x. (Part (a) involves computing
the normalization over one affine open set; now figure out what happens over the
“other” affine open set, and how to glue.)

9.7.2. Fancy fact: Finiteness of integral closure.
The following fact is useful.

9.7.3. Theorem (finiteness of integral closure). — SupposeA is a Noetherian integral
domain, K = K(A), L/K is a finite extension of fields, and B is the integral closure of A in
L (“the integral closure of A in the field extension L/K”, i.e., those elements of L integral
over A).
(a) If A is integrally closed and L/K is separable, then B is a finitely generated A-module.
(b) (E. Noether) If A is a finitely generated k-algebra, then B is a finitely generated A-
module.

Eisenbud gives a proof in a page and a half: (a) is [E, Prop. 13.14] and (b) is [E,
Cor. 13.13]. A sketch is given in §9.7.5.

9.7.4. Warning. Part (b) does not hold for Noetherian A in general. In fact, the
integral closure of a Noetherian ring need not be Noetherian (see [E, p. 299] for
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some discussion). This is alarming. The existence of such an example is a sign that
Theorem 9.7.3 is not easy.

9.7.M. EXERCISE.
(a) Show that if X is an integral finite type k-scheme, then its normalization ν : X̃→
X is a finite morphism.
(b) Suppose X is a locally Noetherian integral scheme. Show that if X is normal,
then the normalization in a finite separable field extension is a finite morphism.
Show that if X is an integral finite type k-scheme, then the normalization in a finite
extension of fields is a finite morphism. In particular, once we define “variety”
(Definition 10.1.7), you will see that this implies that the normalization of a variety
(including in a finite field extension) is a variety.

9.7.N. EXERCISE. Show that if X is an integral finite type k-scheme, then the nor-
malization morphism is birational. (Hint: Proposition 6.5.7; or solve Exercise 9.7.O
first.)

9.7.O. EXERCISE. Suppose that X is an integral finite type k-scheme. Show that the
normalization map of X is an isomorphism on an open dense subset of X. Hint:
Proposition 6.5.5.

9.7.P. EXERCISE. Suppose ρ : Z → X is a finite birational morphism from an
irreducible variety to an irreducible normal variety. Show that ρ extends to an
isomorphism.

9.7.5. ⋆⋆ Sketch of proof of finiteness of integral closure, Theorem 9.7.3. Here is a
sketch to show the structure of the argument. It uses commutative algebra ideas
from Chapter 11, so you should only glance at this to see that nothing fancy is
going on. Part (a): reduce to the case where L/K is Galois, with group {σ1, . . . , σn}.
Choose b1, . . . , bn ∈ B forming a K-vector space basis of L. Let M be the matrix
(familiar from Galois theory) with ijth entry σibj, and let d = detM. Show that
the entries of M lie in B, and that d2 ∈ K (as d2 is Galois-fixed). Show that d ̸= 0

using linear independence of characters. Then complete the proof by showing
that B ⊂ d−2(Ab1 + · · · + Abn) (submodules of finitely generated modules over
Noetherian rings are also Noetherian, Exercise 3.6.X) as follows. Suppose b ∈ B,
and write b =

∑
cibi (ci ∈ K). If c is the column vector with entries ci, show

that the ith entry of the column vector Mc is σib ∈ B. Multiplying Mc on the
left by adjM (see the trick of the proof of Lemma 7.2.1), show that dci ∈ B. Thus
d2ci ∈ B ∩ K = A (as A is integrally closed), as desired.

For (b), use the Noether Normalization Lemma 11.2.4 to reduce to the case
A = k[x1, . . . , xn]. Reduce to the case where L is normally closed over K. Let L ′ be
the subextension of L/K so that L/L ′ is Galois and L ′/K is purely inseparable. Use
part (a) to reduce to the case L = L ′. If L ′ ̸= K, then for some q, L ′ is generated
over K by the qth root of a finite set of rational functions. Reduce to the case L ′ =

k ′(x
1/q

1 , . . . , x
1/q
n ) where k ′/k is a finite purely inseparable extension. In this case,

show that B = k ′[x
1/q

1 , . . . , x
1/q
n ], which is indeed finite over k[x1, . . . , xn]. □





CHAPTER 10

Separated and proper morphisms, and (finally!)
varieties

10.1 Separated morphisms (and quasiseparatedness done
properly)

Separatedness is a fundamental notion. It is the analog of the Hausdorff condition
for manifolds (see Exercise 10.1.A), and as with Hausdorffness, this geometrically
intuitive notion ends up being just the right hypothesis to make theorems work.
Although the definition initially looks odd, in retrospect it is just perfect.

10.1.1. Motivation. Let’s review why we like Hausdorffness. Recall that a topo-
logical space is Hausdorff if for every two points x and y, there are disjoint open
neighborhoods of x and y. The real line is Hausdorff, but the “real line with dou-
bled origin” (of which Figure 4.6 may be taken as a sketch) is not. Many proofs
and results about manifolds use Hausdorffness in an essential way. For example,
the classification of compact one-dimensional manifolds is very simple, but if the
Hausdorff condition were removed, we would have a very wild set.

So once armed with this definition, we can cheerfully exclude the line with
doubled origin from civilized discussion, and we can (finally) define the notion of
a variety, in a way that corresponds to the classical definition.

With our motivation from manifolds, we shouldn’t be surprised that all of our
affine and projective schemes are separated: certainly, in the land of manifolds, the
Hausdorff condition comes for free for “subsets” of manifolds. (More precisely, if
Y is a manifold, and X is a subset that satisfies all the hypotheses of a manifold
except possibly Hausdorffness, then Hausdorffness comes for free. Similarly, we
will see that locally closed embeddings in something separated are also separated:
combine Exercise 10.1.B and Proposition 10.1.13(a).)

As an unexpected added bonus, a separated morphism to an affine scheme
has the property that the intersection of two affine open sets in the source is affine
(Proposition 10.1.8). This will make Čech cohomology work very easily on (quasi-
compact) schemes (Chapter 18). You might consider this an analog of the fact that
in Rn, the intersection of two convex sets is also convex. As affine schemes are
trivial from the point of view of quasicoherent cohomology, just as convex sets in
Rn have no cohomology, this metaphor is apt.

A lesson arising from the construction is the importance of the diagonal mor-
phism. More precisely, given a morphism π : X → Y, good consequences can be
leveraged from good behavior of the diagonal morphism δπ : X → X ×Y X (the

279
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product of the identity morphism X→ Xwith itself), usually through fun diagram
chases. This lesson applies across many fields of geometry. (Another nice gift of
the diagonal morphism: it will give us a good algebraic definition of differentials,
in Chapter 21.)

Grothendieck taught us that one should try to define properties of morphisms,
not of objects; then we can say that an object has that property if its morphism to
the final object has that property. We discussed this briefly at the start of Chapter 7.
In this spirit, separatedness will be a property of morphisms, not schemes.

10.1.2. Defining separatedness. Before we define separatedness, we make an
observation about all diagonal morphisms.

10.1.3. Proposition. — Let π : X → Y be a morphism of schemes. Then the diagonal
morphism δ : X→ X×Y X is a locally closed embedding.

We will often use δ to denote a diagonal morphism. The corresponding locally
closed subscheme of X×Y X (which we also call the diagonal) will be denoted ∆.

Proof. We will describe a union of open subsets of X×Y X covering the image of X,
such that the image of X is a closed embedding in this union.

Say Y is covered with affine open sets Vi and X is covered with affine open
sets Uij, with π : Uij → Vi. Note that Uij ×Vi

Uij is an affine open subscheme of
the product X ×Y X (basically this is how we constructed the product, by gluing
together affine building blocks). Then the diagonal is covered by these affine open
subsets Uij ×Vi

Uij. (Any point p ∈ X lies in some Uij; then δ(p) ∈ Uij ×Vi
Uij.

Figure 10.1 may be helpful.) Note that δ−1(Uij ×Vi
Uij) = Uij: clearly Uij ⊂

δ−1(Uij ×Vi
Uij), and because pr1 ◦ δ = idX (where pr1 is the first projection),

δ−1(Uij ×Vi
Uij) ⊂ Uij. Finally, we check that Uij → Uij ×Vi

Uij is a closed
embedding. Say Vi = SpecB and Uij = SpecA. Then this corresponds to the
natural ring mapA⊗BA→ A (a1⊗a2 7→ a1a2), which is obviously surjective. □

The open subsets we described may not cover X×Y X, so we have not shown
that δ is a closed embedding.

10.1.4. Definition. A morphism π : X → Y is separated if the diagonal morphism
δπ : X → X ×Y X is a closed embedding. An A-scheme X is said to be separated
over A if the structure morphism X → SpecA is separated. When people say
that a scheme (rather than a morphism) X is separated, they mean implicitly that
some “structure morphism” is separated. For example, if they are talking about
A-schemes, they mean that X is separated over A.

Thanks to Proposition 10.1.3 (and once you show that a locally closed em-
bedding whose image is closed is actually a closed embedding), a morphism is
separated if and only if the diagonal ∆ is a closed subset — a purely topological
condition on the diagonal. This is reminiscent of a definition of Hausdorff, as the
next exercise shows.

10.1.A. UNIMPORTANT EXERCISE (FOR THOSE SEEKING TOPOLOGICAL MOTIVA-
TION). Show that a topological space X is Hausdorff if and only if the diagonal
is a closed subset of X × X. (The reason separatedness of schemes doesn’t give
Hausdorffness — i.e., that for any two open points x and y there aren’t necessarily
disjoint open neighborhoods — is that in the category of schemes, the topological
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X

X

X×Y X

FIGURE 10.1. an open neighborhood of the diagonal is covered
by Uij ×Vi

Uij

space X× X is not in general the product of the topological space Xwith itself, see
§9.1.2.)

10.1.B. IMPORTANT EASY EXERCISE. Show locally closed embeddings (and in
particular open and closed embeddings) are separated. (Hint: Do this by hand.
Alternatively, show that monomorphisms are separated. Open and closed embed-
dings are monomorphisms, by Exercise 9.2.G.)

10.1.C. IMPORTANT EASY EXERCISE. Show that every morphism of affine schemes
is separated. (Hint: this was essentially done in the proof of Proposition 10.1.3.)

10.1.D. EXERCISE. Show that the line with doubled origin (Example 4.4.5) is not
separated, by verifying that the image of the diagonal morphism is not closed.
(Another argument is given below, in Exercise 10.2.C. A fancy argument is given
in Exercise 12.7.C.)

We next come to our first example of something separated but not affine. The
following single calculation will imply that all quasiprojective A-schemes are sep-
arated (once we know that the composition of separated morphisms are separated,
Proposition 10.1.13).

10.1.5. Proposition. — The morphism PnA → SpecA is separated.

We give two proofs. The first is by direct calculation. The second requires
no calculation, and just requires that you remember some classical constructions
described earlier.

Proof 1: Direct calculation. We cover PnA×A PnA with open sets of the form Ui×AUj,
where U0, . . . , Un form the “usual” affine open cover. The case i = j was taken
care of before, in the proof of Proposition 10.1.3. If i ̸= j then

Ui ×A Uj ∼= SpecA[x0/i, . . . , xn/i, y0/j, . . . , yn/j]/(xi/i − 1, yj/j − 1).
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Now the restriction of the diagonal∆ is contained inUi (as the diagonal morphism
composed with projection to the first factor is the identity), and similarly is con-
tained in Uj. Thus the diagonal morphism over Ui ×A Uj is Ui ∩Uj → Ui ×A Uj.
This is a closed embedding, as the corresponding map of rings

A[x0/i, . . . , xn/i, y0/j, . . . , yn/j]→ A[x0/i, . . . , xn/i, x
−1
j/i

]/(xi/i − 1)

(given by xk/i 7→ xk/i, yk/j 7→ xk/i/xj/i) is clearly a surjection (as each generator
of the ring on the right is clearly in the image — note that x−1

j/i
is the image of

yi/j). □
Proof 2: Classical geometry. Note that the diagonal morphism δ : PnA → PnA ×A
PnA followed by the Segre embedding S : PnA ×A PnA → Pn2+2n (§9.6, a closed
embedding) can also be factored as the second Veronese embedding ν2 : PnA →
P(

n+2
2 )−1 (§8.2.6) followed by a linear map L : P(

n+2
2 )−1 → Pn2+2n (another closed

embedding, Exercise 8.2.D), both of which are closed embeddings.

PnA ×A PnA
S

cl. emb. %%LL
LLL

LLL
L

PnA

δ

l. (?) cl. emb.

::uuuuuuuuuu

ν2

cl. emb.

$$H
HHH

HHH
HH

Pn2+2n

P(
n+2

2 )−1
L

cl. emb.

99rrrrrrrrrr

Informally, in coordinates:

([x0, x1, . . . , xn], [x0, x1, . . . , xn])

S

%%KK
KK

KK
KK

K

[x0, x1, . . . , xn]

δ

@@�������������

ν2

��=
==

==
==

==
==

==


x20, x0x1, · · · x0xn,

x1x0, x21, · · · x1xn,
...

...
. . .

...
xnx0, xnx1, · · · x2n



[x20, x0x1, . . . , xn−1xn, x
2
n]

L

99ttttttttt

The composed map PnA may be written as [x0, . . . , xn] 7→ [x20, x0x1, x0x2, . . . , x
2
n],

where the subscripts on the right run over all ordered pairs (i, j) where 0 ≤ i, j ≤
n.) This forces δ to send closed sets to closed sets (or else S ◦ δ won’t, but L ◦ ν2
does). □

We note for future reference a minor result proved in the course of Proof 1.

10.1.6. Small Proposition. — If U and V are open subsets of an A-scheme X, then
∆ ∩ (U×A V) ∼= U ∩ V .
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Figure 10.2 may help show why this is natural. You could also interpret this
statement as

X×(X×AX) (U×A V) ∼= U×X V

which follows from the magic diagram, Exercise 1.3.S.

U ∩ V ∼= (U× V) ∩ ∆

U× X

X× V

∆
U× V

FIGURE 10.2. Small Proposition 10.1.6

10.1.7. Important Definition (finally!). A variety over a field k, or k-variety, is
a reduced, separated scheme of finite type over k. For example, a reduced finite
type affine k-scheme is a variety. (Do you see why separatedness holds?) The no-
tion of variety generalizes our earlier notion of affine variety (§5.3.7) and projective
variety (§5.3.E, see Proposition 10.1.14). (Notational caution: In some sources, the
additional condition of irreducibility is imposed. Also, it is often assumed that k
is algebraically closed.)

Varieties over k form a category: morphisms of k-varieties are just morphisms
as k-schemes. We will shortly see (in Exercise 10.1.L) that such morphisms are
automatically finite type and separated. (Of course, the category of varieties over
an algebraically closed field k long predates modern scheme theory.)

A subvariety of a variety X is a reduced locally closed subscheme of X (which
you can quickly check is a variety itself). An open subvariety of X is an open
subscheme of X. (Reducedness is automatic in this case.) A closed subvariety of X
is a reduced closed subscheme of X.

If you have read the double-starred section on group objects in a category
(§6.6.4), you will automatically have the notion of a group variety. We will discuss
this a bit more in §10.3.9.

10.1.E. EXERCISE (PRODUCTS OF IRREDUCIBLE VARIETIES OVER k ARE IRREDUCIBLE
VARIETIES). Use Exercise 9.4.E and properties of separatedness to show that the
product of two irreducible k-varieties is an irreducible k-variety.
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10.1.F. ⋆⋆ EXERCISE (COMPLEX ALGEBRAIC VARIETIES YIELD COMPLEX ANALYTIC
VARIETIES; FOR THOSE WITH SUFFICIENT BACKGROUND). Show that the analyti-
fication (Exercises 5.3.G and 6.3.N) of a complex algebraic variety is a complex
analytic variety.

Here is a very handy consequence of separatedness.

10.1.8. Proposition. — Suppose X → SpecA is a separated morphism to an affine
scheme, and U and V are affine open subsets of X. Then U ∩ V is an affine open subset of
X.

Before proving this, we state a consequence that is otherwise nonobvious. If
X = SpecA, then the intersection of any two affine open subsets of A is an affine
open subset. This is certainly not an obvious fact! We know the intersection of two
distinguished affine open sets is affine (from D(f) ∩ D(g) = D(fg)), but we have
little handle on affine open sets in general.

Warning: this property does not characterize separatedness. For example, if
A = Speck and X is the line with doubled origin over k, then X also has this
property.

Proof. By Proposition 10.1.6, (U ×A V) ∩ ∆ ∼= U ∩ V , where ∆ is the diagonal.
But U ×A V is affine (the fibered product of two affine schemes over an affine
scheme is affine, Step 1 of our construction of fibered products, Theorem 9.1.1),
and (U ×A V) ∩ ∆ is a closed subscheme of the affine scheme U ×A V , and hence
U ∩ V is affine. □

10.1.9. Redefinition: Quasiseparated morphisms.
We say a morphism π : X → Y is quasiseparated if the diagonal morphism

δπ : X→ X×Y X is quasicompact.

10.1.G. EXERCISE. Show that this agrees with our earlier definition of quasisepa-
rated (§7.3.1): show that π : X → Y is quasiseparated if and only if for any affine
open SpecA of Y, and two affine open subsets U and V of X mapping to SpecA,
U ∩ V is a finite union of affine open sets. (Possible hint: compare this to Proposi-
tion 10.1.8. Another possible hint: the magic diagram, Exercise 1.3.S.)

Here are two large classes of morphisms that are quasiseparated.

10.1.H. EASY EXERCISE. Show that separated morphisms are quasiseparated.
(Hint: closed embeddings are affine, hence quasicompact.)

Second, any morphism from a locally Noetherian scheme is quasiseparated,
see Exercise 7.3.B(b), so (locally) Noetherian people need never worry about this
issue.

We now give four quick propositions showing that separatedness and qua-
siseparatedness behave well, just as many other classes of morphisms did.

10.1.10. Proposition. — Both separatedness and quasiseparatedness are preserved by
base change.



November 18, 2017 draft 285

Proof. Suppose

W

��

// X

��
Y // Z

is a Cartesian diagram. We will show that if Y → Z is separated or quasiseparated,
then so isW → X. Then you can quickly verify that

W
δW //

��

W ×XW

��
Y

δY // Y ×Z Y

is a Cartesian diagram. (This is true in any category with fibered products.) As the
property of being a closed embedding is preserved by base change (§9.2 (3)), if δY
is a closed embedding, so is δW .

The quasiseparatedness case follows in the identical manner, as quasicompact-
ness is also preserved by base change (Exercise 9.4.B(a)). □

10.1.11. Proposition. — The condition of being separated is local on the target. Precisely,
a morphism π : X → Y is separated if and only if for any cover of Y by open subsets Ui,
π−1(Ui)→ Ui is separated for each i.

10.1.12. Hence affine morphisms are separated, as every morphism of affine schemes
is separated (Exercise 10.1.C). In particular, finite morphisms are separated.

Proof. If π : X→ Y is separated, then for anyUi ↪→ Y, π−1(Ui)→ Ui is separated, as
separatedness is preserved by base change (Theorem 10.1.10). Conversely, to check
if ∆ ↪→ X×YX is a closed subset, it suffices to check this on an open cover of X×YX.
Let ρ : X×Y X→ Y be the natural map. We will use the open cover ρ−1(Ui), which
by construction of the fibered product is π−1(Ui)×Ui

π−1(Ui). As π−1(Ui)→ Ui
is separated, π−1(Ui)→ π−1(Ui)×Ui

π−1(Ui) is a closed embedding by definition
of separatedness. □

10.1.I. EXERCISE. Prove that the condition of being quasiseparated is local on
the target. (Hint: the condition of being quasicompact is local on the target by
Exercise 7.3.C(a); use a similar argument as in Proposition 10.1.11.)

10.1.13. Proposition. —
(a) The condition of being separated is closed under composition. In other words, if π : X→
Y is separated and ρ : Y → Z is separated, then ρ ◦ π : X→ Z is separated.
(b) The condition of being quasiseparated is closed under composition.

Proof. (a) Let τ = ρ ◦ π. We are given that δπ : X ↪→ X ×Y X and δρ : Y ↪→ Y ×Z Y
are closed embeddings, and we wish to show that δτ : X → X ×Z X is a closed
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embedding. Consider the diagram

X
� � δπ // X×Y X

ψ //

��

X×Z X

��
Y
� � δρ // Y ×Z Y.

The square is the magic diagram (Exercise 1.3.S). As δρ is a closed embedding, ψ
is too (closed embeddings are preserved by base change, §9.2 (3)). Thus ψ ◦ δπ is
a closed embedding (the composition of two closed embeddings is also a closed
embedding, Exercise 8.1.C).

(b) The identical argument (with “closed embedding” replaced by “quasicom-
pact”) shows that the condition of being quasiseparated is closed under composi-
tion. □

10.1.14. Corollary. — Every quasiprojectiveA-scheme is separated overA. In particular,
every reduced quasiprojective k-scheme is a k-variety.

Proof. Suppose X → SpecA is a quasiprojective A-scheme. The structure mor-
phism can be factored into an open embedding composed with a closed embed-
ding followed by PnA → SpecA. Open embeddings and closed embeddings are
separated (Exercise 10.1.B), and PnA → SpecA is separated (Proposition 10.1.5).
Compositions of separated morphisms are separated (Proposition 10.1.13), so we
are done. □

10.1.15. Proposition. — Suppose π : X → Y and π ′ : X ′ → Y ′ are separated (resp. qua-
siseparated) morphisms of S-schemes (where S is a scheme). Then the product morphism
π× π ′ : X×S X ′ → Y ×S Y ′ is separated (resp. quasiseparated).

Proof. Apply Exercise 9.4.F. □

10.1.16. Applications.
As a first application, we define the graph of a morphism.

10.1.17. Definition. Suppose π : X→ Y is a morphism of Z-schemes. The morphism
Γπ : X→ X×ZY given by Γπ = (id, π) is called the graph morphism. Then π factors
as pr2 ◦ Γπ, where pr2 is the second projection (see Figure 10.3). The diagram of
Figure 10.3 is often called the graph of a morphism. (We will discuss graphs of
rational maps in §10.2.4.)

10.1.18. Proposition. — The graph morphism Γ is always a locally closed embedding. If
Y is a separated Z-scheme (i.e., the structure morphism Y → Z is separated), then Γ is a
closed embedding. If Y is a quasiseparated Z-scheme, then Γ is quasicompact.

This will be generalized in Exercise 10.1.M.
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π

Γπ pr1

pr2
Y

X

X×Z Y

FIGURE 10.3. The graph morphism

Proof by Cartesian diagram. A special case of the magic diagram (Exercise 1.3.S) is:

(10.1.18.1) X
Γπ //

π

��

X×Z Y

��
Y

δ // Y ×Z Y.

The notions of locally closed embedding and closed embedding are preserved by
base change, so if the bottom arrow δ has one of these properties, so does the top.
The same argument establishes the last sentence of Proposition 10.1.18. □

We next come to a strange-looking, but very useful, result. Like the magic
diagram, this result is unexpectedly ubiquitous.

10.1.19. Cancellation Theorem for a Property P of Morphisms. — Let P be a class
of morphisms that is preserved by base change and composition. (Any “reasonable” class
of morphisms will satisfy this, see §7.1.1.) Suppose

X
π //

τ
��?

??
??

??
? Y

ρ
����
��
��
��

Z

is a commuting diagram of schemes. Suppose that the diagonal morphism δρ : Y →
Y ×Z Y is in P and τ : X→ Z is in P. Then π : X→ Y is in P. In particular:

(i) Suppose that locally closed embeddings are in P. If τ is in P, then π is in P.
(ii) Suppose that closed embeddings are in P (e.g., P could be finite morphisms, mor-

phisms of finite type, closed embeddings, affine morphisms). If τ is in P and ρ is
separated, then π is in P.
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(iii) Suppose that quasicompact morphisms are in P. If τ is in P and ρ is quasisepa-
rated, then π is in P.

The following diagram summarizes this important theorem:

X
∴∈P //

∈P ��?
??

??
??

? Y

δ∈P����
��
��
��

Z

When you plug in different P, you get very different-looking (and nonobvious)
consequences, the first of which are given in Exercise 10.1.J. (Here are some facts
you can prove easily, but which can be interpreted as applications of the Cancel-
lation Theorem in Sets, and which may thus shed light on how the Cancellation
Theorem works. If π : X → Y and ρ : Y → Z are maps of sets, and ρ ◦ π is injective,
then so is π; and if ρ ◦ π is surjective and ρ is injective, then π is surjective.)

Proof. By the graph Cartesian diagram (10.1.18.1)

X
Γπ //

π

��

X×Z Y

��
Y

δρ // Y ×Z Y

we see that the graph morphism Γπ : X → X ×Z Y is in P (Definition 10.1.17), as P
is preserved by base change. By the Cartesian square

X×Z Y
τ ′

//

��

Y

ρ

��
X

τ // Z

the projection τ ′ : X×Z Y → Y is in P as well. Thus π = τ ′ ◦ Γπ is in P □
Here now are some fun and useful exercises.

10.1.J. LESS IMPORTANT EXERCISE. Show that an A-scheme is separated (over A)
if and only if it is separated over Z. In particular, a complex scheme is separated
over C if and only if it is separated over Z, so complex geometers and arithmetic
geometers can discuss separated schemes without confusion.

10.1.K. EASY EXERCISE. Suppose we have morphisms X π // Y
ρ // Z .

(a) Show that if ρ ◦ π is a locally closed embedding (resp. locally of finite type,
separated), then so is π.
(b) If ρ◦π is quasicompact, and Y is Noetherian, show that π is quasicompact. Hint:
Exercise 7.3.B(a).
(c) If ρ ◦π is quasiseparated, show that π is quasiseparated. Hint: Exercise 7.3.B(b).

10.1.L. EASY EXERCISE. Show that morphisms of k-varieties (i.e., morphisms as
k-schemes, see §10.1.7) are finite type and separated.
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10.1.M. EXERCISE. Suppose µ : Z → X is a morphism, and σ : X → Z is a section
of µ, i.e., µ ◦ σ is the identity on X.

Z

µ

��
X

σ

VV

Show that σ is a locally closed embedding. Show that if µ is separated, then σ is
a closed embedding. (This generalizes Proposition 10.1.18.) Give an example to
show that σ need not be a closed embedding if µ is not separated.

10.1.N. LESS IMPORTANT EXERCISE. Suppose P is a class of morphisms such that
closed embeddings are in P, and P is preserved by fibered product and composi-
tion. Show that if π : X → Y is in P then πred : Xred → Yred is in P. (Two examples
are the classes of separated morphisms and quasiseparated morphisms.) Hint:

Xred

πred

**//

%%JJ
JJ

JJ
JJ

JJ
J X×Y Yred

��

// Yred

��
X

π // Y

10.1.20. ⋆⋆ Universally injective morphisms and the diagonal.

10.1.O. EASY EXERCISE. If π : X → Y and ρ : Y → Z are morphisms, and ρ ◦ π is
universally injective, show that π is universally injective.

10.1.P. EXERCISE.
(a) Show that π : X → Y is universally injective if and only if the diagonal mor-
phism δπ : X → X ×Y X is surjective. (Note that δπ is always injective, as it is a
locally closed embedding, by Proposition 10.1.3.)
(b) Show that universally injective morphisms are separated.
(c) Show that a map between finite type schemes over an algebraically closed field
k is universally injective if and only if it is injective on closed points.

10.2 Rational maps to separated schemes

When we introduced rational maps in §6.5, we promised that in good circum-
stances, a rational map has a “largest domain of definition”. We are now ready
to make precise what “good circumstances” means, in the Reduced-to-Separated
Theorem 10.2.2. We first introduce an important result making sense of locus
where two morphisms with the same source and target “agree”.
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10.2.A. USEFUL EXERCISE: THE LOCUS WHERE TWO MORPHISMS AGREE. Suppose
π : X→ Y and π ′ : X→ Y are two morphisms over some scheme Z.

X

��?
??

??
??

?
//

π ′

33
π

++ Y

����
��
��
��

Z

We can now give meaning to the phrase ’the locus where π and π ′ agree’, and
that in particular there is a largest locally closed subscheme where they agree —
which is closed if Y is separated over Z. Suppose µ : W → X is some morphism
(not assumed to be a locally closed embedding). We say that π and π ′ agree on µ if
π ◦ µ = π ′ ◦ µ. Show that there is a locally closed subscheme i : V ↪→ X on which π
and π ′ agree, such that any morphism µ : W → X on which π and π ′ agree factors
uniquely through i, i.e., there is a unique j : W → V such that µ = i ◦ j. Show
further that if Y → Z is separated, then i : V ↪→ X is a closed embedding. Hint:
define V to be the following fibered product:

V //

��

Y

δ

��
X

(π,π ′) // Y ×Z Y.

As δ is a locally closed embedding, V → X is too. Then if µ : W → X is any
morphism such that π ◦ µ = π ′ ◦ µ, then µ factors through V .

The fact that the locus where two maps agree can be nonreduced should not
come as a surprise: consider two maps from A1k to itself, π(x) = 0 and π ′(x) = x2.
They agree when x = 0, but the situation is (epsilonically) better than that — they
should agree even on Speck[x]/(x2).

10.2.1. Minor Remarks.
(i) In the previous exercise, we are describing V ↪→ X by way of a universal

property. Taking this as the definition, it is not a priori clear that V is a locally
closed subscheme of X, or even that it exists.

(ii) Warning: consider two maps from SpecC to itself over SpecR, the identity
and complex conjugation. These are both maps from a point to a point, yet they
do not agree despite agreeing as maps of sets. (If you are not convinced that they
disagree as morphisms, this might help: after base change SpecC → SpecR, they
do not agree even as maps of sets.)

(iii) More generally, the locus where π and π ′ agree can be interpreted as fol-
lows: π and π ′ agree at p if π(p) = π ′(p) and the two maps of residue fields are
the same. (You may enjoying thingking this through as an exercise.)

10.2.B. EXERCISE: MAPS OF k-VARIETIES ARE DETERMINED BY THE MAPS ON CLOSED
POINTS. Suppose π : X → Y and π ′ : X → Y are two morphisms of k-varieties
that are the same at the level of closed points (i.e., for each closed point p ∈ X,
π(p) = π ′(p)). Show that π = π ′. (This implies that the functor from the cat-
egory of “classical varieties over k”, which we won’t define here, to the cate-
gory of k-schemes, is fully faithful. Can you generalize this appropriately to non-
algebraically closed fields?)
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10.2.C. LESS IMPORTANT EXERCISE. Show that the line with doubled origin X
(Example 4.4.5) is not separated, by finding two morphisms π : W → X, π ′ : W →
X whose domain of agreement is not a closed subscheme (cf. Proposition 10.1.3).
(Another argument was given above, in Exercise 10.1.D. A fancy argument will be
given in Exercise 12.7.C.)

We now come to the central result of this section.

10.2.2. Reduced-to-Separated Theorem. — Two S-morphisms π : U → Z, π ′ : U →
Z from a reduced scheme to a separated S-scheme agreeing on a dense open subset of U are
the same.

Proof. Let V be the locus where π and π ′ agree. It is a closed subscheme of U (by
Exercise 10.2.A), which contains a dense open set. But the only closed subscheme
of a reduced scheme Uwhose underlying set is dense is all of U. □

10.2.3. Consequence 1. Hence (as X is reduced and Y is separated) if we have two
morphisms from open subsets of X to Y, say π : U → Y and π ′ : V → Y, and they
agree on a dense open subset Z of U ∩ V , then they necessarily agree on U ∩ V .

Consequence 2. A rational map has a largest domain of definition on which
π : U 99K Y is a morphism, which is the union of all the domains of definition.
In particular, a rational function on a reduced scheme has a largest domain of
definition. For example, the domain of definition of A2k 99K P1k given by (x, y) 7→
[x, y] has domain of definition A2k \ {(0, 0)} (cf. §6.5.3). This partially extends the
definition of the domain of a rational function on a locally Noetherian scheme
(Definition 5.5.6). The complement of the domain of definition is called the locus
of indeterminacy, and its points are sometimes called fundamental points of the
rational map, although we won’t use these phrases. (We will see in Exercise 22.4.L
that a rational map to a projective scheme can be upgraded to an honest morphism
by “blowing up” a scheme-theoretic version of the locus of indeterminacy.)

10.2.D. EXERCISE. Show that the Reduced-to-Separated Theorem 10.2.2 is false
if we give up reducedness of the source or separatedness of the target. Here are
some possibilities. For the first, consider the two maps from Speck[x, y]/(y2, xy)
to Spec k[t], where we take π given by t 7→ x and π ′ given by t 7→ x + y; f1 and f2
agree on the distinguished open setD(x), see Figure 10.4. For the second, consider
the two maps from Speck[t] to the line with the doubled origin, one of which
maps to the “upper half”, and one of which maps to the “lower half”. These two
morphisms agree on the dense open set D(t), see Figure 10.4.

FIGURE 10.4. Two different maps to a nonseparated scheme
agreeing on a dense open set (see Exercise 10.2.D)
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10.2.4. Graphs of rational maps. (Graphs of morphisms were defined in §10.1.17.) If
X is reduced and Y is separated, define the graph Γπ of a rational map π : X 99K Y
as follows. Let (U,π ′) be any representative of this rational map (so π ′ : U → Y

is a morphism). Let Γπ be the scheme-theoretic closure of Γπ ′ ↪→ U × Y ↪→ X × Y,
where the first map is a closed embedding (Proposition 10.1.18), and the second
is an open embedding. The product here should be taken in the category you are
working in. For example, if you are working with k-schemes, the fibered product
should be taken over k.

10.2.E. EXERCISE. Show that the graph of a rational map π : X 99K Y is indepen-
dent of the choice of representative of π. Hint: Suppose ξ ′ : U → Y and ξ : V → Y

are two representatives of π. Reduce to the case where V is the domain of defini-
tion of π (§10.2.3), and ξ ′ = ξ|U. Reduce to the case V = X. Show an isomorphism
Γπ ∼= X, and Γξ|U ∼= U. Show that the scheme-theoretic closure of U in X is all of X.
(Remark: the separatedness of Y is not necessary.)

In analogy with graphs of morphisms, the following diagram of a graph of a
rational map π can be useful (cf. Figure 10.3).

Γπ
� �cl. emb. // X× Y

||xx
xx
xx
xx
x

""E
EE

EE
EE

EE

X

OO�
�
�

π //_________ Y.

10.2.F. EXERCISE (THE BLOW-UP OF THE PLANE AS THE GRAPH OF A RATIONAL
MAP). Consider the rational map A2k 99K P1k given by (x, y) 7→ [x, y]. Show that
this rational map cannot be extended over the origin. (A similar argument arises in
Exercise 6.5.I on the Cremona transformation.) Show that the graph of the rational
map is the morphism (the blow-up) described in Exercise 9.3.F. (When we define
blow-ups in general, we will see that they are often graphs of rational maps, see
Exercise 22.4.M.)

10.2.5. Variations.
Variations of the short proof of Theorem 10.2.2 yield other useful results. Ex-

ercise 10.2.B is one example. The next exercise is another.

10.2.G. EXERCISE (MAPS TO A SEPARATED SCHEME CAN BE EXTENDED OVER AN
EFFECTIVE CARTIER DIVISOR IN AT MOST ONE WAY). Suppose X is a Z-scheme
(not necessarily reduced!), and Y is a separated Z-scheme. Suppose further that D
is an effective Cartier divisor on X. Show that any Z-morphism X \D → Y can be
extended in at most one way to a Z-morphism X → Y. (Hint: reduce to the case
where X = SpecA, and D is the vanishing scheme of t ∈ A. Reduce to showing
that the scheme-theoretic image ofD(t) in X is all of X. Show this by showing that
A→ At is an inclusion.)

As noted in §6.5.2, rational maps can be defined from any X that has associated
points to any Y. The Reduced-to-Separated Theorem 10.2.2 can be extended to this
setting, as follows.
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10.2.H. EXERCISE (THE “ASSOCIATED-TO-SEPARATED THEOREM”). Prove that
two S-morphisms π and π ′ from a locally Noetherian scheme U to a separated S-
scheme Z, agreeing on an open subset containing the associated points of U, are
the same.

10.3 Proper morphisms

Recall that a map of topological spaces (also known as a continuous map!)
is said to be proper if the preimage of any compact set is compact. Properness of
morphisms is an analogous property. For example, a variety over C will be proper
if it is compact in the classical topology (see [Se3, §7]). Alternatively, we will see
that projective A-schemes are proper over A — so this is a nice property satisfied
by projective schemes, which also is convenient to work with.

Recall (§7.3.8) that a (continuous) map of topological spaces π : X→ Y is closed
if for each closed subset S ⊂ X, π(S) is also closed. A morphism of schemes is
closed if the underlying continuous map is closed. We say that a morphism of
schemes π : X→ Y is universally closed if for every morphism Z→ Y, the induced
morphism Z×Y X→ Z is closed. In other words, a morphism is universally closed
if it remains closed under any base change. (More generally, if P is some property
of schemes, then a morphism of schemes is said to be universally P if it remains P
under any base change.)

To motivate the definition of properness for schemes, we remark that a con-
tinuous map π : X → Y of locally compact Hausdorff spaces which have count-
able bases for their topologies is universally closed if and only if it is proper (i.e.,
preimages of compact subsets are compact). You are welcome to prove this as an
exercise.

10.3.1. Definition. A morphism π : X → Y is proper if it is separated, finite type, and
universally closed. A scheme X is often said to be proper if some implicit structure
morphism is proper. For example, a k-scheme X is often described as proper if
X → Speck is proper. (A k-scheme is often said to be complete if it is proper. We
will not use this terminology.) If A is a ring, one often says that an A-scheme is
proper over A if it is proper over SpecA.

Let’s try this idea out in practice. We expect that A1C → SpecC is not proper,
because the complex manifold corresponding to A1C is not compact. However, note
that this map is separated (it is a map of affine schemes), finite type, and (trivially)
closed. So the “universally” is what matters here.

10.3.A. EASY EXERCISE. Show that A1C → SpecC is not proper, by finding a
base change that turns this into a non-closed map. Possible hint: Consider a well-
chosen map such as A1C ×C A1C → A1C or A1C ×C P1C → P1C. (See Figure 19.1 for
another finite type, separated, closed morphism that is not proper. Showing that
morphism is not proper requires more creativity.)

10.3.2. Example. As a first example: closed embeddings are proper. They are
clearly separated, as affine morphisms are separated, §10.1.12. They are finite type.
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After base change, they remain closed embeddings (§9.2.2), and closed embed-
dings are always closed. This easily extends further as follows.

10.3.3. Proposition. — Finite morphisms are proper.

Proof. Finite morphisms are separated (as they are affine by definition, and affine
morphisms are separated, §10.1.12), and finite type (basically because finite mod-
ules over a ring are automatically finitely generated). To show that finite mor-
phism are closed after any base change, we note that they remain finite after any
base change (finiteness is preserved by base change, Exercise 9.4.B(d)), and finite
morphisms are closed (Exercise 7.3.M). □

10.3.4. Proposition. —

(a) The notion of “proper morphism” is stable under base change.
(b) The notion of “proper morphism” is local on the target (i.e., π : X→ Y is proper

if and only if for any affine open cover Ui → Y, π−1(Ui)→ Ui is proper). Note
that the “only if” direction follows from (a) — consider base change by Ui ↪→ Y.

(c) The notion of “proper morphism” is closed under composition.
(d) The product of two proper morphisms is proper: if π : X → Y and π ′ : X ′ → Y ′

are proper, where all morphisms are morphisms of Z-schemes, then π×π ′ : X×Z
X ′ → Y ×Z Y ′ is proper.

(e) Suppose

(10.3.4.1) X
π //

τ
��?

??
??

??
? Y

ρ
����
��
��
��

Z

is a commutative diagram, and τ is proper, and ρ is separated. Then π is proper.

A sample application of (e): a morphism (over Speck) from a proper k-scheme
to a separated k-scheme is always proper.

Proof. (a) The notions of separatedness, finite type, and universal closedness are
all preserved by fibered product. (Notice that this is why universal closedness is
better than closedness — it is automatically preserved by base change!)

(b) We have already shown that the notions of separatedness and finite type
are local on the target. The notion of closedness is local on the target, and hence so
is the notion of universal closedness.

(c) The notions of separatedness, finite type, and universal closedness are all
preserved by composition.

(d) By (a) and (c), this follows from Exercise 9.4.F.
(e) Closed embeddings are proper (Example 10.3.2), so we invoke the Cancel-

lation Theorem 10.1.19 for proper morphisms. □
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10.3.B. UNIMPORTANT EXERCISE (“IMAGES OF PROPER SCHEMES ARE PROPER”).
Suppose in the diagram

X
π //

τ
��?

??
??

??
? Y

ρ
����
��
��
��

Z

that τ is proper and ρ is separated and finite type. Show that the scheme-theoretic
image of X under π is a proper Z-scheme. (We won’t use this fact, but it reassures
us that properness in algebraic geometry behaves like properness in topology.)

We now come to the most important example of proper morphisms.

10.3.5. Theorem. — Projective A-schemes are proper over A.

(As finite morphisms to SpecA are projective A-schemes, Exercise 7.3.J, The-
orem 10.3.5 can be used to give a second proof that finite morphisms are proper,
Proposition 10.3.3.)

Proof. The structure morphism of a projective A-scheme X → SpecA factors as
a closed embedding followed by PnA → SpecA. Closed embeddings are proper
(Example 10.3.2), and compositions of proper morphisms are proper (Proposi-
tion 10.3.4), so it suffices to show that PnA → SpecA is proper. We have already
seen that this morphism is finite type (Easy Exercise 5.3.D) and separated (Propo-
sition 10.1.5), so it suffices to show that PnA → SpecA is universally closed. As
PnA = PnZ ×Z SpecA, it suffices to show that PnX := PnZ ×Z X → X is closed for
any scheme X. But the property of being closed is local on the target on X, so
by covering X with affine open subsets, it suffices to show that PnB → SpecB is
closed for all rings B. This is the Fundamental Theorem of Elimination Theory
(Theorem 7.4.7). □

10.3.6. Remark: “Reasonable” proper schemes are projective. It is not easy to come
up with an example of an A-scheme that is proper but not projective! Over a field,
all proper curves are projective (see Remark 18.7.2), and all smooth surfaces are
projective (see [Ba, Thm. 1.28] for a proof of this theorem of Zariski; smoothness
of course is not yet defined). We will meet a first example of a proper but not pro-
jective variety (a singular threefold) in §16.4.10. We will later see an example of
a proper nonprojective surface in §19.11.11, and a simpler one in Exercise 20.2.G.
Once we know about flatness, we will see Hironaka’s example of a proper nonpro-
jective irreducible smooth threefold over C (§24.7.6).

10.3.7. Functions on connected reduced proper k-schemes must be constant.
As an enlightening application of these ideas, we show that if X is a connected

reduced proper k-scheme where k = k, then Γ(X,OX) = k. The analogous fact
for connected compact complex manifolds uses the maximum principle. We saw
this in the special case X = Pn in Exercise 4.4.E; it will be vastly generalized by
Grothendieck’s Coherence Theorem 18.9.1.

Suppose f ∈ Γ(X,OX) (f is a function on X). This is the same as a map π : X→
A1k (Exercise 6.3.F, discussed further in §6.6.1). Let π ′ be the composition of π
with the open embedding A1 ↪→ P1. By Proposition 10.3.4(e), π ′ is proper, and
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in particular closed. As X is connected, the image of π ′ is as well. Thus the set-
theoretic image of π ′ must be either a closed point, or all of P1. But the set-theoretic
image of π ′ lies in A1, so it must be a closed point p (which we identify with an
element of k).

By Corollary 8.3.5, the support of the scheme-theoretic image of π is the closed
point p. By Exercise 8.3.A, the scheme-theoretic image is precisely p (with the
reduced structure). Thus π can be interpreted as the structure map to Speck, fol-
lowed by a closed embedding to A1 identifying Spec kwith p. You should be able
to verify that this is the map to A1 corresponding to the constant function f = p.

(What are counterexamples if different hypotheses are relaxed?)

10.3.8. Facts (not yet proved) that may help you correctly think about finiteness.
The following facts may shed some light on the notion of finiteness. We will

prove them later.
A morphism is finite if and only if it is proper and affine, if and only if it

is proper and quasifinite (Theorem 29.6.2). We have proved parts of this state-
ment, but we will only finish the proof once we know Zariski’s Main Theorem, cf.
§7.3.15).

As an application: quasifinite morphisms from proper schemes to separated
schemes are finite. Here is why: suppose π : X→ Y is a quasifinite morphism over
Z, where X is proper over Z. Then by the Cancellation Theorem 10.1.19 for proper
morphisms, X→ Y is proper. Hence as π is quasifinite and proper, π is finite.

As an explicit example, consider the map π : P1k → P1k given by [x, y] 7→
[f(x, y), g(x, y)], where f and g are homogeneous polynomials of the same degree
with no common roots in P1. The fibers are finite, and π is proper (from the Can-
cellation Theorem 10.1.19 for proper morphisms, as discussed after the statement
of Theorem 10.3.4), so π is finite. This could be checked directly as well, but now
we can save ourselves the annoyance.

10.3.9. ⋆⋆ Group varieties. The rest of §10.3 is double-starred, and we will also
throughout work in the category of varieties over a field k. We briefly discuss group
varieties, mainly because we can, not because we have anything profound to say.
We discuss them right now only because properness gives an unexpected conse-
quence, that proper group varieties are abelian (thanks to the surprisingly simple
Rigidity Lemma 10.3.12).

As discussed in §10.1.7, now that we have the category of varieties over k,
we immediately have the notion of a group variety (thanks to §6.6.4 on group
objects in any category). An algebraic group (over k) is a smooth group variety.
Examples include GLn (Exercise 6.6.N(b)), which includes Gm as a special case,
and SLn (Exercise 6.6.Q).

10.3.10. Side Remarks (that we won’t prove or use). Group varieties are automati-
cally smooth (hence algebraic groups) in characteristic 0. Group varieties are not
necessarily smooth in positive characteristic. (Let k be an imperfect field of charac-
teristic p, and choose t ∈ kwithout a pth root in k. Consider the “closed sub-group
scheme” xp = typ of the “additive group” G2a = Speck[x, y]. This group scheme
is reduced, but not geometrically reduced; and not smooth, or even regular.) Al-
gebraic groups are automatically quasiprojective. An algebraic group G is affine
(as a scheme) if and only if it admits a closed immersion into GLn for some n ≥ 0,
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such that G→ GLn is a homomorphism of group schemes (Exercise 6.6.N(a)). For
further discussion on these and other issues, see [P2, §5.2].

10.3.11. Definition: Abelian varieties. We can now define one of the most important
classes of varieties: abelian varieties. The bad news is that we have no real example
yet. We will later see elliptic curves as an example (§19.10), but we will not meet
anything more exotic than that. Still, it is pleasant to know that we can make the
definition this early.

An abelian variety over a field k is an algebraic group that is geometrically
integral and projective (over k). It turns out that the analytification of any abelian
variety over C is a complex torus, i.e., Cn/Λ, where Λ is a lattice (of rank 2n).
(The key idea: connected compact complex Lie groups are commutative, see Re-
mark 10.3.14; the universal cover is a simply connected commutative complex Lie
group, and thus Cn. See [BL, Lem. 1.1.1].)

We now show that abelian varieties are abelian, i.e., abelian varieties are com-
mutative algebraic group varieties. (This is less tautological than it sounds! The
adjective “abelian” is used in two different senses; what they have in common is
that they are derived from the name of Niels Henrik Abel.) As algebraic groups
need not be commutative (witness GLn), it is somehow surprising that commuta-
tivity could be forced by “compactness”.

The key result is the following fact, beautiful in its own right.

10.3.12. Rigidity Lemma. — Let X, Y, and Z be varieties, where X is proper and
geometrically integral, with a rational point p, and Y is irreducible. Let pr : X×Y → Y be
the projection, and let α : X × Y → Z be any morphism. Suppose q ∈ Y is such that α is
constant on X× {q}; say α(X× {q}) = r ∈ Z.
(a) Then there is a morphism ψ : Y → Z such that α = ψ ◦ pr. (In particular, for every
q ′ ∈ Y, α is constant on X× {q ′}.)
(b) If α is also constant on {p}× Y, then α is a constant function on all of X× Y.

Z

Xq

��

// X× Y

pr

��

α

<<zzzzzzzzz

q // Y

σp

VV
ψ

NN

The hypotheses can be relaxed in a number of ways, but this version suffices
for our purposes. If you have not read §9.5, where geometric integrality is dis-
cussed, you need not worry too much; this is automatic if k = k and X is integral
(Hard Fact 9.5.2). Even if you have read §9.5, it is helpful to first read this proof
under the assumption that k = k, to avoid being distracted from the main idea by
geometric points. But of course all of §10.3.9 is double-starred, so you shouldn’t
be reading this anyway.

10.3.C. EXERCISE. Show that the properness hypothesis on X is necessary. (Can
you make this accord with your intuition?)
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Proof of the Rigidity Lemma 10.3.12. Define β : X × Y → Z by β(x, y) = α(p, y).
(More precisely, if σp is the section of Y → Y → X pulled back from Speck 7→ p,
then β = α◦σp ◦pr.) We will show that β(x, y) = α(x, y). This will imply (a) (take
ψ = α ◦ σp), which in turn immediately implies (b).

Proposition 9.5.17 (geometrically reduced times reduced is reduced) implies
that X×Y is reduced. Exercise 9.5.M (geometrically irreducible times irreducible is
irreducible) implies that X× Y is irreducible. As Z is separated, by Exercise 10.2.A,
it suffices to show that α = β on a nonempty (hence dense) open subset of X× Y.

LetU ⊂ Z be an affine open neighborhood of r. Thenα−1(Z\U) is a closed sub-
set of X×Y. As the projection pr is proper (using properness of X, and preservation
of properness under base change, Proposition 10.3.4(a)), we have pr(α−1(Z \ U))
is closed. Its complement is open, and contains q; let V ⊂ Y be an open neighbor-
hood of q disjoint from pr(α−1(Z \U)).

10.3.D. EXERCISE. Suppose γ : SpecK → V is a geometric point of V . Show that
the fiber XK over SpecK (or more precisely, over γ) is mapped to a point in Z by
the restriction αK of α to XK. Hint: review §10.3.7.

Z

XK

αK

55kkkkkkkkkkkkkkkkkkk βK

55kkkkkkkkkkkkkkkkkkk //

��

X× V

pr

��

α|V

JJ

SpecK
γ // V

By Exercise 10.2.B (maps of varieties over an algebraically closed field are de-
termined by the map of closed points), αK = βK.

10.3.E. EXERCISE. Use Exercise 10.2.A (the fact that the locus where α = β is
a closed subscheme — and represents a certain functor) to show that α = β on
pr−1(V).

□

10.3.13. Corollary. — Suppose A is an abelian variety, G is a group variety, and
ϕ : A → G is any morphism of varieties. Then ϕ is the composition of a translation
and a homomorphism.

Proof. Let eA and eG be the identity points of A and G respectively. Composing
ϕ with a translation, we may assume that ϕ(eA) = eG. Consider the morphism
α : A×A→ G given by α(a1, a2) = ϕ(a1a2)ϕ(a1)−1ϕ(a2)−1. Then α({eA}×A) =
α(A × {eA}) = {eB}, so by the Rigidity Lemma 10.3.12, α is a constant, and sends
A×A to eB. Thus ϕ(a1a2) = ϕ(a1)ϕ(a2), so ϕ is a homomorphism. □

10.3.F. EXERCISE (ABELIAN VARIETIES ARE ABELIAN). Show that an abelian va-
riety is an abelian group variety. Hint: apply Corollary 10.3.13 to the inversion
morphism i : A→ A.
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10.3.14. Remark. A similar idea is used to show that connected compact complex
Lie groups are abelian, see for example [BL, Lemm. 1.1.1].





Part IV

“Geometric” properties: Dimension
and smoothness





CHAPTER 11

Dimension

11.1 Dimension and codimension

Everyone knows what a curve is, until he has studied enough mathematics to become
confused ...

— F. Klein, [RS, p. 90]

At this point, you know a fair bit about schemes, but there are some funda-
mental notions you cannot yet define. In particular, you cannot use the phrase
“smooth surface”, as it involves the notion of dimension and of smoothness. You
may be surprised that we have gotten so far without using these ideas. You may
also be disturbed to find that these notions can be subtle, but you should keep in
mind that they are subtle in all parts of mathematics.

In this chapter, we will address the first notion, that of dimension of schemes.
This should agree with, and generalize, our geometric intuition. Although we
think of dimension as a basic notion in geometry, it is a slippery concept, as it is
throughout mathematics. Even in linear algebra, the definition of dimension of a
vector space is surprising the first time you see it, even though it quickly becomes
second nature. The definition of dimension for manifolds is equally nontrivial.
For example, how do we know that there isn’t an isomorphism between some 2-
dimensional manifold and some 3-dimensional manifold? Your answer will likely
use topology, and hence you should not be surprised that the notion of dimension
is often quite topological in nature.

A caution for those thinking over the complex numbers: our dimensions will
be algebraic, and hence half that of the “real” picture. For example, we will see
very shortly that A1C, which you may picture as the complex numbers (plus one
generic point), has dimension 1.

11.1.1. Definition(s): dimension. Surprisingly, the right definition is purely topolog-
ical — it just depends on the topological space, and not on the structure sheaf. We
define the dimension of a topological space X (denoted dimX) as the supremum
of lengths of chains of closed irreducible sets, starting the indexing of the closed
irreducible sets with 0. (The dimension may be infinite.) Scholars of the empty
set can take the dimension of the empty set to be −∞. (An analogy from linear
algebra: the dimension of a vector space is the supremum of the length of chains
of subspaces.) Define the dimension of a ring as the supremum of the lengths of
the chains of nested prime ideals (where indexing starts at zero). These two def-
initions of dimension are sometimes called Krull dimension. (You might think a

303
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Noetherian ring has finite dimension because all chains of prime ideals are finite,
but this isn’t necessarily true — see Exercise 11.1.K.)

11.1.A. EASY EXERCISE. Show that dim SpecA = dimA. (Hint: Exercise 3.7.E
gives a bijection between irreducible closed subsets of SpecA and prime ideals of
A. It is “inclusion-reversing”.)

The homeomorphism between SpecA and SpecA/N(A) (§3.4.5: the Zariski
topology disregards nilpotents) implies that dim SpecA = dim SpecA/N(A).

11.1.2. Examples. We have identified all the prime ideals of k[t] (they are 0, and
(f(t)) for irreducible polynomials f(t)), Z ((0) and (p)), k (only (0)), and k[x]/(x2)
(only (x)), so we can quickly check that dimA1k = dim SpecZ = 1, dim Spec k = 0,
dim Spec k[x]/(x2) = 0.

11.1.3. We must be careful with the notion of dimension for reducible spaces. If Z
is the union of two closed subsets X and Y, then dimZ = max(dimX,dim Y). Thus
dimension is not a “local” characteristic of a space. This sometimes bothers us,
so we try to only talk about dimensions of irreducible topological spaces. We say
a topological space is equidimensional or pure dimensional (resp. equidimen-
sional of dimension n or pure dimension n) if each of its irreducible components
has the same dimension (resp. they are all of dimension n). An equidimensional
dimension 1 (resp. 2, n) topological space is said to be a curve (resp. surface, n-
fold).

11.1.B. EXERCISE. Show that a scheme has dimension n if and only if it admits
an open cover by affine open subsets of dimension at most n, where equality is
achieved for some affine open subset. Hint: You may find it helpful, here and later,
to show the following. For any topological space X and open subsetU ⊂ X, there is
a bijection between irreducible closed subsets of U, and irreducible closed subsets
of X that meet U.

11.1.C. EASY EXERCISE. Show that a Noetherian scheme of dimension 0 has a
finite number of points.

11.1.D. EXERCISE (FIBERS OF INTEGRAL MORPHISMS, PROMISED IN §7.3.11). Sup-
pose π : X → Y is an integral morphism. Show that every (nonempty) fiber of π
has dimension 0. Hint: As integral morphisms are preserved by base change, we
assume that Y = Speck. Hence we must show that if ϕ : k → A is an integral
extension, then dimA = 0. Outline of proof: Suppose p ⊂ m are two prime ideals
of A. Mod out by p, so we can assume that A is an integral domain. I claim that
any nonzero element is invertible: Say x ∈ A, and x ̸= 0. Then the minimal monic
polynomial for x has nonzero constant term. But then x is invertible — recall the
coefficients are in a field.

11.1.E. IMPORTANT EXERCISE. Show that if π : SpecA → SpecB corresponds
to an integral extension of rings, then dim SpecA = dim SpecB. Hint: show that
a chain of prime ideals downstairs gives a chain upstairs of the same length, by
the Going-Up Theorem (Exercise 7.2.F). Conversely, a chain upstairs gives a chain
downstairs. Use Exercise 11.1.D to show that no two elements of the chain upstairs
go to the same element [q] ∈ SpecB of the chain downstairs.
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11.1.F. EXERCISE. Show that if ν : X̃→ X is the normalization of a scheme (possibly
in a finite extension of fields), then dim X̃ = dimX. Feel free to assume that X is
integral for convenience.

11.1.G. EXERCISE. Suppose X is an affine k-scheme, and K/k is an algebraic field
extension.
(a) Suppose X has pure dimension n. Show that XK := X×k K has pure dimension
n. (See Exercise 24.5.F for a generalization, which for example removes the affine
hypothesis. Also, see Exercise 11.2.J and Remark 11.2.16 for the fate of possible
generalizations to arbitrary field extensions.) Hint: If X = SpecA, reduce to the
case where A is an integral domain. An irreducible component of X ′ corresponds
to a minimal prime p of A ′ := A ⊗k K. Suppose a ∈ ker(A → A ′/p). Show
that a = 0, using the fact that a lies in a minimal prime p of A ′ (and is hence a
zerodivisor, by Remark 5.5.12), and A ′ is a free A-module (so multiplication in
A ′ by a ∈ A is injective if a is nonzero). Thus A → A ′/p is injective. Then use
Exercise 11.1.E.
(b) Prove the converse to (a): show that if XK has pure dimension n, then X has
pure dimension n.

11.1.H. EXERCISE. Show that dimZ[x] = 2. (Hint: The prime ideals of Z[x] were
implicitly determined in Exercise 3.2.Q.)

11.1.4. Codimension. Because dimension behaves oddly for disjoint unions, we
need some care when defining codimension, and in using the phrase. For example,
if Y is a closed subset of X, we might define the codimension to be dimX − dimY,
but this behaves badly. For example, if X is the disjoint union of a point Y and a
curve Z, then dimX−dimY = 1, but this has nothing to do with the local behavior
of X near Y.

A better definition is as follows. In order to avoid excessive pathology, we de-
fine the codimension of Y in X only when Y is irreducible. (Use extreme caution when
using this word in any other setting.) Define the codimension of an irreducible
subset Y ⊂ X of a topological space as the supremum of lengths of increasing chains
of irreducible closed subsets starting with Y (where indexing starts at 0 — recall
that the closure of an irreducible set is irreducible, Exercise 3.6.B(b)). In particular,
the codimension of a point is the codimension of its closure. The codimension of
Y in X is denoted by codimX Y.

We say that a prime ideal p in a ring has codimension equal to the supremum
of lengths of the chains of decreasing prime ideals starting at p, with indexing
starting at 0. Thus in an integral domain, the ideal (0) has codimension 0; and in Z,
the ideal (23) has codimension 1. Note that the codimension of the prime ideal p in
A is dimAp (see §3.2.8). (This notion is often called height.) Thus the codimension
of p in A is the codimension of [p] in SpecA.

(Continuing an analogy with linear algebra: the codimension of a vector sub-
space Y ⊂ X is the supremum of lengths of increasing chains of subspaces starting
with Y. This is a better definition than dimX−dimY, because it works even when
dimX = ∞. You might prefer to define codimX Y as dim(X/Y); that is analogous
to defining the codimension of p in A as the dimension of Ap — see the previous
paragraph.)
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11.1.I. EXERCISE. Show that if Y is an irreducible closed subset of a scheme X, and
η is the generic point of Y, then the codimension of Y is the dimension of the local
ring OX,η.

Notice that Y is codimension 0 in X if it is an irreducible component of X. Sim-
ilarly, Y is codimension 1 if it is not an irreducible component, and for every ir-
reducible component Y ′ it is contained in, there is no irreducible subset strictly
between Y and Y ′. (See Figure 11.1 for examples.) A closed subset all of whose
irreducible components are codimension 1 in some ambient space X is said to be a
hypersurface in X.

q

p

C

FIGURE 11.1. Behavior of codimension

11.1.J. EASY EXERCISE. If Y is an irreducible closed subset of a scheme X, show
that

(11.1.4.1) codimX Y + dim Y ≤ dimX.

We will soon see that equality always holds if X and Y are varieties (Theo-
rem 11.2.9), but equality doesn’t hold in general (§11.3.9).

Warning. The notion of codimension still can behave slightly oddly. For exam-
ple, consider Figure 11.1. (You should think of this as an intuitive sketch.) Here
the total space X has dimension 2, but point p is dimension 0, and codimension 1.
We also have an example of a codimension 2 subset q contained in a codimension
0 subset Cwith no codimension 1 subset “in between”.

Worse things can happen; we will soon see an example of a closed point in an
irreducible surface that is nonetheless codimension 1, not 2, in §11.3.9. However, for
irreducible varieties this can’t happen, and inequality (11.1.4.1) must be an equality
(Theorem 11.2.9).

11.1.5. In unique factorization domains, codimension 1 prime ideals are princi-
pal. For the sake of further applications, we make a short observation.
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11.1.6. Lemma. — In a unique factorization domain A, all codimension 1 prime ideals
are principal.

This is a first glimpse of the fact that codimension one is rather special — this
theme will continue in §11.3. We will see that the converse of Lemma 11.1.6 holds
as well (when A is a Noetherian integral domain, Proposition 11.3.5).

Proof. Suppose p is a codimension 1 prime. Choose any f ̸= 0 in p, and let g be
any irreducible/prime factor of f that is in p (there is at least one). Then (g) is a
nonzero prime ideal contained in p, so (0) ⊂ (g) ⊂ p. As p is codimension 1, we
must have p = (g), and thus p is principal. □

11.1.7. A fun but unimportant counterexample. We end this introductory section
with a fun pathology. As a Noetherian ring has no infinite chain of prime ideals,
you may think that Noetherian rings must have finite dimension. Nagata, the
master of counterexamples, shows you otherwise with the following example.

11.1.K. ⋆⋆ EXERCISE: AN INFINITE-DIMENSIONAL NOETHERIAN RING. Let A =
k[x1, x2, . . . ]. Choose an increasing sequence of positive integersm1,m2, . . . whose
differences are also increasing (mi+1−mi > mi−mi−1). Let pi = (xmi+1, . . . , xmi+1

)
and S = A− ∪ipi.
(a) Show that S is a multiplicative set.
(b) Show that S−1pi in S−1A is the largest prime ideal in a chain of prime ideals of
lengthmi+1 −mi. Hence conclude that dimS−1A =∞.
(c) Suppose B is a ring such that (i) for every maximal ideal m, Bm is Noether-
ian, and (ii) every nonzero b ∈ B is contained in finitely many maximal ideals.
Show that B is Noetherian. (One possible approach: show that for any x1, x2, . . . ,
(x1, x2, . . . ) is finitely generated.)
(d) Use (c) to show that S−1A is Noetherian.

11.1.8. Remark: Noetherian local rings have finite dimension. However, we shall see in
Exercise 11.3.I(a) that Noetherian local rings always have finite dimension. (This
requires a surprisingly hard fact, Krull’s Height Theorem 11.3.7.) Thus points of
locally Noetherian schemes always have finite codimension.

11.2 Dimension, transcendence degree, and Noether
normalization

We now give a powerful alternative interpretation for dimension for irreducible
varieties, in terms of transcendence degree. The proof will involve a classical con-
struction, Noether normalization, which will be useful in other ways as well. In case
you haven’t seen transcendence theory, here is a lightning introduction.

11.2.A. EXERCISE/DEFINITION. Recall that an element of a field extension E/F
is algebraic over F if it is integral over F. Recall also that a field extension E/F is an
algebraic extension if it is an integral extension (if all elements of E are algebraic over
F). The composition of two algebraic extensions is algebraic, by Exercise 7.2.C.
If E/F is a field extension, and F ′ and F ′′ are two intermediate field extensions,
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then we write F ′ ∼ F ′′ if F ′F ′′ is algebraic over both F ′ and F ′′. Here F ′F ′′ is the
compositum of F ′ and F ′′, the smallest field extension in E containing F ′ and F ′′. (a)
Show that ∼ is an equivalence relation on subextensions of E/F. A transcendence basis
of E/F is a set of elements {xi} that are algebraically independent over F (there is
no nontrivial polynomial relation among the xi with coefficients in F) such that
F({xi}) ∼ E. (b) Show that if E/F has two transcendence bases, and one has cardinality n,
then both have cardinality n. (Hint: show that you can substitute elements from the
one basis into the other one at a time.) The size of any transcendence basis is called
the transcendence degree (which may be∞), and is denoted tr.deg. Any finitely
generated field extension necessarily has finite transcendence degree. (Remark: A
related result was mentioned in Algebraic Fact 9.5.16.)

11.2.1. Theorem (dimension = transcendence degree). — Suppose A is a finitely
generated domain over a field k (i.e., a finitely generated k-algebra that is an integral
domain). Then dim SpecA = tr.degK(A)/k. Hence if X is an irreducible k-variety,
then dimX = tr.degK(X)/k.

We will prove Theorem 11.2.1 shortly (§11.2.7). We first show that it is useful
by giving some immediate consequences. We seem to have immediately dimAnk =
n. However, our proof of Theorem 11.2.1 will go through this fact, so it isn’t really
a consequence.

A more substantive consequence is the following. If X is an irreducible k-
variety, then dimX is the transcendence degree of the function field (the stalk at
the generic point) OX,η over k. Thus (as the generic point lies in all nonempty open
sets) the dimension can be computed in any open set of X. (Warning: this is false
without the finite type hypothesis, even in quite reasonable circumstances: let X
be the two-point space Speck[x](x), and let U consist of only the generic point, see
Exercise 3.4.K.)

Another consequence is a second proof of the Nullstellensatz 3.2.5.

11.2.B. EXERCISE: THE NULLSTELLENSATZ FROM DIMENSION THEORY. Suppose
A = k[x1, . . . , xn]/I. Show that the residue field of any maximal ideal of A is a
finite extension of k. (Hint: the maximal ideals correspond to dimension 0 points,
which correspond to transcendence degree 0 finitely generated extensions of k, i.e.,
finite extensions of k.)

Yet another consequence is geometrically believable.

11.2.C. EXERCISE. If π : X → Y is a dominant morphism of irreducible k-varieties,
then dimX ≥ dim Y. (This is false more generally: consider the inclusion of the
generic point into an irreducible curve.)

11.2.D. EXERCISE (PRACTICE WITH THE CONCEPT). Show that the three equations

wz− xy = 0, wy− x2 = 0, xz− y2 = 0

cut out an integral surface S in A4k. (You may recognize these equations from Ex-
ercises 3.6.F and 8.2.A.) You might expect S to be a curve, because it is cut out by
three equations in four-space. One of many ways to proceed: cut S into pieces.
For example, show that D(w) ∼= Speck[x,w]w. (You may recognize S as the affine
cone over the twisted cubic. The twisted cubic was defined in Exercise 8.2.A.) It
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turns out that you need three equations to cut out this surface. The first equa-
tion cuts out a threefold in A4k (by Krull’s Principal Ideal Theorem 11.3.3, which
we will meet soon). The second equation cuts out a surface: our surface, along
with another surface. The third equation cuts out our surface, and removes the
“extraneous component”. One last aside: notice once again that the cone over the
quadric surface k[w, x, y, z]/(wz− xy) makes an appearance.)

11.2.2. Definition: degree of a rational map of irreducible varieties. If π : X 99K Y
is a dominant rational map of irreducible (hence integral) k-varieties of the same
dimension, the degree of the field extension is called the degree of the rational
map. This readily extends if X is reducible: we add up the degrees on each of
the components of X. If π is a rational map of integral affine k-varieties of the
same dimension that is not dominant we say the degree is 0. We will interpret
this degree in terms of counting preimages of general points of Y in §24.5.10. Note
that degree is multiplicative under composition: if ρ : Y 99K Z is a rational map
of integral k-varieties of the same dimension, then deg(ρ ◦ π) = deg(ρ)deg(π), as
degrees of field extensions are multiplicative in towers.

11.2.3. Noether normalization.
Our proof of Theorem 11.2.1 will use another important classical notion, Noether

normalization.

11.2.4. Noether Normalization Lemma. — Suppose A is an integral domain, finitely
generated over a field k. If tr.deg

k
K(A) = n, then there are elements x1, . . . , xn ∈ A,

algebraically independent over k, such thatA is a finite (hence integral by Corollary 7.2.2)
extension of k[x1, . . . , xn].

The geometric content behind this result is that given any integral finite type
affine k-scheme X, we can find a surjective finite morphism X → Ank , where n is
the transcendence degree of the function field of X (over k). Surjectivity follows
from the Lying Over Theorem 7.2.5, in particular Exercise 11.1.E. This interpreta-
tion is sometimes called geometric Noether normalization. (See Remark 30.3.7 for a
projective version of Noether normalization.)

11.2.5. Nagata’s proof of the Noether Normalization Lemma 11.2.4. Suppose we can
write A = k[y1, . . . , ym]/p, i.e., that A can be chosen to have m generators. Note
that m ≥ n. We show the result by induction on m. The base case m = n is
immediate.

Assume now that m > n, and that we have proved the result for smaller
m. We will find m − 1 elements z1, . . . , zm−1 of A such that A is finite over
k[z1, . . . , zm−1]/q (i.e., the subring of A generated by z1, . . . , zm−1, where the
zi satisfy the relations given by the ideal q). Then by the inductive hypothesis,
k[z1, . . . , zm−1]/q is finite over some k[x1, . . . , xn], andA is finite over k[z1, . . . , zm−1],
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so by Exercise 7.3.I, A is finite over k[x1, . . . , xn].

A = k[y1, . . . , ym]/p

finite

k[z1, . . . , zm−1]/q

finite

k[x1, . . . , xn]

As y1, . . . , ym are algebraically dependent in A, there is some nonzero alge-
braic relation f(y1, . . . , ym) = 0 among them (where f is a polynomial in m vari-
ables over k).

Let z1 = y1 − y
r1
m , z2 = y2 − y

r2
m , . . . , zm−1 = ym−1 − y

rm−1
m , where r1, . . . ,

rm−1 are positive integers to be chosen shortly. Then

f(z1 + y
r1
m , z2 + y

r2
m , . . . , zm−1 + y

rm−1
m , ym) = 0.

Then upon expanding this out, each monomial in f (as a polynomial inm variables)
will yield a single term that is a constant times a power of ym (with no zi factors).
By choosing the ri so that 0 ≪ r1 ≪ r2 ≪ · · · ≪ rm−1, we can ensure that the
powers of ym appearing are all distinct, and so that in particular there is a leading
term yNm, and all other terms (including those with factors of zi) are of smaller
degree in ym. Thus we have described an integral dependence of ym on z1, . . . ,
zm−1 as desired. □

11.2.6. The geometry behind Nagata’s proof. Here is the geometric intuition be-
hind Nagata’s argument. Suppose we have an n-dimensional variety in Amk with
n < m, for example xy = 1 in A2. One approach is to hope the projection to a
hyperplane is a finite morphism. In the case of xy = 1, if we projected to the x-
axis, it wouldn’t be finite, roughly speaking because the asymptote x = 0 prevents
the map from being closed (cf. Exercise 7.3.L). If we instead projected to a random
line, we might hope that we would get rid of this problem, and indeed we usually
can: this problem arises for only a finite number of directions. But we might have
a problem if the field were finite: perhaps the finite number of directions in which
to project each have a problem. (You can show that if k is an infinite field, then the
substitution in the above proof zi = yi−yrim can be replaced by the linear substitu-
tion zi = yi − aiym where ai ∈ k, and that for a nonempty Zariski-open choice of
ai, we indeed obtain a finite morphism.) Nagata’s trick in general is to “jiggle” the
variables in a nonlinear way, and this jiggling kills the nonfiniteness of the map.

11.2.7. Proof of Theorem 11.2.1 on dimension and transcendence degree. Suppose X is
an integral affine k-scheme of finite type. We show that dimX equals the transcen-
dence degree n of its function field, by induction on n. (The idea is that we reduce
from X to An to a hypersurface in An to An−1.) Assume the result is known for all
transcendence degrees less than n.

By the Noether Normalization Lemma 11.2.4, there exists a surjective finite
morphism X→ Ank . By Exercise 11.1.E, dimX = dimAnk . If n = 0, we are done, as
dimA0k = 0.
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We now show that dimAnk = n for n > 0, by induction. Clearly dimAnk ≥ n,
as we can describe a chain of irreducible subsets of length n: if x1, . . . , xn are
coordinates on An, consider the chain of ideals

(0) ⊂ (x1) ⊂ · · · ⊂ (x1, . . . , xn)

in k[x1, . . . , xn]. Suppose we have a chain of prime ideals of length at least n+ 1:

(0) = p0 ⊂ · · · ⊂ pm.

Choose any nonzero element g of p1, and let f be any irreducible factor of g lying
in p1. Then replace p1 by (f). (Of course, p1 may have been (f) to begin with.) Then
K(k[x1, . . . , xn]/(f(x1, . . . , xn))) has transcendence degree n− 1, so by induction,

dimk[x1, . . . , xn]/(f) = n− 1,

so dimk[x1, . . . , xn] ≤ n, completing the proof. □

11.2.E. EXERCISE (DIMENSION IS ADDITIVE FOR PRODUCTS OF FINITE TYPE k-SCHEMES).
If X and Y are irreducible k-varieties, show that dimX×kY = dimX+dim Y. (Hint:
If we had surjective finite morphisms X → AdimX

k and Y → AdimY
k , we could con-

struct a surjective finite morphism X×k Y → AdimX+dimY
k .)

11.2.8. Codimension is the difference of dimensions for irreducible varieties.
Noether normalization will help us show that codimension is the difference of

dimensions for irreducible varieties, i.e., that the inequality (11.1.4.1) is always an
equality.

11.2.9. Theorem. — Suppose X is a pure-dimensional k scheme locally of finite type
(for example, an irreducible k-variety), Y is an irreducible closed subset, and η is the
generic point of Y. Then dim Y +dim OX,η = dimX. Hence by Exercise 11.1.I, dimY +
codimX Y = dimX— inequality (11.1.4.1) is always an equality.

Proving this will give us an excuse to introduce some useful notions, such
as the Going-Down Theorem for finite extensions of integrally closed domains
(Theorem 11.2.12). Before we begin the proof, we give an algebraic translation.

11.2.F. EXERCISE. A ring A is called catenary if for every nested pair of prime
ideals p ⊂ q ⊂ A, all maximal chains of prime ideals between p and q have the
same length. (We will not use this term in any serious way later.) Show that if A is
a localization of a finitely generated ring over a field k, then A is catenary.

11.2.10. Remark. Most rings arising naturally in algebraic geometry are catenary.
Important examples include: localizations of finitely generated Z-algebras; com-
plete Noetherian local rings; Dedekind domains; and Cohen-Macaulay rings (see
§26.2.13). It is hard to give an example of a noncatenary ring; see for example
[Stacks, tag 02JE] or [He].

11.2.11. Proof of Theorem 11.2.9.

11.2.G. EXERCISE. Reduce the proof of Theorem 11.2.9 to the following problem.
If X is an irreducible affine k-variety and Z is a closed irreducible subset maximal
among those smaller than X (the only larger closed irreducible subset is X), then
dimZ = dimX− 1.
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Let d = dimX for convenience. By Noether normalization 11.2.4, we have a
finite morphism π : X→ Ad corresponding to a finite extension of rings. Then π(Z)
is an irreducible closed subset of Ad (finite morphisms are closed, Exercise 7.3.M).

11.2.H. EXERCISE. Show that it suffices to show that π(Z) is a hypersurface. (Hint:
the dimension of any hypersurface is d − 1 by Theorem 11.2.1 on dimension and
transcendence degree. Exercise 11.1.E implies that dimπ−1(π(Z)) = dimπ(Z). But
be careful: Z is not π−1(π(Z)) in general.)

Now if π(Z) is not a hypersurface, then it is properly contained in an irre-
ducible hypersurface H, so by the Going-Down Theorem 11.2.12 for finite exten-
sions of integrally closed domains (which we shall now prove), there is some
closed irreducible subset Z ′ of X properly containing Z, contradicting the maxi-
mality of Z. □

11.2.12. Theorem (Going-Down Theorem for finite extensions of integrally closed
domains). — Supposeϕ : B ↪→ A is a finite extension of rings (soA is a finite B-module),
B is an integrally closed domain, and A is an integral domain. Then given nested prime
ideals q ⊂ q ′ of B, and a prime p ′ ofA lying over q ′ (i.e., p ′∩B = q ′), there exists a prime
p of A contained in p ′, lying over q.

As usual, you should sketch a geometric picture of the statement. This the-
orem is usually stated about extending a chain of ideals, in the same way as the
Going-Up Theorem (Exercise 7.2.F), and you may want to think this through. (An-
other Going-Down Theorem, for flat morphisms, will be given in Exercise 24.5.E.)

This theorem is true more generally with “finite” replaced by “integral”; see
[E, p. 291] (“Completion of the proof of 13.9”) for the extension of Theorem 11.2.12,
or else see [AtM, Thm. 5.16] or [Mat1, Thm. 5(v)] for completely different proofs.
See [E, Fig. 10.4] for an example (in the form of a picture) of why the “integrally
closed” hypothesis on B cannot be removed.

In the course of the proof, we will need the following fact. It is not hard, and
we could prove it now, but we leave it until Exercise 11.3.D, because the proof uses
a trick arising in Exercise 11.3.C.

11.2.13. Proposition (prime avoidance). — Suppose p1, . . . , pn are prime ideals of a
ringA, and I is another ideal ofA not contained in any pi. Then I is not contained in ∪pi:
there is an element f ∈ I not in any of the pi.

(Can you give a geometric interpretation of this result? Can you figure out
why it is called “prime avoidance”?)

11.2.14. Proof of Theorem 11.2.12 (Going-Down Theorem for finite extensions of integrally
closed domains). The proof uses Galois theory. Let L be the normal closure of
K(A)/K(B) (the smallest subfield of K(B) containing K(A), and that is mapped to
itself by any automorphism over K(B)/K(B)). Let C be the integral closure of B in
L (discussed in Exercise 9.7.I). Because A ↪→ C is an integral extension, there is a
prime Q of C lying over q ⊂ B (by the Lying Over Theorem 7.2.5), and a prime
Q ′ of C containing Q lying over q ′ (by the Going-Up Theorem, Exercise 7.2.F).
Similarly, there is a prime P ′ of C lying over p ′ ⊂ A (and thus over q ′ ⊂ B). We
would be done if P ′ = Q ′ (just take p = Q ∩ A), but this needn’t be the case.
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However, Lemma 11.2.15 below shows there is an automorphism σ of C over B,
that sends Q ′ to P ′, and then the image of σ(Q) in A will do the trick, completing
the proof. The following diagram, in geometric terms, may help.

SpecC/P ′

��

� x

**VVVV
VVVV

VVVV
VVVV

VVVV
V

SpecC/Q ′

σ

OO

� � //

��

SpecC/Q

��

� � // SpecC

��

L

SpecA/p ′

��

� � // ? �
� //

��

SpecA

��

K(A)
?�

OO

SpecB/q ′ � � // SpecB/q �
� // SpecB K(B)

?�

OO

11.2.15. Lemma. — Suppose B is an integrally closed domain, L/K(B) is a finite normal
field extension, and C is the integral closure of B in L. If q ′ is a prime ideal of B, then
automorphisms of L/K(B) act transitively on the prime ideals of C lying over q ′.

This result is often first seen in number theory, with B = Z and L a Galois
extension of Q.

Proof. Let P and Q1 be two prime ideals of C lying over q ′, and let Q2, . . . , Qn be
the prime ideals of C conjugate to Q1 (the image of Q1 under Aut(L/K(B))). If P
is not one of the Qi, then P is not contained in any of the Qi. (Do you see why?
Hint: Exercise 11.1.D or 11.1.E.) Hence by prime avoidance (Proposition 11.2.13),
P is not contained in their union, so there is some a ∈ P not contained in any Qi.
Thus no conjugate of a can be contained in Q1, so the norm NL/K(B)(a) ∈ B is
not contained in Q1 ∩ B = q ′. (Recall: If L/K(B) is separable, the norm is just
the product of the conjugates. But even if L/K(B) is not separable, the norm is
the product of conjugates to the appropriate power, because we can factor L/K(B)
as a separable extension followed by a purely inseparable extension, or because
we can take an explicit basis for the extension and calculate the norm of a.) But
since a ∈ P, its norm lies in P, but also in B, and hence in P ∩ B = q ′, yielding a
contradiction. □

We end with three exercises which may give you practice and enlightenment.

11.2.I. EXERCISE/DEFINITION. Suppose p is a closed point of a locally finite type
k-scheme X. Show that the following three integers are the same:

(a) the largest dimension of an irreducible component of X containing p;
(b) dim OX,p;
(c) codimp X.

We call this the dimension of X at p. Use (a) to show that this function on X is an
upper semicontinuous function on the closed points of X. (The Zariski topology on
the closed points of a finite type k-scheme in the obvious way: closed subsets are
cut out by equations. A case of this already arose in §7.4.5.)
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11.2.J. EXERCISE (THE DIMENSION OF A LOCALLY FINITE TYPE k-SCHEME IS PRE-
SERVED BY ANY FIELD EXTENSION, CF. EXERCISE 11.1.G(A)). Suppose X is a
locally finite type k-scheme of pure dimension n, and K/k is a field extension (not
necessarily algebraic). Show that XK has pure dimension n. Hint: Reduce to the
case where X is affine, so say X = SpecA. Reduce to the case whereA is an integral
domain. Show (using the axiom of choice) that K/k can be written as an algebraic
extension of a purely transcendental extension. Hence by Exercise 11.1.G(a), it
suffices to deal with the case where K/k is purely transcendental, say with tran-
scendence basis {ei}i∈I (possibly infinite). Show that A ′ := A ⊗k K is an integral
domain, by interpreting it as a certain localization of the domain A[{ei}]. If t1, . . . ,
td is a transcendence basis for K(A)/k, show that {ei}∪ {tj} is a transcendence basis
for K(A ′)/k. Show that {tj} is a transcendence basis for K(A ′)/K.

Exercise 11.2.J is conceptually very useful. For example, if X is described
by some equations with Q-coefficients, the dimension of X doesn’t depend on
whether we consider it as a Q-scheme or as a C-scheme.

11.2.16. Remark. Unlike Exercise 11.1.G, Exercise 11.2.J has finite type hypotheses
on X. It is not true that if X is an arbitrary k-scheme of pure dimension n, and K/k
is an arbitrary extension, then Xk necessarily has pure dimension n. For example,
you can show that dimk(x)⊗k k(y) = 1 using the same ideas as in Exercise 9.2.K.

11.2.17. ⋆ Lines on hypersurfaces, part 1. Notice: although dimension theory is
not central to the following statement, it is essential to the proof.

11.2.K. ENLIGHTENING STRENUOUS EXERCISE: MOST SURFACES IN THREE-SPACE
OF DEGREE d > 3 HAVE NO LINES. In this exercise, we work over an algebraically
closed field k. For any d > 3, show that most degree d surfaces in P3 contain no
lines. Here, “most” means “all closed points of a Zariski-open subset of the param-
eter space for degree d homogeneous polynomials in 4 variables, up to scalars”. As
there are

(
d+3
3

)
such monomials, the degree d hypersurfaces are parametrized by

P(
d+3

3 )−1 (see Remark 4.5.3). Hint: Construct an incidence correspondence

X = {(ℓ,H) : [ℓ] ∈ G(1, 3), [H] ∈ P(
d+3

3 )−1, ℓ ⊂ H},

parametrizing lines in P3 contained in a hypersurface: define a closed subscheme
X of P(

d+3
3 )−1 × G(1, 3) that makes this notion precise. (Recall that G(1, 3) is a

Grassmannian.) Show that X is a P(
d+3

3 )−1−(d+1)-bundle over G(1, 3). (Possible
hint for this: how many degree d hypersurfaces contain the line x = y = 0?)
Show that dimG(1, 3) = 4 (see §6.7: G(1, 3) has an open cover by A4’s). Show that
dimX =

(
d+3
3

)
−1−(d+1)+4. Show that the image of the projection X→ P(

d+3
3 )−1
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must lie in a proper closed subset. The following diagram may help.

dim
(
d+3
3

)
− 1− (d+ 1) + 4

X

P(
d+3

3 )−1−(d+1)

))SSS
SSSS

SSSS
SSSS

SSS

uukkkk
kkkk

kkkk
kkkk

kk

P(
d+3

3 )−1 G(1, 3) dim 4

(The argument readily generalizes to show that if d > 2n−3, then “most” degree d
hypersurfaces in Pn have no lines. The case n = 1 and n = 2 are trivial but worth
thinking through.)

11.2.18. Side Remark. If you do the previous Exercise, your dimension count will
suggest the true facts that degree 1 hypersurfaces — i.e., hyperplanes — have 2-
dimensional families of lines, and that most degree 2 hypersurfaces have 1-dimensional
families (rulings) of lines, as shown in Exercise 8.2.M. They will also suggest that
most degree 3 hypersurfaces contain a finite number of lines, which reflects the
celebrated fact that regular cubic surfaces over an algebraically closed field always
contain 27 lines (Theorem 27.1.1), and we will use this “incidence correspondence”
or “incidence variety” to prove it (§27.4). The statement about quartic surfaces gen-
eralizes to the Noether-Lefschetz Theorem implying that a very general surface of
degree d at least 4 contains no curves that are not the intersection of the surface
with a hypersurface, see [Lef, GH2]. “Very general” means that in the parameter
space (in this case, the projective space parametrizing surfaces of degree d), the
statement is true away from a countable union of proper Zariski-closed subsets.
Like “general”, (which was defined in §9.3.6), “very general” is a weaker version
of the phrase “almost every”.

11.3 Codimension one miracles: Krull’s and Hartogs’s Theorems

In this section, we will explore a number of results related to codimension
one. We introduce two results that apply in more general situations, and link
functions and the codimension one points where they vanish: Krull’s Principal
Ideal Theorem 11.3.3, and Algebraic Hartogs’s Lemma 11.3.11. We will find these
two theorems very useful. For example, Krull’s Principal Ideal Theorem will help
us compute codimensions, and will show us that codimension can behave oddly,
and Algebraic Hartogs’s Lemma will give us a useful characterization of unique
factorization domains (Proposition 11.3.5). The results in this section will require
(locally) Noetherian hypotheses. They are harder, in that the proofs are technical,
and don’t shed much light on the uses of the results. Thus it is more important to
understand how to use these results than to be familiar with their proofs.

11.3.1. Krull’s Principal Ideal Theorem. In a vector space, a single linear equation
always cuts out a subspace of codimension 0 or 1 (and codimension 0 occurs only
when the equation is 0). The Principal Ideal Theorem, due to W. Krull, generalizes
this linear algebra fact.



316 The Rising Sea: Foundations of Algebraic Geometry

11.3.2. Krull’s Principal Ideal Theorem (geometric version). — Suppose X is a
locally Noetherian scheme, and f is a function. The irreducible components of V(f) are
codimension 0 or 1.

This is clearly a consequence of the following algebraic statement. You know
enough to prove it for varieties (see Exercise 11.3.H), which is where we will use
it most often. The full proof is technical, and included in §11.5 (see §11.5.2) only to
show you that it isn’t excessively long.

11.3.3. Krull’s Principal Ideal Theorem (algebraic version). — Suppose A is a
Noetherian ring, and f ∈ A. Then every prime p minimal among those containing f has
codimension at most 1. If furthermore f is not a zerodivisor, then every such prime p
containing f has codimension precisely 1.

For example, locally principal closed subschemes have “codimension 0 or 1”,
and effective Cartier divisors have “pure codimension 1”. Here is another exam-
ple, that you could certainly prove directly, without the Principal Ideal Theorem.

11.3.A. EXERCISE. Show that an irreducible homogeneous polynomial in n + 1
variables over a field k describes an integral scheme of dimension n− 1 in Pnk .

11.3.B. EXERCISE. Suppose (A,m) is a Noetherian local ring, and f ∈ m. Show
that dimA/(f) ≥ dimA− 1.

11.3.C. IMPORTANT EXERCISE (TO BE USED REPEATEDLY). This is a cool argument.
(a) (Hypersurfaces meet everything of dimension at least 1 in projective space, unlike in
affine space.) Suppose X is a closed subset of Pnk of dimension at least 1, and H
is a nonempty hypersurface in Pnk . Show that H meets X. (Hint: note that the
affine cone over H contains the origin in An+1k . Apply Krull’s Principal Ideal The-
orem 11.3.3 to the cone over X.)
(b) Suppose X ↪→ Pnk is a closed subset of dimension r. Show that any codimension
r linear space meets X. Hint: Refine your argument in (a). (Exercise 11.3.F general-
izes this to show that any two things in projective space that you would expect to
meet for dimensional reasons do in fact meet.)
(c) Show further that there is an intersection of r+1 nonempty hypersurfaces miss-
ing X. (The key step: show that there is a hypersurface of sufficiently high degree
that doesn’t contain any generic point of X. Show this by induction on the number
of generic points. To get from m to m + 1: take a hypersurface not vanishing on
p1, . . . , pm. If it doesn’t vanish on pm+1, we are done. Otherwise, call this hyper-
surface fm+1. Do something similar with m + 1 replaced by i for each 1 ≤ i ≤ m.
Then consider

∑
i f1 · · · f̂i · · · fm+1.) If k is infinite, show that there is a codimen-

sion r+ 1 linear subspace missing X. (The key step: show that there is a hyperplane
not containing any generic point of a component of X.)
(d) If k is an infinite field, show that there is an intersection of r hyperplanes meet-
ing X in a finite number of points. (We will see in Exercise 12.4.C that if k = k,
for “most” choices of these r hyperplanes, this intersection is reduced, and in Ex-
ercise 18.6.N that the number of points is the “degree” of X. But first of course we
must define “degree”.)
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The following exercise has nothing to do with the Principal Ideal Theorem,
but its solution is similar to that of Exercise 11.3.C(c) (and you may wish to solve
it first).

11.3.D. EXERCISE. Prove Proposition 11.2.13 (prime avoidance). Hint: by induc-
tion on n. Don’t look in the literature — you might find a much longer argument.

11.3.E. EXERCISE (BOUND ON CODIMENSION OF INTERSECTIONS IN Ank ). Let k
be a field. Suppose X and Y are equidimensional closed subvarieties (possibly
singular) of codimensionm and n respectively in Adk . Show that every component
of X ∩ Y has codimension at most m + n in Adk as follows. Show that the diagonal
Adk ∼= ∆ ⊂ Adk ×k Adk is a regular embedding of codimension d. (You will quickly
guess the d equations for ∆.) Figure out how to identify the intersection of X and
Y in Ad with the intersection of X× Y with ∆ in Ad ×k Adk . Then show that locally,
X∩Y is cut out in X×Y by d equations. Use Krull’s Principal Ideal Theorem 11.3.3.
You will also need Exercise 11.2.E. (See Exercise 12.2.M for a generalization.)

11.3.F. FUN EXERCISE (GENERALIZING EXERCISE 11.3.C(B)). Suppose X and Y
are equidimensional subvarieties of Pn of codimensions d and e respectively, and
d + e ≤ n. Show that X and Y intersect. Hint: apply Exercise 11.3.E to the affine
cones of X and Y. Recall the argument you used in Exercise 11.3.C(a) or (b).

11.3.G. USEFUL EXERCISE. Suppose f is an element of a Noetherian ring A, con-
tained in no codimension zero or one prime ideals. Show that f is invertible. (Hint:
if a function vanishes nowhere, it is invertible, by Exercise 4.3.G(b).)

11.3.4. A useful characterization of unique factorization domains.
We can use Krull’s Principal Ideal Theorem to prove one of the four useful

criteria for unique factorization domains, promised in §5.4.6.

11.3.5. Proposition. — Suppose that A is a Noetherian integral domain. Then A is a
unique factorization domain if and only if all codimension 1 prime ideals are principal.

This contains Lemma 11.1.6 and (in some sense) its converse. (In fact this result
is true even without Noetherian hypotheses, without much more work; see [Ka,
Thm. 5, p. 4].)

Proof. One direction is Lemma 11.1.6: if A is a unique factorization domain, then
all codimension 1 prime ideals are principal. So we assume conversely that all
codimension 1 prime ideals ofA are principal, and we will show thatA is a unique
factorization domain. Now each codimension one prime ideal, being principal, is
generated by a prime element, which is unique up to multiplication by a unit. All
prime elements of a ring are irreducible, by the usual argument. (Suppose p ∈ A
is prime, and p = ab, with a, b ∈ A \ {0}. Then by primality of the ideal (p),
either a or b is in (p), say without loss of generality a = kp. Then p = kpb,
from which 1 = bk, from which b is unit. Thus p is irreducible.) Conversely, if
a ∈ A is irreducible, then by the Principal Ideal Theorem 11.3.3, V(a) contains
some codimension one point [(p)], so a ∈ (p), say a = kp. But by irreducibility of
a, as p is not a unit, kmust be a unit, from which (a) = (p), so a is prime. Thus we
have shown that the prime elements are the irreducible elements (and incidentally,
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that they are, up to multiplicative units, in correspondence with the codimension
one prime ideals).

Finally, A is a unique factorization domain by the usual argument: each non-
unit nonzero element can be factored into a finite number of irreducibles, and
the uniqueness of such a factorization can be shown using the fact that those irre-
ducibles are also prime. □

11.3.6. Generalizing Krull to more equations. The following generalization of
Krull’s Principal Ideal Theorem looks like it might follow by induction from Krull,
but it is more subtle. A proof is given in §11.5.3.

11.3.7. Krull’s Height Theorem. — Suppose X = SpecA where A is Noetherian,
and Z is an irreducible component of V(r1, . . . , rℓ), where r1, . . . , rℓ ∈ A. Then the
codimension of Z is at most ℓ.

(As mentioned in §11.1.4, height is another common word for codimension.)

11.3.H. EXERCISE. Prove Krull’s Height Theorem 11.3.7 (and hence Krull’s Prin-
cipal Ideal Theorem 11.3.3) in the special case where X is an irreducible affine va-
riety, i.e., if A is finitely generated domain over some field k. Show that dimZ ≥
dimX− ℓ. Hint: Theorem 11.2.9. It can help to localize A so that Z = V(r1, . . . , rℓ).

11.3.I. IMPORTANT EXERCISE. Suppose (A,m) is a Noetherian local ring.
(a) (Noetherian local rings have finite dimension, promised in Remark 11.1.8) Use Krull’s
Height Theorem 11.3.7 to prove that if there are g1, . . . , gℓ such that V(g1, . . . , gℓ) =
{[m]}, then dimA ≤ ℓ. Hence show that A has finite dimension. (For comparison,
Noetherian rings in general may have infinite dimension, see Exercise 11.1.K.)
(b) Let d = dimA. Show that there exist g1, . . . , gd ∈ A such that V(g1, . . . , gd) =
{[m]}. Hint: use induction on d. Find an equation gd knocking the dimension down
by 1, i.e., dimA/(gd) = dimA−1. Suppose p1, . . . pn correspond to the irreducible
components of SpecA of dimension d, and qi ⊃ pi are prime ideals corresponding
to irreducible closed subsets of codimension 1 and dimension d − 1. Use prime
avoidance (Proposition 11.2.13) to find hi ∈ qi \ ∪nj=1pj. Let gd =

∏n
i=1 hi.

11.3.8. Definition. The geometric translation of the above exercise is the following.
Given a d-dimensional “germ of a reasonable space” around a point p, p can be
cut out set-theoretically by d equations, and we always need at least d equations.
These d elements of A are called a system of parameters for the Noetherian local
ring (A,m).

11.3.9. ⋆ Pathologies of the notion of “codimension”. We can use Krull’s Princi-
pal Ideal Theorem to produce the example of pathology in the notion of codimen-
sion promised earlier this chapter. Let A = k[x](x)[t]. In other words, elements
of A are polynomials in t, whose coefficients are quotients of polynomials in x,
where no factors of x appear in the denominator. (Warning: A is not k[x, t](x).)
Clearly, A is an integral domain, so xt− 1 is not a zero divisor. You can verify that
A/(xt− 1) ∼= k[x](x)[1/x] ∼= k(x) — “in k[x](x), we may divide by everything but x,
and now we are allowed to divide by x as well” — so A/(xt − 1) is a field. Thus
(xt−1) is not just prime but also maximal. By Krull’s theorem, (xt−1) is codimen-
sion 1. Thus (0) ⊂ (xt− 1) is a maximal chain. However, A has dimension at least
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2: (0) ⊂ (t) ⊂ (x, t) is a chain of prime ideals of length 2. (In fact, A has dimension
precisely 2, although we don’t need this fact in order to observe the pathology.)
Thus we have a codimension 1 prime in a dimension 2 ring that is dimension 0.
Here is a picture of this partially ordered set of ideals.

(x, t)

(t)

DD
DD

DD
DD

(xt− 1)

ww
ww
ww
ww
w

(0)

This example comes from geometry, and it is enlightening to draw a picture, see
Figure 11.2. Spec k[x](x) corresponds to a “germ” of A1k near the origin, and Speck[x](x)[t]
corresponds to “this × the affine line”. You may be able to see from the picture
some motivation for this pathology — V(xt−1) doesn’t meet V(x), so it can’t have
any specialization on V(x), and there is nowhere else for V(xt − 1) to specialize.
It is disturbing that this misbehavior turns up even in a relatively benign-looking
ring.

V(x)

Spec k[x](x)

Spec k[x](x)[t]

V(xt − 1)

FIGURE 11.2. Dimension and codimension behave oddly on the
surface Spec k[x](x)[t]

11.3.10. Algebraic Hartogs’s Lemma for Noetherian normal schemes.
Hartogs’s Lemma in several complex variables states (informally) that a holo-

morphic function defined away from a codimension two set can be extended over
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that. We now describe an algebraic analog, for Noetherian normal schemes. (It
may also be profitably compared to the Second Riemann Extension Theorem.) We
will use this repeatedly and relentlessly when connecting line bundles and divi-
sors.

11.3.11. Algebraic Hartogs’s Lemma. — Suppose A is a integrally closed Noetherian
integral domain. Then

A = ∩p codimension 1Ap.

The equality takes place in K(A); recall that any localization of an integral
domain A is naturally a subset of K(A) (Exercise 1.3.C). Warning: few people call
this Algebraic Hartogs’s Lemma. I call it this because it parallels the statement in
complex geometry.

One might say that if f ∈ K(A) does not lie in Ap where p has codimension
1, then f has a pole at [p], and if f ∈ K(A) lies in pAp where p has codimension 1,
then f has a zero at [p]. It is worth geometrically interpreting Algebraic Hartogs’s
Lemma as saying that a rational function on a Noetherian normal scheme with no poles
is in fact regular (an element of A). Informally: “Noetherian normal schemes have
the Hartogs property.” (We will properly define zeros and poles in §12.5.7, see also
Exercise 12.5.H.)

One can state Algebraic Hartogs’s Lemma more generally in the case that
SpecA is a Noetherian normal scheme, meaning that A is a product of Noether-
ian normal integral domains; the reader may wish to do so.

Another generalization (and something closer to the “right” statement) is that
if A is a subring of a field K, then the integral closure of A in K is the intersection
of all valuation rings of K containing A; see [AtM, Cor. 5.22] for explanation and
proof.

11.3.12. ⋆⋆ Proof. (This proof may be stated completely algebraically, but we state
it as geometrically as possible, at the expense of making it longer. See [Stacks, tag
031T] for another proof using Serre’s criterion for normality, which we prove in
§26.3.) The left side is obviously contained in the right, so assume some x lies in
every Ap but not in A. As in the proof of Proposition 5.4.2, we measure the failure
of x to be a function (an element of SpecA) with the “ideal of denominators” I of
x:

I := {r ∈ A : rx ∈ A}.
(As an important remark not necessary for the proof: it is helpful to interpret the
ideal of denominators as scheme-theoretically measuring the failure of x to be reg-
ular, or better, giving a scheme-theoretic structure to the locus where x is not regu-
lar.) As 1 /∈ I, we have I ̸= A. Choose a minimal prime q containing I.

Our second step in obtaining a contradiction is to focus near the point [q], i.e.,
focus attention on Aq rather than A, and as a byproduct notice that codim q >
1. The construction of the ideal of denominators behaves well with respect to
localization — if p is any prime, then the ideal of denominators of x in Ap is Ip,
and it again measures “’the failure of Algebraic Hartogs’s Lemma for x,” this time
in Ap. But Algebraic Hartogs’s Lemma is vacuously true for dimension 1 rings,
so no codimension 1 prime contains I. Thus q has codimension at least 2. By
localizing at q, we can assume that A is a local ring with maximal ideal q, and that
q is the only prime containing I.
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In the third step, we construct a suitable multiple z of x that is still not a func-
tion on SpecA, such that multiplying z by anything vanishing at [q] results in a
function. (Translation: z /∈ A, but zq ⊂ A.) As q is the only prime containing I,√
I = q (Exercise 3.4.F), so as q is finitely generated, there is some nwith I ⊃ qn (do

you see why?). Take the minimal such n, so I ̸⊃ qn−1, and choose any y ∈ qn−1−I.
Let z = yx. As y /∈ I, z /∈ A. On the other hand, yq ⊂ qn ⊂ I, so zq ⊂ Ix ⊂ A, so zq
is an ideal of A, completing this step.

Finally, we have two cases: either there is function vanishing on [q] that, when
multiplied by z, doesn’t vanish on [q]; or else every function vanishing on [q], mul-
tiplied by z, still vanishes on [q]. Translation: (i) either zq is contained in q, or (ii) it
is not.

(i) If zq ⊂ q, then we would have a finitely generated A-module (namely q)
with a faithful A[z]-action, forcing z to be integral over A (and hence in A, as A is
integrally closed) by Exercise 7.2.I, yielding a contradiction.

(ii) If zq is an ideal of A not contained in the unique maximal ideal q, then it
must be A! Thus zq = A from which q = A(1/z), from which q is principal. But
then codim q = dimA ≤ dimA/q q/q

2 ≤ 1 (the inequality coming from principality
of q), contradicting codim q ≥ 2. □

11.3.13. ⋆ Lines on hypersurfaces, part 2. (Part 1 was §11.2.17.) We now give a
geometric application of Krull’s Principal Ideal Theorem 11.3.3, applied through
Exercise 11.3.C(a). Throughout, we work over an algebraically closed field k.

11.3.J. EXERCISE.
(a) Suppose

f(x0, . . . , xn) = fd(x1, . . . , xn) + x0fd−1(x1, . . . , xn) + · · ·+ xd−10 f1(x1, . . . , xn)

is a homogeneous degree d polynomial (so deg fi = i) cutting out a hypersur-
face X in Pn containing p := [1, 0, . . . , 0]. Show that there is a line through p
contained in X if and only if f1 = f2 = · · · = fd = 0 has a common zero in
Pn−1 = Projk[x1, . . . , xn]. (Hint: given a common zero [a1, . . . , an] ∈ Pn−1, show
that line joining p to [0, a1, . . . , an] is contained in X.)
(b) If d ≤ n − 1, show that through any point p ∈ X, there is a line contained in X.
Hint: Exercise 11.3.C(a).
(c) If d ≥ n, show that for “most hypersurfaces” X of degree d in Pn (for all
hypersurfaces whose corresponding point in the parameter space P(

n+d
d )−1 — cf.

Remark 4.5.3 and Exercise 8.2.K — lies in some nonempty Zariski-open subset),
“most points p ∈ X” (all points in a nonempty dense Zariski-open subset of X)
have no lines in X passing through them. (Hint: first show that there is a single p
in a single X contained in no line. Chevalley’s Theorem 7.4.2 may help.)

11.3.14. Remark. A projective (or proper) k-variety X is uniruled if every point p ∈
X is contained in some P1 ⊂ X. (We won’t use this word beyond this remark.) Part
(b) shows that all hypersurfaces of degree at most n−1 are uniruled. One can show
(using methods beyond what we know now, see [Ko1, Cor. IV.1.11]) that if char k =
0, then every smooth hypersurface of degree at least n + 1 in Pn

k
is not uniruled

(thus making the open set in (c) explicit). Furthermore, smooth hypersurfaces
of degree n are uniruled, but covered by conics rather than lines. Thus there is
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a strong difference in how hypersurfaces, behave depending on how the degree
relates to n + 1. This is true in many other ways as well. Smooth hypersurfaces
of degree less than n + 1 are examples of Fano varieties; smooth hypersurfaces of
degree n + 1 are examples of Calabi-Yau varieties (with the possible exception of
n = 1, depending on the definition); and smooth hypersurfaces of degree greater
than n+ 1 are examples of general type varieties. We define these terms in §21.5.5.

11.4 Dimensions of fibers of morphisms of varieties

In this section, we show that the dimensions of fibers of morphisms of varieties
behave in a way you might expect from our geometric intuition. The reason we
have waited until now to discuss this is because we will use Theorem 11.2.9 (for
varieties, codimension is the difference of dimensions). We discuss generalizations
in §11.4.5.

Recall that a function f from a topological space X to R is upper semicontin-
uous if for each x ∈ R, f−1((−∞, x)) is open. Informally: the function can jump
“up” upon taking limits. Our upper semicontinuous functions will map to Z, so
informally functions jump “up” on closed subsets. Similarly, f is lower semicon-
tinuous if x ∈ R, f−1((x,∞)) is open.

Before we begin, let’s make sure we are on the same page with respect to our
intuition. Elimination theory (Theorem 7.4.7) tells us that the projection π : PnA →
SpecA is closed. We can interpret this as follows. A closed subset X of PnA is cut
out by a bunch of homogeneous equations in n + 1 variables (over A). The image
of X is the subset of SpecAwhere these equations have a common nontrivial solu-
tion. If we try hard enough, we can describe this by saying that the existence of a
nontrivial solution (or the existence of a preimage of a point under π : X→ SpecA)
is an “upper semicontinuous” fact. More generally, your intuition might tell you
that the locus where a number of homogeneous polynomials in n + 1 variables
over A have a solution space (in PnA) of dimension at least d should be a closed
subset of SpecA. (As a special case, consider linear equations. The condition for
m linear equations in n+1 variables to have a solution space of dimension at least
d + 1 is a closed condition on the coefficients — do you see why, using linear al-
gebra?) This intuition will be correct, and will use properness in a fundamental
way (Theorem 11.4.2(b)). We will also make sense of upper semicontinuity in fiber
dimension on the source (Theorem 11.4.2(a)). A useful example to think through
is the map from the xy-plane to the xz-plane (Speck[x, y]→ Spec k[x, z]), given by
(x, z) 7→ (x, xy). (This example also came up in §7.4.1.)

We begin our substantive discussion with an inequality that holds more gen-
erally in the locally Noetherian setting.

11.4.A. KEY EXERCISE (CODIMENSION BEHAVES AS YOU MIGHT EXPECT FOR A
MORPHISM, OR “FIBER DIMENSIONS CAN NEVER BE LOWER THAN EXPECTED”).
Suppose π : X → Y is a morphism of locally Noetherian schemes, and p ∈ X and
q ∈ Y are points such that q = π(p). Show that

codimX p ≤ codimY q+ codimπ−1(q) p
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(see Figure 11.3). Hint: take a system of parameters (Definition 11.3.8) for q “in Y”,
and a system of parameters for p “in π−1(q)”, and use them to find codimY q +
codimπ−1(q) p elements of OX,p cutting out p = {[m]} in Spec OX,p. Use Exer-
cise 11.3.I.

FIGURE 11.3. Exercise 11.4.A: the codimension of a point in the
total space is bounded by the sum of the codimension of the point
in the fiber plus the codimension of the image in the target

Does Exercise 11.4.A agree with your geometric intuition? You should be able
to come up with enlightening examples where equality holds, and where equality
fails. We will see that equality always holds for sufficiently nice — flat — mor-
phisms, see Proposition 24.5.6.

We now show that the inequality of Exercise 11.4.A is actually an equality over
“most of Y” if Y is an irreducible variety.

11.4.1. Theorem. — Suppose π : X → Y is a (necessarily finite type) morphism of
irreducible k-varieties, with dimX = m and dim Y = n. Then there exists a nonempty
open subset U ⊂ Y such that for all q ∈ U, the fiber over q has pure dimensionm− n, or
is empty.

(Unimportant remark: the empty set technically has pure dimensionm− n—
every irreducible component of the empty set has dimension m−n. This makes
the statement a bit cleaner.)

Proof. We begin with three quick reductions. (i) By shrinking Y if necessary, we
may assume that Y is affine, say SpecB. (ii) We may also assume that X is affine,
say SpecA. (Reason: coverXwith a finite number of affine open subsetsX1, . . . , Xa,
and take the intersection of the U’s for each of the π|Xi

.) (iii) If π is not dominant,
then we are done, as the image misses a dense open subset U of SpecB. So we
assume now that π is dominant.

In order to motivate the rest of the argument, we describe our goal. We will
produce a nonempty distinguished open subset U of SpecB so that π−1(U) → U
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factors through Am−n
U := Am−n

k ×k U via a finite surjective morphism:

(11.4.1.1) SpecA

π

��

π−1(U)? _
open emb.oo

finite surj.
��

Am−n
U

��
SpecB U?

_open emb.oo

11.4.B. EXERCISE. Show that this suffices to prove the Proposition. (Hint: Use
Exercise 11.4.A, and Theorem 11.2.9 that codimension is the difference of dimen-
sions for varieties, to show that each component of the fiber over a point of U has
dimension at least m − n. Show that any irreducible variety mapping finitely to
Am−n
κ has dimension at mostm− n.)

So we now work to build (11.4.1.1). We begin by noting that we have inclu-
sions of B into both A and K(B), and from both A and K(B) into K(A). The maps
from A and K(B) into K(A) both factor through A ⊗B K(B) (whose Spec is the
generic fiber of π), so the maps from both A and K(B) to A⊗B K(B) must be inclu-
sions.

(11.4.1.2) K(A)

A
� � //' �

44jjjjjjjjjjjjjjjjjjjjjj
A⊗B K(B)

99ssssssssss

B
� � //?�

OO

K(B)
?�

OO

1�

BB�����������������

Clearly K(A) ⊗B K(B) = K(A) (as A ⊗B K(B) can be interpreted as taking A
and inverting those nonzero elements of B), and A⊗B K(B) is a finitely generated
algebra over the field K(B).

By transcendence theory (Exercise 11.2.A), K(A) has transcendence degree
m − n over K(B) (as K(A) has transcendence degree m over k, and K(B) has tran-
scendence degree n over k). Thus by Noether normalization 11.2.4, we can find
elements t1, . . . , tm−n ∈ A ⊗B K(B), algebraically independent over K(B), such
that A⊗B K(B) is integral over K(B)[t1, . . . , tm−n].

Now, we can think of the elements ti ∈ A ⊗B K(B) as fractions, with numera-
tors in A and (nonzero) denominators in B. If f is the product of the denominators
appearing for each ti, then by replacing B by Bf (replacing SpecB by its distin-
guished open subset D(f)), we may assume that the ti are all in A. Thus (after
sloppily renaming Bf as B, and Af as A) we can trim and extend (11.4.1.2) to the
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following.

A
� � // A⊗B K(B)

B[t1, . . . , tm−n]
� � //

?�

OO

K(B)[t1, . . . , tm−n]
?�

integral

OO

B
� � //?�

OO

K(B)
?�

OO

Now A is finitely generated over B, and hence over B[t1, . . . , tm−n], say by
u1, . . . , uq. Noether normalization implies that each ui satisfies some monic equa-
tion fi(ui) = 0, where fi ∈ K(B)[t1, . . . , tm−n][t]. The coefficients of fi are a pri-
ori fractions in B, but by multiplying by all those denominators, we can assume
each fi ∈ B[t1, . . . , tm−n][t]. Let b ∈ B be the product of the leading coefficients
of all the fi. If U = D(b) (the locus where b is invertible), then over U, the fi
(can be taken to) have leading coefficient 1, so the ui (in Ab) are integral over
Bb[t1, . . . , tm−n]. Thus SpecAb → SpecBb[t1, . . . , tm−n] is finite and surjective
(the latter by the Lying Over Theorem 7.2.5).

We have now constructed (11.4.1.1), as desired. □
There are a couple of things worth pointing out about the proof. First, this

result is interesting (and almost exclusively used) for classical varieties over a field
k. But the proof of it uses the theory of varieties over another field, notably the
function field K(B). This is an example of how the introduction of generic points
to algebraic geometry is useful even for considering more “classical” questions.

Second, the idea of the main part of the argument is that we have a result over
the generic point (SpecA⊗BK(B) finite and surjective over affine space over K(B)),
and we want to “spread it out” to an open neighborhood of the generic point of
SpecB. We do this by realizing that “finitely many denominators” appear when
correctly describing the problem, and inverting those functions. This “spreading
out” idea is a recurring theme.

11.4.C. EXERCISE (USEFUL CRITERION FOR IRREDUCIBILITY). Suppose π : X → Y

is a proper morphism to an irreducible variety, and all the fibers of π are nonempty,
and irreducible of the same dimension. Show that X is irreducible.

11.4.2. Theorem (upper semicontinuity of fiber dimension). — Suppose π : X→ Y

is a morphism of finite type k-schemes.
(a) (upper semicontinuity on the source) The dimension of the fiber of π at p ∈ X (the di-
mension of the largest component of π−1(π(p)) containing p) is an upper semicontinuous
function in p (i.e., on X).
(b) (upper semicontinuity on the target) If furthermore π is closed (e.g., if π is proper), then
the dimension of the fiber of π over q ∈ Y is an upper semicontinuous function in q (i.e.,
on Y).

You should be able to immediately construct a counterexample to part (b) if
the closedness hypothesis is dropped. (We also remark that Theorem 11.4.2(b) for
projective morphisms is done, in a simple way, in Exercise 18.1.B.)
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Proof. (a) Let Fn be the subset of X consisting of points where the fiber dimension
is at least n. We wish to show that Fn is a closed subset for all n. We argue by
induction on dim Y. The base case dim Y = 0 is trivial. So we fix Y, and assume the
result for all smaller-dimensional targets.

11.4.D. EXERCISE. Show that it suffices to prove the result when X and Y are
integral, and π is dominant.

Let r = dimX−dimY be the “relative dimension” of π. Ifn ≤ r, then Fn = X by
Exercise 11.4.A (combined with Theorem 11.2.9, that codimension is the difference
of dimensions for varieties).

If n > r, then let U ⊂ Y be the dense open subset of Theorem 11.4.1, where
“the fiber dimension is exactly r”. Then Fn does not meet the preimage of U. By
replacing Y with Y \U (and X by X\π−1(U)), we are done by the inductive hypoth-
esis.

11.4.E. EASY EXERCISE. Prove (b) (using (a)).
□

11.4.3. Proposition (“Generically finite implies generally finite”). — Suppose
π : X→ Y is a generically finite morphism of irreducible k-varieties of dimension n. Then
there is a dense open subset V ⊂ Y above which π is finite.

(If you wish, you can later relax the irreducibility hypothesis to simply requir-
ing X and Y to be simply of pure dimension n.)

Proof. As in the proof of Theorem 11.4.1, we may assume that Y is affine, and that
π is dominant.

11.4.F. EXERCISE. Prove the result under the additional assumption that X is affine.
Hint: follow the appropriate part of the proof of Theorem 11.4.1.

For the general case, suppose that X = ∪ni=1Ui, where the Ui are affine open
subschemes of X. By Exercise 11.4.F, there are dense open subsets Vi ⊂ Y over
which π|Ui

is finite. By replacing Y by an affine open subset of ∩Vi, we may assume
that π|Ui

is finite.

11.4.G. EXERCISE. Show that π is closed. Hint: you will just use that π|Ui
is closed,

and that there are a finite number of Ui.

Then X \U1 is a closed subset, so π(X \U1) is closed.

11.4.H. EXERCISE. Show that this closed subset is not all of Y.

Define V := Y \ π(X \ U1). Then π is finite above V : it is the restriction of the
finite morphism π|U1

: U1 → Y to the open subset V of the target Y. □

11.4.4. Aside: Semicontinuities.
Semicontinuity is a recurring theme in algebraic geometry. It is worth keeping

an eye out for it. Other examples include the following.

(i) fiber dimension (Theorem 11.4.2 above)
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(ii) the rank of a matrix of functions (because rank drops on closed subsets,
where various discriminants vanish)

(iii) the rank of a finite type quasicoherent sheaf (Exercise 13.7.J)
(iv) degree of a finite morphism, as a function of the target (§13.7.5)
(v) dimension of tangent space at closed points of a variety over an alge-

braically closed field (Exercise 21.2.J)
(vi) rank of cohomology groups of coherent sheaves, in proper flat families

(Theorem 28.1.1)
All but (ii) are upper semicontinuous; (ii) is a lower semicontinuous function.

11.4.5. ⋆⋆ Generalizing results of §11.4 beyond varieties. The above arguments
can be extended to more general situations than varieties. We remain in the locally
Noetherian situation for safety, until the last sentence of §11.4.6. One fact used
repeatedly was that codimension is the difference of dimensions (Theorem 11.2.9).
This holds much more generally; see Remark 11.2.10 on catenary rings. Extensions
of Theorem 11.4.1 should require that π be finite type (which was automatic in the
statement of Theorem 11.4.1, by the Cancellation Theorem 10.1.19 for finite type
morphisms). In the proof of Theorem 11.4.1, we use that the dimension of the the
generic fiber of the morphism π : X → Y of irreducible schemes is dimX − dimY;
this can be proved using Proposition 24.5.6. The remaining results then readily
follow without change.

11.4.6. We make one particular generalization explicit because we will mention
it later. The ring Z (along with finitely generated algebras over it, and localiza-
tions thereof) is excellent in all possible ways, including in the ways needed in
the previous paragraph, so the argument for upper semicontinuity on the source
(Theorem 11.4.2(a)) applies without change if the target is the Spec of a finitely gen-
erated Z-algebra. Any finite type morphism of locally Noetherian schemes is lo-
cally pulled back from a finite type morphism to the Spec of a finitely-generated Z-
algebra (this will essentially be made precise and shown in Exercise 28.2.L), so we
then have upper semicontinuity of fiber dimension on the source for all finite type
morphisms of locally Noetherian schemes, and better yet, for all locally finitely
presented morphisms.

11.5 ⋆⋆ Proof of Krull’s Principal Ideal and Height Theorems

The details of this proof won’t matter to us, so you should probably not read
it. It is included so you can glance at it and believe that the proof is fairly short,
and that you could read it if you needed to.

If A is a ring, an A-module is Artinian if it satisfies the descending chain con-
dition for submodules (any infinite descending sequence of submodules must sta-
bilize, cf. §3.6.14). A ring is Artinian if it is Artinian over itself as a module. The no-
tion of Artinian rings is very important, but we will get away without discussing
it much.

If m is a maximal ideal of A, then any finite-dimensional (A/m)-vector space
(interpreted as an A-module) is clearly Artinian, as any descending chain

M1 ⊃M2 ⊃ · · ·
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must eventually stabilize (as dimA/mMi is a non-increasing sequence of non-negative
integers).

11.5.A. EXERCISE. Suppose the maximal ideal m is finitely generated. Show that
for any n, mn/mn+1 is a finite-dimensional (A/m)-vector space. (Hint: show it for
n = 0 and n = 1. Show surjectivity of Symnm/m2 → mn/mn+1 to bound the
dimension for general n.) Hence mn/mn+1 is an Artinian A-module.

11.5.B. EXERCISE. Suppose A is a ring with one prime ideal m. Suppose m is
finitely generated. Prove that mn = (0) for some n. (Hint: As

√
0 is prime, it must

be m. Suppose m can be generated by r elements, each of which has kth power 0,
and show that mr(k−1)+1 = 0.)

11.5.C. EXERCISE. Show that if 0 →M ′ →M →M ′′ → 0 is an exact sequence of
modules, then M is Artinian if and only if M ′ and M ′′ are Artinian. (Hint: given
a descending chain inM, produce descending chains inM ′ andM ′′.)

11.5.1. Lemma. — If A is a Noetherian ring with one prime ideal m, then A is Artinian,
i.e., it satisfies the descending chain condition for ideals.

Proof. As we have a finite filtration

A ⊃ m ⊃ · · · ⊃ mn = (0)

all of whose quotients are Artinian, A is Artinian as well. □

11.5.2. Proof of Krull’s Principal Ideal Theorem 11.3.3. Suppose we are given f ∈ A,
with p a minimal prime containing f. By localizing at p, we may assume that A is
a local ring, with maximal ideal p. Suppose q is another prime strictly contained
in p.

(f) � o

��>
>>

>>
>>

>

p
� � // A

q
/ �

??~~~~~~~~

For the first part of the theorem, we must show that Aq has dimension 0. The
second part follows from our earlier work: if any minimal prime ideals are height
0, f is a zerodivisor, by Remark 5.5.12 (or Theorem 5.5.10(c) and §5.5.3).

Now p is the only prime ideal containing (f), so A/(f) has one prime ideal. By
Lemma 11.5.1, A/(f) is Artinian.

For this proof only, we invoke a useful construction, the nth symbolic power
of a prime ideal: if A is any ring, and q is any prime ideal, then define

q(n) := {r ∈ A : rs ∈ qn for some s ∈ A− q}.

We return to our particular A and q. We have a descending chain of ideals in
A

q(1) ⊃ q(2) ⊃ · · · ,
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so we have a descending chain of ideals in A/(f)

q(1) + (f) ⊃ q(2) + (f) ⊃ · · ·
which stabilizes, as A/(f) is Artinian. Say q(n) + (f) = q(n+1) + (f), so

q(n) ⊂ q(n+1) + (f).

Hence for any g ∈ q(n), we can write g = h+ afwith h ∈ q(n+1). Hence af ∈ q(n).
As p is minimal over f, f /∈ q, so a ∈ q(n). Thus

q(n) = q(n+1) + (f)q(n).

As f is in the maximal ideal p, the third version of Nakayama’s Lemma (Exer-
cise 7.2.G) gives q(n) = q(n+1).

We now shift attention to the local ring Aq, which we are hoping has dimen-
sion 0. We have q(n)Aq = q(n+1)Aq (the symbolic power construction clearly com-
mutes with localization). For any r ∈ qnAq ⊂ q(n)Aq, there is some s ∈ Aq − qAq

such that rs ∈ qn+1Aq. As s is invertible, r ∈ qn+1Aq as well. Thus qnAq ⊂
qn+1Aq, but as qn+1Aq ⊂ qnAq, we have qnAq = qn+1Aq. By Nakayama’s
Lemma 7.2.9 (version 2),

qnAq = 0.

Finally, any local ring (R,m) such that mn = 0 has dimension 0, as SpecR consists
of only one point: [m] = V(m) = V(mn) = V(0) = SpecR. □

11.5.3. Proof of Krull’s Height Theorem 11.3.7. We argue by induction on n. The
case n = 1 is Krull’s Principal Ideal Theorem 11.3.3. Assume n > 1. Suppose p is
a minimal prime containing r1, . . . , rn ∈ A. We wish to show that codim p ≤ n.
By localizing at p, we may assume that p is the unique maximal ideal of A. Let
q ̸= p be a prime ideal ofAwith no prime between p and q. We shall show that q is
minimal over an ideal generated by n − 1 elements. Then codim q ≤ n − 1 by the
inductive hypothesis, so we will be done.

Now q cannot contain every ri (as V(r1, . . . , rn) = {[p]}), so say r1 /∈ q. Then
V(q, r1) = {[p]}. As each ri ∈ p, there is some N such that rNi ∈ (q, r1) (Exer-
cise 3.4.J), so write rNi = qi + air1 where qi ∈ q (2 ≤ i ≤ n) and ai ∈ A. Note
that

(11.5.3.1) V(r1, q2, . . . , qn) = V(r1, r
N
2 , . . . , r

N
n ) = V(r1, r2, . . . , rn) = {[p]}.

We shall show that q is minimal among prime ideals containing q2, . . . , qn,
completing the proof. In the ring A/(q2, . . . , qn), V(r1) = {[p]} by (11.5.3.1). By
Krull’s Principal Ideal Theorem 11.3.3, [p] is codimension at most 1, so [q] must be
codimension 0 in SpecA/(q2, . . . , qn), as desired. □





CHAPTER 12

Regularity and smoothness

One natural notion we expect to see for geometric spaces is the notion of when
an object is “smooth”. In algebraic geometry, this notion, called regularity, is easy
to define (Definition 12.2.3) but a bit subtle in practice. This will lead us to a differ-
ent related notion of when a variety is smooth (Definition 12.2.6).

This chapter has many moving parts, of which §12.1–12.6 are the important
ones. In §12.1, the Zariski tangent space is motivated and defined. In §12.2, we de-
fine regularity and smoothness over a field, the central topics of this chapter, and dis-
cuss some of their important properties. In §12.3, we give a number of important
examples, mostly in the form of exercises. In §12.4, we discuss Bertini’s Theorem,
a fundamental classical result. In §12.5, we give many characterizations of discrete
valuation rings, which play a central role in algebraic geometry. Having seen clues
that “smoothness” is a “relative” notion rather than an “absolute” one, in §12.6 we
define smooth morphisms (and in particular, étale morphisms), and give some of their
properties. (We will revisit this definition in §21.3.1, once we know more.)

The remaining sections are less central. In §12.7, we discuss the valuative cri-
teria for separatedness and properness. In §12.8, we mention some more sophis-
ticated facts about regular local rings. In §12.9, we prove the Artin-Rees Lemma,
because it will have been invoked in §12.5 (and will be used later as well).

12.1 The Zariski tangent space

We begin by defining the tangent space of a scheme at a point. It behaves like
the tangent space you know and love at “smooth” points, but also makes sense at
other points. In other words, geometric intuition at the “smooth” points guides
the definition, and then the definition guides the algebra at all points, which in
turn lets us refine our geometric intuition.

The definition is short but surprising. The main difficulty is convincing your-
self that it deserves to be called the tangent space. This is tricky to explain, because
we want to show that it agrees with our intuition, but our intuition is worse than
we realize. So you should just accept this definition for now, and later convince
yourself that it is reasonable.

12.1.1. Definition. The Zariski cotangent space of a local ring (A,m) is defined to
be m/m2; it is a vector space over the residue field A/m. The dual vector space is
the Zariski tangent space. If X is a scheme, the Zariski cotangent space T∨X,p at a
point p ∈ X is defined to be the Zariski cotangent space of the local ring OX,p (and
similarly for the Zariski tangent space TX,p). Elements of the Zariski cotangent
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space are called cotangent vectors or differentials; elements of the tangent space
are called tangent vectors.

The cotangent space is more algebraically natural than the tangent space, in
that the definition is shorter. There is a moral reason for this: the cotangent space
is more naturally determined in terms of functions on a space, and we are very
much thinking about schemes in terms of “functions on them”. This will come up
later.

Here are two plausibility arguments that this is a reasonable definition. Hope-
fully one will catch your fancy.

In differential geometry, the tangent space at a point is sometimes defined as
the vector space of derivations at that point. A derivation at a point p of a manifold
is an R-linear operation that takes in functions f near p (i.e., elements of Op), and
outputs elements f ′(p) of R, and satisfies the Leibniz rule

(fg) ′ = f ′g+ g ′f.

(We will later define derivations in a more general setting, §21.2.17.) A derivation
is the same as a map m → R, where m is the maximal ideal of Op. (The map
Op → R extends this, via the map Op → m given by f− f(p).) But m2 maps to 0, as
if f(p) = g(p) = 0, then

(fg) ′(p) = f ′(p)g(p) + g ′(p)f(p) = 0.

Thus a derivation induces a map m/m2 → R, i.e., an element of (m/m2)∨.

12.1.A. EXERCISE. Check that this is reversible, i.e., that any linear map m/m2 → R
gives a derivation. In other words, verify that the Leibniz rule holds.

Here is a second, vaguer, motivation that this definition is plausible for the
cotangent space of the origin of An. (I prefer this one, as it is more primitive and
elementary.) Functions on An should restrict to a linear function on the tangent
space. What (linear) function does x2 + xy + x + y restrict to “near the origin”?
You will naturally answer: x+y. Thus we “pick off the linear terms”. Hence m/m2

are the linear functionals on the tangent space, so m/m2 is the cotangent space. In
particular, you should picture functions vanishing at a point (i.e., lying in m) as
giving functions on the tangent space in this obvious way.

12.1.2. Old-fashioned example. Computing the Zariski tangent space is actually
quite hands-on, because you can compute it just as you did when you learned
multivariable calculus. In A3, we have a curve cut out by x + y + z2 + xyz = 0

and x − 2y + z + x2y2z3 = 0. (You can use Krull’s Principal Ideal Theorem 11.3.3
to check that this is a curve, but it is not important to do so.) What is the tangent
line near the origin? (Is it even smooth there?) Answer: the first surface looks like
x + y = 0 and the second surface looks like x− 2y+ z = 0. The curve has tangent
line cut out by x+ y = 0 and x− 2y+ z = 0. It is smooth (in the traditional sense).
In multivariable calculus, the students work hard to get the answer, because we
aren’t allowed to tell them to just pick out the linear terms.

Let’s make explicit the fact that we are using. If A is a ring, m is a maximal
ideal, and f ∈ m is a function vanishing at the point [m] ∈ SpecA, then the Zariski
tangent space of SpecA/(f) at m is cut out in the Zariski tangent space of SpecA
(at m) by the single linear equation f (mod m2). The next exercise will force you
to think this through.
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12.1.B. IMPORTANT EXERCISE (“KRULL’S PRINCIPAL IDEAL THEOREM FOR TAN-
GENT SPACES” — BUT MUCH EASIER THAN KRULL’S PRINCIPAL IDEAL THEO-
REM 11.3.3!). Suppose A is a ring, and m a maximal ideal. If f ∈ m, show
that the Zariski tangent space of A/f is cut out in the Zariski tangent space of A
by f (mod m2). (Note: we can quotient by f and localize at m in either order, as
quotient and localization commute, (4.3.6.1).) Hence the dimension of the Zariski
tangent space of SpecA/(f) at [m] is the dimension of the Zariski tangent space of
SpecA at [m], or one less. (That last sentence should be suitably interpreted if the
dimension is infinite, although it is less interesting in this case.)

Here is another example to see this principle in action, extending Example 12.1.2:
x + y + z2 = 0 and x + y + x2 + y4 + z5 = 0 cuts out a curve, which obviously
passes through the origin. If I asked my multivariable calculus students to calcu-
late the tangent line to the curve at the origin, they would do calculations which
would boil down (without them realizing it) to picking off the linear terms. They
would end up with the equations x + y = 0 and x + y = 0, which cut out a plane,
not a line. They would be disturbed, and I would explain that this is because the
curve isn’t smooth at a point, and their techniques don’t work. We on the other
hand bravely declare that the tangent space is cut out by x+y = 0, and (will soon)
use this pathology as definition of what makes a point singular (or non-regular).
(Intuitively, the curve near the origin is very close to lying in the plane x + y = 0.)
Notice: the cotangent space jumped up in dimension from what it was “supposed
to be”, not down. We will see that this is not a coincidence, in Theorem 12.2.1.

12.1.C. EXERCISE. Suppose Y and Z are closed subschemes of X, both containing
the point p ∈ X.
(a) Show that TZ,p is naturally a sub-κ(p)-vector space of TX,p.
(b) Show that TY∩Z,p = TY,p ∩ TZ,p, where ∩ as usual in this context is scheme-
theoretic intersection.
(c) Show that TY∪Z,p contains the span of TY,p and TZ,p, where ∪ as usual in this
context is scheme-theoretic union.
(d) Show that TY∪Z,p can be strictly larger than the span of TY,p and TZ,p. (Hint:
Figure 4.5.)

Here is a pleasant consequence of the notion of Zariski tangent space.

12.1.3. Problem. Consider the ring A = k[x, y, z]/(xy− z2). Show that (x, z) is not
a principal ideal.

As dimA = 2 (why?), and A/(x, z) ∼= k[y] has dimension 1, we see that this
ideal is codimension 1 (as codimension is the difference of dimensions for irre-
ducible varieties, Theorem 11.2.9). Our geometric picture is that SpecA is a cone
(we can diagonalize the quadric as xy − z2 = ((x + y)/2)2 − ((x − y)/2)2 − z2, at
least if char k ̸= 2 — see Exercise 5.4.J), and that (x, z) is a line on the cone. (See
Figure 12.1 for a sketch.) This suggests that we look at the cone point.

12.1.4. Solution. Let m = (x, y, z) be the maximal ideal corresponding to the
origin. Then SpecA has Zariski tangent space of dimension 3 at the origin, and
SpecA/(x, z) has Zariski tangent space of dimension 1 at the origin. But SpecA/(f)
must have Zariski tangent space of dimension at least 2 at the origin by Exer-
cise 12.1.B.
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FIGURE 12.1. V(x, z) ⊂ Speck[x, y, z]/(xy− z2) is a line on a cone

12.1.5. ⋆ Remark. Another approach to solving the problem, not requiring the
definition of the Zariski tangent space, is to use the fact that the ring is graded
(where x, y, and z each have degree 1), and the ideal (x, z) is a homogeneous ideal.
(You may enjoy thinking this through.) The advantage of using the tangent space
is that it applies to more general situations where there is no grading. For example,
(a) (x, z) is not a principal ideal of k[x, y, z]/(xy− z2 − z3). As a different example,
(b) (x, z) is not a principal ideal of the local ring (k[x, y, z]/(xy − z2))(x,y,z) (the
“germ of the cone”). However, we remark that the graded case is still very useful.
The construction of replacing a filtered ring by its “associated graded” ring can
turn more general rings into graded rings (and can be used to turn example (a)
into the graded case). The construction of completion can turn local rings into
graded local rings (and can be used to turn example (b) into, essentially, the graded
case). Filtered rings will come up in §12.9, the associated graded construction will
implicitly come up in our discussions of the blow-up in §22.3, and many aspects
of completions will be described in Chapter 29.

12.1.D. EXERCISE. Show that (x, z) ⊂ k[w, x, y, z]/(wz − xy) is a codimension 1
ideal that is not principal, using the method of Solution 12.1.4. (See Figure 12.2
for the projectivization of this situation — a line on a smooth quadric surface.)
This example was promised just after Exercise 5.4.D. An improvement is given in
Exercise 14.2.R.

12.1.E. EXERCISE. LetA = k[w, x, y, z]/(wz−xy). Show that SpecA is not factorial.
(Exercise 5.4.L shows that A is not a unique factorization domain, but this is not
enough — why is the localization of A at the prime (w, x, y, z) not factorial? One
possibility is to do this “directly”, by trying to imitate the solution to Exercise 5.4.L,
but this is hard. Instead, use the intermediate result that in a unique factorization
domain, any codimension 1 prime is principal, Lemma 11.1.6, and considering
Exercise 12.1.D.) As A is integrally closed if char k ̸= 2 (Exercise 5.4.I(c)), this
yields an example of a scheme that is normal but not factorial, as promised in
Exercise 5.4.F. A slight generalization will be given in 22.4.N.

12.1.F. LESS IMPORTANT EXERCISE (“HIGHER-ORDER DATA”). (This exercise is
fun, but won’t be used.)
(a) In Exercise 3.7.B, you computed the equations cutting out the (union of the)
three coordinate axes of A3k. (Call this scheme X.) Your ideal should have had
three generators. Show that the ideal cannot be generated by fewer than three
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FIGURE 12.2. The line V(x, z) on the smooth quadric surface
V(wz− xy) ⊂ P3.

elements. (Hint: working modulo m = (x, y, z) won’t give any useful information,
so work modulo a higher power of m.)
(b) Show that the coordinate axes in A3k are not a regular embedding in A3k. (This
was promised at the end of §8.4.)

12.1.6. Morphisms and tangent spaces. Suppose π : X → Y, and π(p) = q. Then
if we were in the category of differentiable manifolds, we would expect a tangent
map, from the tangent space of p to the tangent space at q. Indeed that is the
case; we have a map of stalks OY,q → OX,p, which sends the maximal ideal of
the former n to the maximal ideal of the latter m (we have checked that this is
a “local morphism” when we briefly discussed locally ringed spaces, see §6.3.1).
Thus n2 maps to m2, from which we see that n/n2 maps to m/m2. If (OX,p,m)
and (OY,q, n) have the same residue field κ, so n/n2 → m/m2 is a linear map of
κ-vector spaces, we have a natural map (m/m2)∨ → (n/n2)∨. This is the map
from the tangent space of p to the tangent space at q that we sought. (Aside: note
that the cotangent map always exists, without requiring p and q to have the same
residue field — a sign that cotangent spaces are more natural than tangent spaces
in algebraic geometry.)

Here are some exercises to give you practice with the Zariski tangent space. If
you have some differential geometric background, the first will further convince
you that this definition correctly captures the idea of (co)tangent space.

12.1.G. IMPORTANT EXERCISE (THE JACOBIAN COMPUTES THE ZARISKI COTAN-
GENT SPACE). Suppose X is a finite type k-scheme. Then locally it is of the form
Spec k[x1, . . . , xn]/(f1, . . . , fr). Show that the Zariski cotangent space at a k-valued
point (a closed point with residue field k) is given by the cokernel of the Jacobian
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map kr → kn given by the Jacobian matrix

(12.1.6.1) J =


∂f1
∂x1

(p) · · · ∂fr
∂x1

(p)
...

. . .
...

∂f1
∂xn

(p) · · · ∂fr
∂xn

(p)

 .
(This makes precise our example of a curve in A3 cut out by a couple of equations,
where we picked off the linear terms, see Example 12.1.2.) You might be alarmed:
what does ∂f

∂x1
mean? Do you need deltas and epsilons? No! Just define deriva-

tives formally, e.g.,
∂

∂x1
(x21 + x1x2 + x

2
2) = 2x1 + x2.

Hint: Do this first when p is the origin, and consider linear terms, just as in Exam-
ple 12.1.2 and Exercise 12.1.B. For the general case, “translate p to the origin”.

12.1.7. Remark. This result can be extended to closed points of X whose residue
field is separable over k (and in particular, to all closed points if char k = 0 or if
k is finite), see Remark 21.3.10. The fact that we wait until Chapter 21 to show
this does not mean that it needs to be so complicated; a more elementary proof is
possible.

12.1.8. Warning. It is more common in mathematics (but not universal) to define
the Jacobian matrix as the transpose of this. But it will be more convenient for us
to follow this minority convention.

12.1.H. EXERCISE (THE CORANK OF THE JACOBIAN IS INDEPENDENT OF THE PRE-
SENTATION). Suppose A is a finitely-generated k-algebra, generated by x1, . . . ,
xn, with ideal of relations I generated by f1, . . . , fr. Let p be a point of SpecA.
(a) Suppose g ∈ I. Show that appending the column of partials of g to the Jacobian
matrix (12.1.6.1) does not change the corank at p. Hence show that the corank of
the Jacobian matrix at p does not depend on the choice of generators of I.
(b) Suppose q(x1, . . . , xn) ∈ k[x1, . . . , xn]. Let h be the polynomial y−q(x1, . . . , xn) ∈
k[x1, . . . , xn, y]. Show that the Jacobian matrix of (f1, . . . , fr, h) with respect to
the variables (x1, . . . , xn, y) has the same corank at p as the Jacobian matrix of
(f1, . . . , fr) with respect to (x1, . . . , xn). Hence show that the corank of the Jaco-
bian matrix at p is independent of the choice of generators for A.

12.1.I. EXERCISE. Suppose X is a k-scheme. Describe a natural bijection from
Mork(Speck[ϵ]/(ϵ2), X) to the data of a point p with residue field k (necessarily a
closed point) and a tangent vector at p. (This is important, for example in defor-
mation theory.)

12.1.J. EXERCISE. Find the dimension of the Zariski tangent space at the point
[(2, 2i)] of Z[2i] ∼= Z[x]/(x2 + 4). Find the dimension of the Zariski tangent space
at the point [(2, x)] of Z[

√
−2] ∼= Z[x]/(x2 + 2). (If you prefer geometric versions

of the same examples, replace Z by C, and 2 by y: consider C[x, y]/(x2 + y2) and
C[x, y]/(x2 + y).)
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12.2 Regularity, and smoothness over a field

The key idea in the definition of regularity is contained in the following result,
that “the dimension of the Zariski tangent space is at least the dimension of the
local ring”.

12.2.1. Theorem. — Suppose (A,m, k) is a Noetherian local ring. Then dimA ≤
dimkm/m

2.

12.2.2. Proof of Theorem 12.2.1. Note that m is finitely generated (as A is Noether-
ian), so m/m2 is a finitely generated (A/m = k)-module, hence finite-dimensional.
Say dimkm/m

2 = n. Choose a basis of m/m2, and lift it to elements f1, . . . , fn of m.
Then by Nakayama’s Lemma (version 4, Exercise 7.2.H), (f1, . . . , fn) = m.

Then by Exercise 11.3.I (a consequence of Krull’s Height Theorem 11.3.7), dimA ≤
n. □

12.2.3. Definition. If equality holds in Theorem 12.2.1, we say that A is a regular
local ring. In particular, regular local rings are Noetherian by definition. (If a Noe-
therian ring A is regular at all of its prime ideals, i.e., if Ap is a regular local ring
for all prime ideals p of A, then A is said to be a regular ring. We basically won’t
use this terminology. Fact 12.8.2 reassuringly implies that regular local rings are
indeed regular rings.) A locally Noetherian scheme X is regular at a point p if the
local ring OX,p is regular. (The word nonsingular is often used as well, notably in
the case when X is finite type over a field, but for the sake of consistency we will
use “regular” throughout.) It is singular at the point otherwise, and we say that
the point is a singularity. (The word nonregular is also used, but for the sake of
consistency, we will use “singular”, despite the fact that this choice is inconsistent
with our choice of “regular” over “nonsingular”. Possible motivation for the in-
consistency: “regular local ring” and “singularity” are both standard terminology,
so at some point we are forced to make a choice.) A scheme is regular (or nonsin-
gular) if it is regular at all points. It is singular (or nonregular) otherwise (i.e., if it
is singular at at least one point — if it has a singularity).

12.2.A. EXERCISE. Show that a dimension 0Noetherian local ring is regular if and
only if it is a field.

You will hopefully gradually become convinced that this is the right notion of
“smoothness” of schemes. Remarkably, Krull introduced the notion of a regular
local ring for purely algebraic reasons, some time before Zariski realized that it
was a fundamental notion in geometry in 1947.

12.2.B. EXERCISE. Suppose X is a finite type k-scheme (such as a variety) of pure
dimension n, and p is a nonsingular closed point of X, so OX,p is a regular local
ring of dimension n. Suppose f ∈ OX,p. Show that OX,p/(f) is a regular local ring
of dimension n−1 if and only if f ∈ m\m2. (Hint: Krull’s Principal Ideal Theorem
for tangent spaces, Exercise 12.1.B.)

12.2.C. EXERCISE (THE SLICING CRITERION FOR REGULARITY). Suppose X is a
finite type k-scheme (such as a variety), D is an effective Cartier divisor on X
(Definition 8.4.1), and p ∈ D. Show that if p is a regular point of D then p is
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a regular point of X. (Hint: Krull’s Principal Ideal Theorem for tangent spaces,
Exercise 12.1.B.)

12.2.4. The Jacobian criterion.
A finite type k-scheme is locally of the form Spec k[x1, . . . , xn]/(f1, . . . , fr). The

Jacobian criterion for regularity (Exercise 12.2.D) gives a hands-on method for
checking for singularity at closed points, using the equations f1, . . . , fr, if k = k.

12.2.D. IMPORTANT EXERCISE (THE JACOBIAN CRITERION — EASY, GIVEN EXER-
CISE 12.1.G). Suppose X = Speck[x1, . . . , xn]/(f1, . . . , fr) has pure dimension d.
Show that a k-valued point p ∈ X is regular if and only if the corank of the Jacobian
matrix (12.1.6.1) (the dimension of the cokernel) at p is d.

12.2.E. EASY EXERCISE. Suppose k = k. Show that the singular closed points of
the hypersurface f(x1, . . . , xn) = 0 in Ank are given by the equations

f =
∂f

∂x1
= · · · = ∂f

∂xn
= 0.

(Translation: the singular points of f = 0 are where the gradient of f vanishes. This
is not shocking.)

12.2.5. Smoothness over a field. There seem to be two serious drawbacks with the
Jacobian criterion. For finite type schemes over k, the criterion gives a necessary
condition for regularity, but it is not obviously sufficient, as we need to check reg-
ularity at non-closed points as well. We can prove sufficiency by working hard to
show Fact 12.8.2, which implies that the non-closed points must be regular as well.
A second failing is that the criterion requires k to be algebraically closed. These
problems suggest that old-fashioned ideas of using derivatives and Jacobians are
ill-suited to the fancy modern notion of regularity. But that is wrong — the fault
is with the concept of regularity. There is a better notion of smoothness over a field.
Better yet, this idea generalizes to the notion of a smooth morphism of schemes (to
be discussed in §12.6, and again in Chapter 25), which behaves well in all possible
ways (including in the sense of §7.1.1). This is another sign that some properties
we think of as of objects (“absolute notions”) should really be thought of as prop-
erties of morphisms (“relative notions”). We know enough to imperfectly (but
correctly) define what it means for a scheme to be k-smooth, or smooth over k.

12.2.6. Definition. A k-scheme is k-smooth of dimension d, or smooth of dimen-
sion d over k, if it is of pure dimension d, and there exists a cover by affine open
sets Speck[x1, . . . , xn]/(f1, . . . , fr) where the Jacobian matrix has corank d at all
points. (In particular, it is locally of finite type.) A k-scheme is smooth over k if it
is smooth of some dimension. The k is often omitted when it is clear from context.

12.2.F. EXERCISE (FIRST EXAMPLES).
(a) Show that Ank is smooth for any n and k. For which characteristics is the curve
y2z = x3 − xz2 in P2k smooth (cf. Exercise 12.3.C)?
(b) Suppose f ∈ k[x1, . . . , xn] is a polynomial such that the system of equations

f =
∂f

∂x1
= · · · = ∂f

∂xn
= 0
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has no solutions in k. Show that the hypersurface f = 0 in Ank is smooth. (Compare
this to Exercise 12.2.E, which has the additional hypothesis k = k.)

12.2.G. EXERCISE (SMOOTHNESS OF VARIETIES IS PRESERVED BY EXTENSION OF
BASE FIELD). Suppose X is a finite type k-scheme, and k ⊂ ℓ is a field extension.
Show that if X is smooth over k then X×SpeckSpec ℓ is smooth over ℓ. (The converse
will be proved in Exercise 21.3.C.)

The next exercise shows that we need only check closed points, thereby mak-
ing a connection to classical geometry.

12.2.H. EXERCISE. Show that if the Jacobian matrix forX = Speck[x1, . . . , xn]/(f1, . . . fr)
has corank d at all closed points, then it has corank d at all points. (Hint: the locus
where the Jacobian matrix has corank d can be described in terms of vanishing and
nonvanishing of determinants of certain explicit matrices.)

12.2.7. You can check that any open subset of a smooth k-variety is also a smooth k-
variety. With what we know now, we could show that this implies that k-smoothness
is equivalent to the Jacobian being corank d everywhere for every affine open cover
(and by any choice of generators of the ring corresponding to such an open set).
Indeed, you should feel free to do this if you cannot restrain yourself. But the
cokernel of the Jacobian matrix is secretly the space of differentials (which might
not be surprising if you have experience with differentials in differential geome-
try), so this will come for free when we give a better version of this definition in
Definition 21.3.1. The current imperfect definition will suffice for us to work out
examples. And if you don’t want to wait until Definition 21.3.1, you can use Ex-
ercise 12.2.I below to show that if k algebraically closed, then smoothness can be
checked on any open cover.

12.2.8. In defense of regularity. Having made a spirited case for smoothness, we
should be clear that regularity is still very useful. For example, it is the only con-
cept which makes sense in mixed characteristic. In particular, Z is regular at its
points (it is a regular ring), and more generally, discrete valuation rings are incred-
ibly useful examples of regular rings.

12.2.9. Regularity vs. smoothness.

12.2.I. EXERCISE. Suppose X is a finite type scheme of pure dimension d over an
algebraically closed field k = k. Show that X is regular at its closed points if and
only if it is smooth. (We will soon learn that for finite type k-schemes, regularity at
closed points is the same as regularity everywhere, Theorem 12.8.3.) Hint to show
regularity implies smoothness: use the Jacobian criterion to show that the corank
of the Jacobian is d at the closed points of X. Then use Exercise 12.2.H.

More generally, if k is perfect (e.g., if chark = 0 or k is a finite field), then
smoothness is the same as regularity at closed points (see Exercise 21.3.D). More
generally still, we will later prove the following fact. We mention it now because
it will make a number of statements cleaner long before we finally prove it. (There
will be no circularity.)
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12.2.10. Smoothness-Regularity Comparison Theorem. —
(a) If k is perfect, every regular finite type k-scheme is smooth over k.
(b) Every smooth k-scheme is regular (with no hypotheses on perfection).

Part (a) will be proved in Exercise 21.3.D. Part (b) will be proved in §25.2.3.
The fact that Theorem 12.2.10 will be proved so far in the future does not mean
that we truly need to wait that long. We could prove both parts by the end of this
chapter, with some work. We instead postpone the proof until we have machinery
that will do much of the work for us. But if you wish some insight right away, here
is the outline of the argument for (b), which you can even try to implement after
reading this chapter. We will soon show (in Exercise 12.3.O) that Ank is regular for
all fields k. Once we know the definition of étale morphism, we will realize that
every smooth variety locally admits an étale morphism to Ank (Exercise 12.6.E).
You can then show that an if π : X→ Y is an étale morphism of locally Noetherian
schemes, and p ∈ X, then p is regular if π(p) is regular. This will be shown in
Exercise 25.2.D, but you could reasonably do this after reading the definition of
étaleness.

12.2.11. Caution: Regularity does not imply smoothness. If k is not perfect, then
regularity does not imply smoothness, as demonstrated by the following exam-
ple. Let k = Fp(u), and consider the hypersurface X = Speck[x]/(xp − u). Now
k[x]/(xp − u) is a field, hence regular. But if f(x) = xp − u, then f(u1/p) =
df
dx

(u1/p) = 0, so the Jacobian criterion fails — X is not smooth over k. (Never
forget that smoothness requires a choice of field — it is a “relative” notion, and we
will later define smoothness over an arbitrary scheme, in §12.6.) Technically, this
argument is not yet complete: as noted in §12.2.7, we have not shown that it suf-
fices to check the Jacobian on any affine cover. But as mentioned in §12.2.7, this will
be rectified when we give a better definition of smoothness in Definition 21.3.1.

In case the previous example is too “small” to be enlightening (because the
scheme in question is smooth over a different field, namely k[x]/(xp−u)), here is an-
other. Let k = Fp(u) as before, with p > 2, and consider the curve Speck[x, y]/(y2−
xp + u). Then the closed point (y, xp − u) is regular but not smooth.

Thus you should not use “regular” and “smooth” interchangeably.

12.2.12. Regular local rings are integral domains.
You might expect from geometric intuition that a scheme is “locally irreducible”

at a “smooth” point. Put algebraically:

12.2.13. Theorem. — Suppose (A,m, k) is a regular local ring of dimension n. Then A
is an integral domain.

Before proving it, we give some consequences.

12.2.J. EXERCISE. Suppose p is a regular point of a Noetherian scheme X. Show
that only one irreducible component of X passes through p.

12.2.K. EASY EXERCISE. Show that a nonempty regular Noetherian scheme is
irreducible if and only if it is connected.

12.2.L. IMPORTANT EXERCISE (REGULAR SCHEMES IN REGULAR SCHEMES ARE
REGULAR EMBEDDINGS).
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(a) Suppose (A,m, k) is a regular local ring of dimension n, and I ⊂ A is an ideal
of A cutting out a regular local ring of dimension d. Let r = n − d. Show that
SpecA/I is a regular embedding in SpecA. Hint: show that there are elements
f1, . . . , fr of I spanning the k-vector space I/(I ∩ m2). Show that the quotient of
A by both (f1, . . . , fr) and I yields dimension d regular local rings. Show that a
surjection of integral domains of the same dimension must be an isomorphism.
(b) Suppose π : X→ Y is a closed embedding of regular schemes. Show that π is a
regular embedding.

Exercise 12.2.L has the following striking geometric consequence.

12.2.M. EXERCISE (GENERALIZING EXERCISE 11.3.E). Suppose dimension d, and
X and Y are equidimensional subvarieties (possibly singular) of Adk codimension
m and n respectively. Show that every component of X ∩ Y has codimension at
most m + n in Adk as follows. Show that the diagonal Adk ∼= ∆ ⊂ Adk ×k Adk ∼=
A2dk is a regular embedding of codimension d. Then follow the rest of the hint to
Exercise 11.3.E.

12.2.14. Remark. The following example shows that the regularity hypotheses in
Exercise 12.2.M cannot be (completely) dropped. LetW = Speck[w, x, y, z]/(wz−
xy) be the cone over the smooth quadric surface, which is an integral threefold.
Let X be the surface w = x = 0 and Y the surface y = z = 0; both lie in W. Then
X ∩ Y is just the origin, so we have two codimension 1 subvarieties meeting in a
codimension 3 subvariety. (It is no coincidence that X and Y are the affine cones
over two lines in the same ruling, see Exercise 8.2.M. This example will arise again
in Exercise 22.4.N.)

12.2.15. Proof of Theorem 12.2.13 (following [Liu, Prop. 2.11]). We prove the result by
induction on n. The case n = 0 follows from Exercise 12.2.A (dimension 0 regular
local rings are fields, which are certainly integral domains). We now assume n > 0,
and that we have proved the result for smaller dimension. Fix any f ∈ m \m2. By
Exercise 12.1.B, the Zariski tangent space of the local ring A/(f) (at its maximal
ideal m) has dimension n − 1. By Exercise 11.3.B, dimA/(f) ≥ n − 1. Thus by
Theorem 12.2.1, dimA/(f) = n − 1, and A/(f) is a regular local ring. By our
inductive hypothesis, A/(f) is an integral domain (of dimension n− 1).

Now choose any minimal prime ideal p of A with dimA/p = n. We wish to
show that p = (0). The Zariski cotangent space of A/p is a quotient of that of A,
and thus has dimension at most n. But dimA/p = n, so by Theorem 12.2.1, A/p
is a regular local ring of dimension n. By the argument of the previous paragraph
withA replaced byA/p, we see thatA/(p+(f)) is an integral domain of dimension
n − 1. But it is a quotient of A/(f). The only way one integral domain can be the
quotient of another of the same dimension is if the quotient is an isomorphism (as
discussed in the hint to Exercise 12.2.L(a)).

Thus p + (f) = (f), i.e., p ⊂ fA. Hence each element u of p can be written as fv
for some v ∈ A. As f /∈ p (as dimA/(p + (f)) = n − 1 < n = dimA/p), we have
v ∈ p, and so p ⊂ fp.

Clearly fp ⊂ p, so p = fp. Then by the second version of Nakayama’s Lemma 7.2.9,
p = (0) as desired. □
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12.2.16. ⋆⋆ Checking regularity of k-schemes at closed points by base changing
to k.

(We revisit these ideas using a different approach in 21.3.E, so you should read
this only if you are particularly curious.) The Jacobian criterion is a great criterion
for checking regularity of finite type k-schemes at k-valued points. The following
result extends its applicability to more general closed points.

Suppose X is a finite type k-scheme of pure dimension n, and p ∈ X is a closed
point with residue field k ′. By the Nullstellensatz 3.2.5, k ′/k is a finite extension
of fields; suppose that it is separable. Define π : Xk := X×k k→ X by base change
from Spec k→ Spec k.

12.2.N. EXERCISE.
(a) Suppose f(x) ∈ k[x] is a separable polynomial (i.e., f has distinct roots in k),
and irreducible, so k ′′ := k[x]/(f(x)) is a field extension of k. Show that k ′′ ⊗k k is,
as a ring, k× · · · × k, where there are deg f = degk ′′/k factors.
(b) Show that π−1(p) consists of deg(k ′/k) reduced points.

12.2.O. EXERCISE. Suppose p is a closed point of X, with residue field k ′ that is
separable over k of degree d. Show that Xk is regular at all the preimages p1, . . . ,
pd of p if and only if X is regular at p as follows.

(a) Reduce to the case X = SpecA.
(b) Let m ⊂ A be the maximal ideal corresponding to p. By tensoring the

exact sequence 0 → m → A → k ′ → 0 with k (field extensions preserve
exactness of sequences of vector spaces), we have the exact sequence

0→ m⊗k k→ A⊗k k→ k ′ ⊗k k→ 0.

Show that m⊗k k ⊂ A⊗k k is the ideal corresponding to the pullback of
p to SpecA⊗k k. Verify that (m⊗k k)2 = m2 ⊗k k.

(c) By tensoring the short exact sequence of k-vector spaces 0→ m2 → m→
m/m2 → 0with k, show that

d∑
i=1

dimk TXk,pi
= ddimk ′ TX,p.

(d) Use Exercise 11.1.G(a) and the inequalities dimk TXk,pi
≥ dimXk and

dimk ′ TX,p ≥ dimX (Theorem 12.2.1) to conclude.

12.2.17. Remark. In fact, regularity at a single pi is enough to conclude regularity
at p. You can show this by following up on Exercise 12.2.O; first deal with the
case when k ′/k is Galois, and obtain some transitive group action of Gal(k ′/k) on
{p1, . . . , pd}. Another approach is given in Exercise 21.3.E.

12.2.18. Remark. In Exercise 21.3.D, we will use this to prove that a variety over
a perfect field is smooth if and only if it is regular at all closed points (cf. the
Smoothness-Regularity Comparison Theorem 12.2.10).

12.3 Examples
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We now explore regularity in practice through a series of examples and exer-
cises. Much of this discussion is secretly about smoothness rather than regularity.
In particular, in order to use the Jacobian criterion, we will usually work over an
algebraically closed field.

12.3.1. Geometric examples.

12.3.A. EASY EXERCISE. Suppose k is a field. Show that A1k and A2
k

are regular, by
directly checking the regularity of all points. Show that P1k and P2

k
are regular. (The

generalization to arbitrary dimension is harder, so we leave it to Exercise 12.3.O.)

12.3.B. EXERCISE (THE EULER OR JACOBIAN TEST FOR PROJECTIVE HYPERSUR-
FACES). Suppose k = k. Show that the singular closed points of the hypersurface
f = 0 in Pnk correspond to the locus

f =
∂f

∂x0
= · · · = ∂f

∂xn
= 0.

If the degree of the hypersurface is not divisible by chark (e.g., if char k = 0), show
that it suffices to check ∂f

∂x0
= · · · = ∂f

∂xn
= 0. Hint: show that (deg f)f =

∑
i xi

∂f
∂xi

.
(In fact, this will give the singular points in general, not just the singular closed
points, cf. §12.2.5. We won’t use this, so we won’t prove it.)

12.3.C. EXERCISE. Suppose that k = k does not have characteristic 2. Show that
y2z = x3 − xz2 in P2k is an irreducible regular curve. (Eisenstein’s Criterion gives
one way of showing irreducibility. Warning: we didn’t specify chark ̸= 3, so be
careful when using the Euler test.)

12.3.D. EXERCISE. Suppose k = k has characteristic not 2. Show that a quadric
hypersurface in Pn is regular if and only if it is maximal rank. (“Maximal rank”
was defined in Exercise 5.4.J.)

12.3.E. EXERCISE. Suppose k = k has characteristic 0. Show that there exists a
regular (projective) plane curve of degree d. Hint: try a “Fermat curve” xd + yd +
zd = 0. (Feel free to weaken the hypotheses. Bertini’s Theorem 12.4.2 will give
another means of showing existence.)

12.3.F. EXERCISE (SEE FIGURE 12.3). Find all the singular closed points of the
following plane curves. Here we work over k = k of characteristic 0 to avoid
distractions.

(a) y2 = x2 + x3. This is an example of a node.
(b) y2 = x3. This is called a cusp; we met it earlier in Exercise 9.7.F.
(c) y2 = x4. This is called a tacnode; we met it earlier in Exercise 9.7.G.

(A precise definition of a node etc. will be given in Definition 29.3.1.)

12.3.G. EXERCISE. Suppose k = k. Use the Jacobian criterion appropriately to
show that the twisted cubic Projk[w, x, y, z]/(wz− xy,wy− x2, xz− y2) is regular.
(You can do this, without any hypotheses on k, using the fact that it is isomorphic
to P1. But do this with the explicit equations, for the sake of practice. The twisted
cubic was defined in Exercise 8.2.A.)
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FIGURE 12.3. Plane curve singularities

12.3.2. Tangent planes and tangent lines.
Suppose a scheme X ⊂ An is cut out by equations f1, . . . , fr, and X is regular

of dimension d at the k-valued point a = (a1, . . . , an). Then the tangent d-plane
to X at p (sometimes denoted TpX) is given by the r equations(

∂fi

∂x1
(a)

)
(x1 − a1) + · · ·+

(
∂fi

∂xn
(a)

)
(xn − an) = 0,

where (as in (12.1.6.1)) ∂fi
∂x1

(a) is the evaluation of ∂fi
∂x1

at a = (a1, . . . , an).

12.3.H. EXERCISE. Why is this independent of the choice of defining equations f1,
. . . , fr of X?

The Jacobian criterion (Exercise 12.2.D) ensures that these r equations indeed
cut out a d-plane. (If d = 1, this is called the tangent line.) This can be readily
shown to be notion of tangent plane that we see in multivariable calculus, but
note that here this is the definition, and thus don’t have to worry about δ’s and ϵ’s.
Instead we will have to just be careful that it behaves the way we want it to.

12.3.I. EXERCISE. Compute the tangent line to the curve of Exercise 12.3.F(b) at
(1, 1).

12.3.J. EXERCISE. Suppose X ⊂ Pnk (k as usual a field) is cut out by homogeneous
equations f1, . . . , fr, and p ∈ X is a k-valued point that is regular of dimension
d. Define the (projective) tangent d-plane to X at p. (Definition 8.2.3 gives the
definition of a d-plane in Pnk , but you shouldn’t need to refer there.)

12.3.3. Side Remark to help you think cleanly. We would want the definition of
tangent k-plane to be natural in the sense that for any automorphism σ of Ank (or,
in the case of the previous Exercise, Pnk ), σ(TpX) = Tσ(p)σ(X). You could verify this
by hand, but you can also say this in a cleaner way, by interpreting the equations
cutting out the tangent space in a coordinate free manner. Informally speaking, we
are using the canonical identification of n-space with the tangent space to n-space
at p, and using the fact that the Jacobian “linear transformation” cuts out TpX in
TpAn in a way independent of choice of coordinates on An or defining equations
of X. Your solution to Exercise 12.3.H will help you start to think in this way.

12.3.K. EXERCISE. Suppose X ⊂ Pnk is a degree d hypersurface cut out by f = 0,
and L is a line not contained in X. Exercise 8.2.E (a case of Bézout’s Theorem)
showed that X and L meet at d points, counted “with multiplicity”. Suppose L
meets X “with multiplicity at least 2” at a k-valued point p ∈ L ∩ X, and that p is
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a regular point of X. Show that L is contained in the tangent plane to X at p. (Do
you have a picture of this in your mind?)

12.3.4. Arithmetic examples.

12.3.L. EASY EXERCISE. Show that SpecZ is a regular curve.

12.3.M. EXERCISE. (This tricky exercise is for those who know about the primes of
the Gaussian integers Z[i].) There are several ways of showing that Z[i] is dimen-
sion 1. (For example: (i) it is a principal ideal domain; (ii) it is the normalization of
Z in the field extension Q(i)/Q; (iii) using Krull’s Principal Ideal Theorem 11.3.3
and the fact that dimZ[x] = 2 by Exercise 11.1.H.) Show that SpecZ[i] is a regular
curve. (There are several ways to proceed. You could use Exercise 12.1.B. As an
example to work through first, consider the prime (2, 1+i), which is cut out by the
equations 2 and 1+ x in SpecZ[x]/(x2+ 1).) We will later (§12.5.10) have a simpler
approach once we discuss discrete valuation rings.

12.3.N. EXERCISE. Show that [(5, 5i)] is the unique singular point of SpecZ[5i].
(Hint: Z[i]5 ∼= Z[5i]5. Use the previous exercise.)

12.3.5. Back to geometry: Ank is regular.
The key step to showing that Ank is regular (where k is a field) is the following.

12.3.6. Proposition. — Suppose (B, n, k) is a regular local ring of dimension d. Let
ϕ : B → B[x]. Suppose p is a prime ideal of A := B[x] such that nB[x] ⊂ p. Then Ap is a
regular local ring.

Proof. Geometrically: we have a morphism π : X = SpecB[x] → Y = SpecB, and
π([p]) = [n]. The fiber π−1([n]) = Spec(B[x]/nB[x]) = Speck[x]. Thus either (i) [p] is
the fiber A1k above [n], or (ii) [p] is a closed point of the fiber A1k.

Before considering these two cases, we make two remarks. As (B, n) is a regu-
lar local ring of dimension d, n is generated by d elements of B, say f1, . . . , fd (as
discussed in the proof of Theorem 12.2.1), and there is a chain of prime ideals

(12.3.6.1) 0 = q0 ⊂ q1 ⊂ · · · ⊂ qd = n.

Case (i): [p] is the fiber A1k. In this case, p = nB[x]. Thus by Krull’s Height
Theorem 11.3.7, the height of p = nB[x] is at most d, because p is generated by the
d elements f1, . . . , fd. But p has codimension at least d: given the chain (12.3.6.1)
ending with n, we have a corresponding chain of prime ideals of B[x] ending with
nB[x]. Hence the codimension of p is precisely d, and pAp is generated by f1, . . . ,
fd, implying that it is a regular local ring.

Case (ii): [p] is a closed point of the fiber A1k. The closed point p of k[x] corresponds
to some monic irreducible polynomial g(x) ∈ k[x]. Arbitrarily lift the coefficients
of g to B; we sloppily denote the resulting polynomial in B[x] by g(x) as well.
Then p = (f1, . . . , fd, g), so by Krull’s Height Theorem 11.3.7, the codimension of
p is at most d + 1. But p has codimension at least d + 1: given the chain (12.3.6.1)
ending with n, we have a corresponding chain in B[x] ending with nB[x], and we
can extend it by appending p. Hence the height of p is precisely d + 1, and pAp is
generated by f1, . . . , fd, g, implying that it is a regular local ring. □



346 The Rising Sea: Foundations of Algebraic Geometry

12.3.O. EXERCISE. Use Proposition 12.3.6 to show that if X is a regular (locally
Noetherian) scheme, then so is X× A1. In particular, show that Ank is regular.

12.4 Bertini’s Theorem

We now discuss Bertini’s Theorem, a fundamental classical result.

12.4.1. Definition: dual projective space. The dual (or dual projective space) to
Pnk (with coordinates x0, . . . , xn), is informally the space of hyperplanes in Pnk .
Somewhat more precisely, it is a projective space Pnk with coordinates a0, . . . , an
(which we denote Pn∨k with the futile intent of preventing confusion), along with
the data of the “incidence variety” or “incidence correspondence” I ⊂ Pn × Pn∨
cut out by the equation a0x0+· · ·+anxn = 0. Note that the k-valued points of Pn∨
indeed correspond to hyperplanes in Pn defined over k, and this is also clearly a
duality relation (there is a symmetry in the definition between the x-variables and
the a-variables). So this is concrete enough to use in practice, and extends over an
arbitrary base (notably SpecZ). (But if you have a delicate and refined sensibility,
you may want to come up with a coordinate-free definition.)

12.4.2. Bertini’s Theorem. — Suppose X is a smooth subvariety of Pnk . Then there is
a nonempty (=dense) open subset U of dual projective space Pn∨k such that for any closed
point [H] ∈ U, H doesn’t contain any component of X, and the scheme H∩X is k-smooth.

The hypothesis that k is algebraically closed is not essential (even in the proof
below): see Exercise 12.4.A.

We remark that any theorem of this flavor is often called a “Bertini Theorem”.
One example is the Kleiman-Bertini Theorem 25.3.7, which was not proved jointly
by Kleiman and Bertini.

As an application of Bertini’s Theorem 12.4.2, a general degree d > 0 hyper-
surface in Pnk intersects X in a regular subvariety of codimension 1 in X: replace
X ↪→ Pn with the composition

X // Pn �
� νd // PN

where νd is the dth Veronese embedding (8.2.8). Here “general” has its usual
meaning in algebraic geometry, see §9.3.6, except that we are considering only
closed points of U ⊂ Pn∨k . A useful consequence of this, taking X = Pn: we
immediately see that there exists a smooth degree d hypersurface in Pn (over an
algebraically closed field k), without any messing around with specific equations
(as in the special case Exercise 12.3.E).

Exercise 25.3.D gives a useful improvement of Bertini’s Theorem in character-
istic 0 (see Exercise 25.3.E).

Proof. In order to keep the proof as clean as possible, we assume X is irreducible,
but essentially the same proof applies in general.

The central idea of the proof is quite naive. We will describe the hyperplanes
that are “bad”, and show that they form a closed subset of dimension at most n−1
of Pnk

∨, and hence that the complement is a dense open subset. Somewhat more
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precisely, we will define a projective variety Z ⊂ X × Pnk
∨ that can informally be

described as:

Z = {(p ∈ X,H ⊂ Pnk ) : p ∈ H,(12.4.2.1)
and either p is a singular point of H ∩ X, or X ⊂ H}

We will see that the projection π : Z→ X has fibers at closed points that are projec-
tive spaces of dimension n − 1 − dimX, and use this to show that dimZ ≤ n − 1.
Thus the image of Z in Pnk

∨ will be a closed subset (Theorem 7.4.7), of dimension
of at most n− 1, so its complement will be open and non-empty. We now put this
strategy into action.

12.4.3. We first define Zmore precisely, in terms of equations on Pn × Pn∨, where
the coordinates on Pn are x0, . . .xn, and the dual coordinates on Pn∨ are a0, . . . ,
an. Suppose X is cut out by f1, . . . , fr. Then we take these equations as the first
of the defining equations of Z. (So far we have defined the subscheme X × Pn∨.)
We also add the equation a0x0 + · · · + anxn = 0. (So far we have described the
subscheme of Pn × Pn∨ corresponding to points (p,H) where p ∈ X and p ∈ H.)
Note that the Jacobian matrix ((12.1.6.1), except with variables starting with x0
rather than x1) 

∂f1
∂x0

(p) · · · ∂fr
∂x0

(p)
...

. . .
...

∂f1
∂xn

(p) · · · ∂fr
∂xn

(p)


has corank equal to dimX at all closed points of X — this is precisely the Jacobian
criterion for regularity (Exercise 12.2.D). We then require that the Jacobian matrix
with a new column  a0

...
an


appended has corank ≥ dimX (hence = dimX). This is cut out by equations (the
determinants of certain minors). By the Jacobian description of the Zariski tangent
space, this condition encodes the requirement that the Zariski tangent space of
H ∩ X at p has dimension precisely dimX, which is dimH ∩ X + 1 (i.e., H ∩ X is
singular at p) ifH does not contain X, or ifH contains X. This is precisely the notion
that we wished to capture. (Remark 12.4.4 works through an example, which may
help clarify how this works.)

We next show that dimZ ≤ n − 1. For each closed point p ∈ X, let Wp be the
locus of hyperplanes containing p, such thatH∩X is singular at p, or else contains
all of X; what is the dimension of Wp? Suppose dimX = d. Then the restrictions
on the hyperplanes in definition of Wp correspond to d+ 1 linear conditions. (Do
you see why?) This means thatWp is a codimension d+ 1, or dimension n−d− 1,
projective space. Thus the fiber of π : Z → X over each closed point has pure
dimension n − d − 1. By Key Exercise 11.4.A, this implies that dimZ ≤ n − 1. (If
you wish, you can use Exercise 11.4.C to show that dimZ = n − 1, and you can
later show that Z is a projective bundle over X, once you know what a projective
bundle is (Definition 17.2.3). But we don’t need this for the proof.) □
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12.4.4. Remark. Here is an example that may help convince you that the algebra of
paragraph 12.4.3 is describing the geometry we desire. Consider the plane conic
x20− x

2
1− x

2
2 = 0 over a field of characteristic not 2, which you might picture as the

circle x2 + y2 = 1 from the real picture in the chart U0. Consider the point [1, 1, 0],
corresponding to (1, 0) on the circle. We expect the tangent line in the affine plane
to be x = 1, which corresponds to x0 − x1 = 0. Let’s see what the algebra gives us.
The Jacobian matrix (12.1.6.1) is 2x0

−2x1
−2x2

 =

 2

−2
0

 ,
which indeed has rank 1 as expected. Our recipe asks that the matrix 2 a0

−2 a1
0 a2


have rank 1 (i.e., a0 = −a1 and a2 = 0), and also that a0x0 + a1x1 + a2x2 = 0,
which (you should check) is precisely what we wanted.

12.4.A. EXERCISE. Reword the proof of Bertini’s Theorem so as to remove the
k = k hypothesis.

12.4.B. EASY EXERCISE.
(a) Prove Bertini’s Theorem with the weaker hypothesis that X has finitely many
singular points.
(b) Prove Bertini’s Theorem with the weaker hypothesis that X → Pnk is a locally
closed embedding.

12.4.C. EXERCISE. Continue to assume k = k. Show that if X is a projective vari-
ety of dimension n in Pm, then the intersection of X with n general hyperplanes
consists of a finite number of reduced points. More precisely: if Pm∨ is the dual
projective space, then there is a Zariski-open subsetU ⊂ (Pm∨)n such that for each
closed point (H1, . . . , Hn) ofU, the scheme-theoretic intersectionH1 ∩ · · · ∩Hn ∩X
consists of a finite number of reduced points. (The number of such points, counted
correctly, is called the degree of the variety, see Exercise 18.6.N.)

12.4.5. Dual varieties. (We continue to assume k = k for convenience, although
this can be relaxed.) This gives us an excuse to mention a classical construction.
The image of Z (see (12.4.2.1)) in Pn∨ is called the dual variety of X. As dimZ =
n − 1, we “expect” the dual of X to be a hypersurface of Pn∨. It is a nonobvious
fact that this in fact is a duality: the dual of the dual of X is X itself (see [H2,
Thm. 15.24]). The following exercise will give you some sense of the dual variety.

12.4.D. EXERCISE. Show that the dual of a hyperplane in Pn is the corresponding
point of the dual space Pn∨. In this way, the duality between Pn and Pn∨ is a
special case of duality between projective varieties.

12.4.E. EXERCISE. Suppose C ⊂ P2 is a smooth conic over an algebraically closed
field of characteristic not 2. Show that the dual variety to C is also a smooth conic.
Thus for example, through a general point in the plane (if k = k), there are two
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tangents to C. (The points on a line in the dual plane corresponds to those lines
through a point of the original plane.)

12.4.F. ⋆ EXERCISE (THERE IS ONE SMOOTH CONIC TANGENT TO FIVE GENERAL
LINES, AND GENERALIZATIONS). Continuing the notation of the previous prob-
lem, show that the number of smooth conics C containing i generally chosen
points and tangent to 5 − i generally chosen lines is 1, 2, 4, 4, 2, 1 respectively for
i = 0, 1, 2, 3, 4, 5. You might interpret the symmetry of the sequence in terms of the
duality between the conic and the dual conic. This fact was likely known in the
paleolithic era.

12.5 Another (co)dimension one miracle: Discrete valuation rings

The case of (co)dimension 1 is important, because if you understand how
prime ideals behave that are separated by dimension 1, then you can use induc-
tion to prove facts in arbitrary dimension. This is one reason why Krull’s Principal
Ideal Theorem 11.3.3 is so useful.

A dimension 1 Noetherian regular local ring can be thought of as a “germ of
a smooth curve” (see Figure 12.4). Two examples to keep in mind are k[x](x) =
{f(x)/g(x) : x ̸ | g(x)} and Z(5) = {a/b : 5 ̸ | b}. The first example is “geometric”
and the second is “arithmetic”, but hopefully it is clear that they have something
fundamental in common.

FIGURE 12.4. A germ of a curve

The purpose of this section is to give a long series of equivalent definitions of
these rings. Before beginning, we quickly sketch these seven definitions. There
are a number of ways a Noetherian local ring can be “nice”. It can be regular, or a
principal ideal domain, or a unique factorization domain, or normal. In dimension
1, these are the same. Also equivalent are nice properties of ideals: if m is principal;
or if all ideals are either powers of the maximal ideal, or 0. Finally, the ring can
have a discrete valuation, a measure of “size” of elements that behaves particularly
well.

12.5.1. Theorem. — Suppose (A,m) is a Noetherian local ring of dimension 1. Then the
following are equivalent.

(a) (A,m) is regular.
(b) m is principal.

Proof. Here is why (a) implies (b). If A is regular, then m/m2 is one-dimensional.
Choose any element t ∈ m − m2. Then t generates m/m2, so generates m by
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Nakayama’s Lemma 7.2.H (m is finitely generated by the Noetherian hypothesis).
We call such an element a uniformizer.

Conversely, if m is generated by one element t over A, then m/m2 is generated
by one element t overA/m = k. Since dimkm/m

2 ≥ 1 by Theorem 12.2.1, we have
dimkm/m

2 = 1, so (A,m) is regular. □
We will soon use a useful fact, which is geometrically motivated, and is a

special case of an important result, the Artin-Rees Lemma 12.9.3. We will prove it
in §12.9.

12.5.2. Proposition. — If (A,m) is a Noetherian local ring, then ∩imi = 0.

12.5.3. The geometric intuition for this is that any function that is analytically zero
at a point (vanishes to all orders) actually vanishes in an open neighborhood of
that point. (Exercise 12.9.B will make this precise.) The geometric intuition also
suggests an example showing that Noetherianness is necessary: consider the func-
tion e−1/x

2

in the germs of C∞-functions on R at the origin. (In particular, this
implies that the ring of C∞-functions on R, localized at the origin, is not Noether-
ian!)

It is tempting to argue that

(12.5.3.1) m(∩imi) = ∩imi,

and then to use Nakayama’s Lemma 7.2.9 to argue that ∩imi = 0. Unfortunately,
it is not obvious that this first equality is true: product does not commute with
infinite descending intersections in general. (Aside: product also doesn’t commute
with finite intersections in general, as for example k[x, y, z]/(xz − yz), (z)((x) ∩
(y)) ̸= (xz) ∩ (yz).) We will establish Proposition 12.5.2 in Exercise 12.9.A(b). (We
could do it directly right now without too much effort.)

12.5.4. Theorem. — Suppose (A,m) is a Noetherian local ring of dimension 1. Then (a)
and (b) are equivalent to:

(c) all ideals are of the form mn (for n ≥ 0) or (0).

Proof. Assume (a): suppose (A,m, k) is a Noetherian regular local ring of dimen-
sion 1. Then I claim that mn ̸= mn+1 for anyn. Otherwise, by Nakayama’s Lemma,
mn = 0, from which tn = 0. But A is an integral domain (by Theorem 12.2.13), so
t = 0, from which A = A/m is a field, which doesn’t have dimension 1, contradic-
tion.

I next claim that mn/mn+1 is dimension 1. Reason: mn = (tn). So mn is
generated as an a A-module by one element, and mn/(mmn) is generated as a
(A/m = k)-module by 1 element (nonzero by the previous paragraph), so it is a
one-dimensional vector space.

So we have a chain of ideals A ⊃ m ⊃ m2 ⊃ m3 ⊃ · · · with ∩mi = (0)
(Proposition 12.5.2). We want to say that there is no room for any ideal besides
these, because each pair is “separated by dimension 1”, and there is “no room at
the end”. Proof: suppose I ⊂ A is an ideal. If I ̸= (0), then there is some n such that
I ⊂ mn but I ̸⊂ mn+1. Choose some u ∈ I − mn+1. Then (u) ⊂ I. But u generates
mn/mn+1, hence by Nakayama it generates mn, so we have mn ⊂ I ⊂ mn, so we
are done: (c) holds.
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We now show that (c) implies (a). Assume (a) does not hold: suppose we
have a dimension 1 Noetherian local integral domain that is not regular, so m/m2

has dimension at least 2. Choose any u ∈ m − m2. Then (u,m2) is an ideal, but
m2 ⊊ (u,m2) ⊊ m. □

12.5.A. EASY EXERCISE. Suppose (A,m) is a Noetherian dimension 1 local ring.
Show that (a)–(c) above are equivalent to:

(d) A is a principal ideal domain.

12.5.5. Discrete valuation rings. We next define the notion of a discrete valuation
ring. SupposeK is a field. A discrete valuation onK is a surjective homomorphism
v : K× → Z (in particular, v(xy) = v(x) + v(y)) satisfying

v(x+ y) ≥ min(v(x), v(y))

except if x + y = 0 (in which case the left side is undefined). (Such a valuation is
called non-archimedean, although we will not use that term.) It is often convenient
to say v(0) = ∞. More generally, a valuation is a surjective homomorphism v :
K× → G to a totally ordered abelian group G, although this isn’t so important to
us.

Here are three key examples.

(i) (the 5-adic valuation) K = Q, v(r) is the “power of 5 appearing in r”, e.g.,
v(35/2) = 1, v(27/125) = −3.

(ii) K = k(x), v(f) is the “power of x appearing in f.”
(iii) K = k(x), v(f) is the negative of the degree. This is really the same as (ii),

with x replaced by 1/x.

Then 0 ∪ {x ∈ K× : v(x) ≥ 0} is a ring, which we denote Ov. It is called the
valuation ring of v. (Not every valuation is discrete. Consider the ring of Puiseux
series over a field k, K = ∪n≥1k((x1/n)), with v : K× → Q given by v(xq) = q.)

12.5.B. EXERCISE. Describe the valuation rings in the three examples (i)–(iii)
above. (You will notice that they are familiar-looking dimension 1 Noetherian
local rings. What a coincidence!)

12.5.C. EXERCISE. Show that {0}∪{x ∈ K× : v(x) > 0} is the unique maximal ideal
of the valuation ring. (Hint: show that everything in the complement is invertible.)
Thus the valuation ring is a local ring.

An integral domain A is called a discrete valuation ring (or DVR) if there
exists a discrete valuation v on its fraction field K = K(A) for which Ov = A.
Similarly, A is a valuation ring if there exists a valuation v on K for which Ov = A.

Now if A is a Noetherian regular local ring of dimension 1, and t is a uni-
formizer (a generator of m as an ideal, or equivalently of m/m2 as a k-vector space)
then any nonzero element r of A lies in some mn−mn+1, so r = tnuwhere u is in-
vertible (as tn generates mn by Nakayama, and so does r), so K(A) = At = A[1/t].
So any element of K(A)× can be written uniquely as utn where u is invertible and
n ∈ Z. Thus we can define a valuation v by v(utn) = n.

12.5.D. EXERCISE. Show that v is a discrete valuation.
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12.5.E. EXERCISE. Conversely, suppose (A,m) is a discrete valuation ring. Show
that (A,m) is a Noetherian regular local ring of dimension 1. (Hint: Show that the
ideals are all of the form (0) or In = {r ∈ A : v(r) ≥ n}, and (0) and I1 are the only
prime ideals. Thus we have Noetherianness, and dimension 1. Show that I1/I2 is
generated by the image of any element of I1 − I2.)

Hence we have proved:

12.5.6. Theorem. — An integral domain A is a Noetherian local ring of dimension 1
satisfying (a)–(d) if and only if

(e) A is a discrete valuation ring.

12.5.F. EXERCISE. Show that there is only one discrete valuation on a discrete
valuation ring.

12.5.7. Definition. Thus any Noetherian regular local ring of dimension 1 comes
with a unique valuation on its fraction field. If the valuation of an element is n > 0,
we say that the element has a zero of order n. If the valuation is −n < 0, we say
that the element has a pole of order n. We will come back to this shortly, after
dealing with (f) and (g).

12.5.8. Theorem. — Suppose (A,m) is a Noetherian local ring of dimension 1. Then
(a)–(e) are equivalent to:

(f) A is a unique factorization domain, and
(g) A is an integral domain, integrally closed in its fraction field K = K(A).

Proof. (a)–(e) clearly imply (f), because we have the following stupid unique factor-
ization: each nonzero element of A can be written uniquely as utn where n ∈ Z≥0

and u is invertible.
Now (f) implies (g), because unique factorization domains are integrally closed

in their fraction fields (Exercise 5.4.F).
It remains to check that (g) implies (a)–(e). We will show that (g) implies (b).
Suppose (A,m) is a Noetherian local integral domain of dimension 1, inte-

grally closed in its fraction field K = K(A). Choose any nonzero r ∈ m. Then
S = A/(r) is a Noetherian local ring of dimension 0 — its only prime is the image
of m, which we denote n to avoid confusion. Then n is finitely generated, and each
generator is nilpotent (the intersection of all the prime ideals in any ring are the
nilpotents, Theorem 3.2.12). Then nN = 0, where N is sufficiently large. Hence
there is some n such that nn = 0 but nn−1 ̸= 0.

Now comes the crux of the argument. Thus in A, mn ⊂ (r) but mn−1 ̸⊂ (r).
Choose s ∈ mn−1 − (r). Consider s/r ∈ K(A). As s /∈ (r), s/r /∈ A, so as A is
integrally closed, s/r is not integral over A.

Now (inside K(A)) s
r
m ̸⊂ m (or else s

r
m ⊂ m would imply that m is a faithful

A[s
r
]-module, contradicting Exercise 7.2.I). But sm ⊂ mn ⊂ rA, so s

r
m ⊂ A. Thus

s
r
m = A, from which m = r

s
A, so m is principal. □

12.5.9. Geometry of normal Noetherian schemes. We can finally make precise
(and generalize) the fact that the function (x − 2)2x/(x − 3)4 on A1C has a double
zero at x = 2 and a quadruple pole at x = 3. Furthermore, we can say that 75/34
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has a double zero at 5, and a single pole at 2. (What are the zeros and poles of
x3(x + y)/(x2 + xy)3 on A2?) Suppose X is a locally Noetherian scheme. Then for
any regular codimension 1 point p (i.e., any point p where OX,p is a regular local
ring of dimension 1), we have a discrete valuation v. If f is any nonzero element
of the fraction field of OX,p (e.g., if X is integral, and f is a nonzero element of the
function field of X), then if v(f) > 0, we say that the element has a zero of order
v(f) at p, and if v(f) < 0, we say that the element has a pole of order −v(f) at p.
(We are not yet allowed to discuss order of vanishing at a point that is not regular
and codimension 1. One can make a definition, but it doesn’t behave as well as it
does when have you have a discrete valuation.)

12.5.G. EXERCISE (FINITENESS OF ZEROS AND POLES ON NOETHERIAN SCHEMES).
Suppose X is an integral Noetherian scheme, and f ∈ K(X)× is a nonzero element
of its function field. Show that f has a finite number of zeros and poles. (Hint:
reduce to X = SpecA. If f = f1/f2, where fi ∈ A, prove the result for fi.)

Suppose A is a Noetherian integrally closed domain. Then it is regular in
codimension 1 (translation: its points of codimension at most 1 are regular). If A
is dimension 1, then obviously A is regular.

12.5.H. EXERCISE. If f is a nonzero rational function on a locally Noetherian nor-
mal scheme, and f has no poles, show that f is regular. (Hint: Algebraic Hartogs’s
Lemma 11.3.11.)

12.5.10. For example (cf. Exercise 12.3.M), SpecZ[i] is regular, because it is dimen-
sion 1, and Z[i] is a unique factorization domain. Hence Z[i] is normal, so all its
closed (codimension 1) points are regular. Its generic point is also regular, as Z[i]
is an integral domain.

12.5.11. Remark. A (Noetherian) scheme can be singular in codimension 2 and
still be normal. For example, you have shown that the cone x2 + y2 = z2 in A3 in
characteristic not 2 is normal (Exercise 5.4.I(b)), but it is singular at the origin (the
Zariski tangent space is visibly three-dimensional).

But singularities of normal schemes are not so bad in some ways: we have
Algebraic Hartogs’s Lemma 11.3.11 for Noetherian normal schemes, which states
that you can extend functions over codimension 2 sets.

12.5.12. Remark. We know that for Noetherian rings we have implications

unique factorization domain =⇒ integrally closed =⇒ regular in codimension 1.

Hence for locally Noetherian schemes, we have similar implications:

factorial =⇒ normal =⇒ regular in codimension 1.

Here are two examples to show you that these inclusions are strict.

12.5.I. EXERCISE (THE pinched plane). Let A be the subring k[x3, x2, xy, y] of
k[x, y]. (Informally, we allow all polynomials that don’t include a nonzero multiple
of the monomial x.) Show that Speck[x, y]→ SpecA is a normalization. Show that
A is not integrally closed. Show that SpecA is regular in codimension 1. (Hint for
the last part: show it is dimension 2, and when you throw out the origin you get
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something regular, by inverting x2 and y respectively, and considering Ax2 and
Ay.)

12.5.13. Example (the quadric once again). Suppose k is algebraically closed of
characteristic not 2. Then k[w, x, y, z]/(wz − xy) is integrally closed, but not a
unique factorization domain, see Exercise 5.4.L (and Exercise 12.1.E).

12.5.14. Important remark: Finitely generated modules over a discrete valuation ring.
We record a useful fact for future reference. Recall that finitely generated modules
over a principal ideal domain are finite direct sums of cyclic modules (see for ex-
ample [DF, §12.1, Thm. 5]). Hence any finitely generated module over a discrete
valuation ring A with uniformizer t is a finite direct sum of terms A and A/(tr)
(for various r). See Proposition 13.7.3 for an immediate consequence.

12.5.15. Aside: Dedekind domains. A Dedekind domain is a Noetherian integral
domain of dimension at most one that is normal (integrally closed in its fraction
field). The localization of a Dedekind domain at any prime but (0) (i.e., a codimen-
sion one prime) is hence a discrete valuation ring. This is an important notion, but
we won’t use it much. Rings of integers of number fields are examples, see §9.7.1.
In particular, if n is a square-free integer congruent to 3 (mod 4), then Z[

√
n] is a

Dedekind domain, by Exercise 5.4.I(a). If you wish you can prove unique factoriza-
tion of ideals in a Dedekind domain: any nonzero ideal in a Dedekind domain can be
uniquely factored into prime ideals.

12.6 Smooth (and étale) morphisms (first definition)

In §12.2.5, we defined smoothness over a field. It is an imperfect definition
(see §12.2.7), and we will improve it when we know more (in §21.3.1).

We know enough to define smooth morphisms (and, as a special case, étale mor-
phisms) in general. Our definition will be imperfect in a number of ways. For ex-
ample, it will look a little surprising. As another sign, it will not be obvious that it
actually generalizes smoothness over a field. As a third sign, like Definition 12.2.6,
because it is of the form “there exist open covers satisfying some property”, it is
poorly designed to be used to show that some morphism is not smooth. But it
has a major advantage that we can give the definition right now, and the basic
properties of smooth morphisms will be straightforward to show.

12.6.1. Differential geometric motivation. The notion of a smooth morphism is mo-
tivated by the following idea from differential geometry. For the purposes of this
discussion, we say a map π : X → Y of real manifolds (or real analytic spaces, or
any variant thereof) is smooth of relative dimension n if locally (on X) it looks like
Y ′ × Rn → Y ′. Translation: it is “locally on the source a smooth fibration”. (If you
have not heard the word fibration before, don’t worry. Informally speaking, a fibra-
tion in some “category of geometric objects” is a map π : X→ Y that locally on the
source is a product V ×W → V ; in some sort of category of real manifolds, a fibra-
tion is a “locally on the source a smooth fibration” if theW in the local description
can be taken to be Ra for some a.)
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In particular, “smooth of relative dimension 0” is the same as the important
notion of “local isomorphism” (“isomorphism locally on the source” — not quite
the same as “covering space”). Carrying this idea too naively into algebraic geom-
etry leads to the “wrong” definition (see Exercise 12.6.F). An explanation of how
this differential geometric intuition leads to a good definition of smoothness will
be given in §25.1, when we will be ready to give a good definition of smoothness.
For now we will settle for a satisfactory (and correct) definition.

12.6.2. Definition. A morphism π : X → Y is smooth of relative dimension n if
there exist open covers {Ui} of X and {Vi} of Y, with π(Ui) ⊂ Vi, such that for every
i we have a commutative diagram

Ui

π|Ui

��

∼ // W

ρ|W

��
Vi

∼ // SpecB

where there is a morphism ρ : SpecB[x1, . . . , xn+r]/(f1, . . . , fr)→ SpecB (induced
by the obvious map of rings in the opposite direction), and W is an open sub-
scheme of SpecB[x1, . . . , xn+r]/(f1, . . . , fr), such that the determinant of the Jaco-
bian matrix of the fi’s with respect to the first r xi’s,

(12.6.2.1) det
(
∂fj

∂xi

)
i,j≤r

,

is an invertible (= nowhere zero) function onW.
Étale means smooth of relative dimension 0.

12.6.3. Quick observations. From the definition, smooth morphisms are locally of
finite presentation (hence locally of finite type). Also, AnB → SpecB is immediately
seen to be smooth of relative dimension n. From the definition, the locus on X
where π is smooth of relative dimension n is open. In particular, the locus where
π is étale is open.

As easy examples, open embeddings are étale, and the projection An × Y → Y

is smooth of relative dimension n. You may already have some sense of what
makes this definition imperfect. For example, how do you know a morphism is
smooth if it isn’t given to you in a form where the “right” variables xi and “right”
equations are clear?

12.6.A. MOTIVATING EXERCISE (FOR THOSE WITH DIFFERENTIAL-GEOMETRIC BACK-
GROUND). Show how Definition 12.6.2 gives the definition in differential geome-
try, as described in §12.6.1. (Your argument will use the implicit function theorem,
which “doesn’t work” in algebraic geometry, see Exercise 12.6.F.)

12.6.B. EXERCISE. Show that the notion of smoothness of relative dimension n is
local on both the source and target.

We can thus make sense of the phrase “π : X → Y is smooth of relative dimen-
sion n at p ∈ X”: it means that there is an open neighborhood U of p such that π|U
is smooth of relative dimension n.

The phrase smooth morphism (without reference to relative dimension n)
often informally means “smooth morphism of some relative dimension n”, but
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sometimes can mean “smooth of some relative dimension in the neighborhood of
every point”.

12.6.C. EASY EXERCISE. Show that the notion of smoothness of relative dimension
n is preserved by base change.

12.6.D. EXERCISE. Suppose π : X → Y is smooth of relative dimension m and
ρ : Y → Z is smooth of relative dimension n. Show that ρ ◦ π is smooth of rela-
tive dimension m + n. (In particular, the composition of étale morphisms is étale.
Furthermore, this implies that smooth morphisms are closed under product, by
Exercise 9.4.F.)

Exercises 12.6.B–12.6.D imply that smooth morphisms (and étale morphisms)
form a “reasonable” class in the sense of §7.1.1.

12.6.E. EXERCISE. Suppose π : X → Y is smooth of relative dimension n. Show
that locally on X, π can be described as an étale cover of AnY . More precisely, show
that for every p ∈ X, there is an open neighborhood U of p, such that π|U can be
factored into

U
α // AnY

β // Y

where α is étale and β is the obvious projection.

12.6.F. EXERCISE. Suppose k is a field of characteristic not 2. Let Y = Speck[t],
and X = Speck[u, 1/u]. Show that the morphism π : X → Y induced by t 7→ u2 is
étale. (Sketch π!) Show that there is no nonempty open subsetU of X on which π is
an isomorphism. (This shows that étale cannot be defined as “local isomorphism”,
i.e., “isomorphism locally on the source”. In particular, the naive extension of the
differential intuition of §12.6.1 does not give the right definition of étaleness in
algebraic geometry.)

We now show that our new Definition 12.6.2 specializes to Definition 12.2.6
when the target is a field. This is the hardest fact in this section. (It is also a
consequence of Theorem 25.2.2, so you could skip the proof of Theorem 12.6.4 and
take it on faith until Chapter 25. The crux of the proof of Theorem 25.2.2 is similar
to the crux of the proof of Theorem 12.6.4.)

12.6.4. Theorem. — Suppose X is a k-scheme. Then the following are equivalent.
(i) X is smooth of relative dimension n over Speck (Definition 12.6.2).

(ii) X has pure dimension n, and is smooth over k (in the sense of Definition 12.2.6).
This allows us to use the phrases “smooth over k” and “smooth over Speck”

interchangeably, as we would expect. More generally, “smooth over a ring A”
means “smooth over SpecA”.

⋆ Proof. (i) implies (ii). Suppose X is smooth of relative dimension n over Spec k
(Definition 12.6.2). We will show that X has pure dimension n, and is smooth over
k (Definition 12.2.6). Our goal is a Zariski-local statement, so we may assume that
X is an open subset

W ⊂ Spec k[x1, . . . , xn+r]/(f1, . . . , fr)

as described in Definition 12.6.2.
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The central issue is showing that X has “pure dimension n”, as the latter half
of the statement would then follow because the corank of the Jacobian matrix is
then n.

LetXk := X×kk. By Exercise 11.1.G,Xk is pure dimensionn if and only ifX has
pure dimension n. Let p be a closed point of the (finite type scheme) Xk. Then X
has dimension at least n at p, by Krull’s Principal Ideal Theorem 11.3.3, combined
with Theorem 11.2.9 (codimension is the difference of dimensions for varieties).
But the Zariski tangent space at a closed point of a finite type scheme over k is
cut out by the Jacobian matrix (Exercise 12.1.G), and thus has dimension exactly n
(by the corank hypothesis in the definition of k-smooth). As the dimension of the
Zariski tangent space bounds the dimension of the scheme (Theorem 12.2.1), Xk
has pure dimension n as desired.

(ii) implies (i). We will prove the result near any given closed point p of X.
(Here we use that any union of open neighborhoods of all the closed points is all
of X, by Exercise 5.1.E.) We thus may reduce to the following problem. Suppose we
are given X := Spec k[x1, . . . , xn+r]/(f1, . . . , fN), and a point p ∈ X, and an open
neighborhoodU of p in X such thatU is pure dimension n, and the Jacobian matrix
of the fj’s with respect to the xi’s has corank n everywhere onU. We wish to show
that the structure morphism π : X → Spec k is smooth of relative dimension n at
p (in the sense of Definition 12.6.2). At p, there exists an r × r submatrix of the
Jacobian matrix that is invertible (by the corank condition). Rearrange the xi’s and
fj’s so that the Jacobian of the first r of the fj’s with respect to the first r of the xi’s
has nonzero determinant. Let I = (f1, . . . , fN). We will show that I = (f1, . . . , fr)
“near p”, or more precisely, that there is some g ∈ k[x1, . . . , xn+r] with g(p) ̸= 0

such that Ig = (f1, . . . , fr)g (so I = (f1, . . . , fr) “in D(g)”).
Choose a point p ∈ Xk above p, i.e., such that if ψ is the morphism Xk → X

induced by Spec k→ Spec k, thenψ(p) = p. (Why does such a p exist?) Now Xk is
k-smooth (in the sense of Definition 12.2.6, by Exercise 12.2.G) at p, hence regular
(Exercise 12.2.I). Its Zariski tangent space at p is cut out in the tangent space of
An+r
k

by the Jacobian conditions (Exercise 12.1.G), and hence cut out by f1, . . . , fr.

12.6.G. EXERCISE. Suppose m is the ideal of k[x1, . . . , xn+r] corresponding to p.
Show that f1, . . . , fr generate the ideal (f1, . . . , fN) in k[x1, . . . , xn+r]m. Hint: look
at your argument for Exercise 12.2.L(a).

For notational compactness, define A := k[x1, . . . , xn+r]/(f1, . . . , fr), and A :=

k[x1, . . . , xn+r]/(f1, . . . , fr) = A ⊗k k. Let I (resp. I) be the ideal of A (resp. A)
generated by fr+1, . . . , fN (so I = I ⊗k k). We wish to show that I = 0 “near p”.
Here p = [m], where m is a maximal ideal (recall p is a closed point).

Exercise 12.6.G means that Im = 0, so taking the quotient by the maximal ideal
m of A yields

I⊗A (A/m) = 0

which implies

(I⊗A (A/m))⊗A/m (A/m) = 0.

But k = A/m is a field extension of ℓ := A/m, and an ℓ-vector space V is 0 if (and
only if) V ⊗ℓ k = 0, so I⊗A (A/m) = 0, i.e., Im/mIm = 0.
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12.6.H. EXERCISE. Conclude that there is some g ∈ A \ m such that gI = 0. Hint:
Nakayama, and the finite generation of I. (Be sure you understand why the proof
is now complete.)

□

12.7 ⋆ Valuative criteria for separatedness and properness

(The only reason this section is placed here is that we need the theory of dis-
crete valuation rings.)

In reasonable circumstances, it is possible to verify separatedness by checking
only maps from spectra of valuations rings. There are four reasons you might like
this (even if you never use it). First, it gives useful intuition for what separated
morphisms look like. Second, given that we understand schemes by maps to them
(the Yoneda philosophy), we might expect to understand morphisms by mapping
certain maps of schemes to them, and this is how you can interpret the diagram
appearing in the valuative criterion. And the third concrete reason is that one of
the two directions in the statement is much easier (a special case of the Reduced-
to-Separated Theorem 10.2.2, see Exercise 12.7.A), and this is the direction we will
repeatedly use. Finally, the criterion is very useful!

Similarly, there is a valuative criterion for properness.
In this section, we will meet the valuative criteria, but aside from outlining the

proof of one result (the DVR version of the valuative criterion of separatedness),
we will not give proofs, and satisfy ourselves with references. There are two rea-
sons for this controversial decision. First, the proofs require the development of
some commutative algebra involving valuation rings that we will not otherwise
need. Second, we will not use these results in any essential way later in this book.

We begin with a valuative criterion for separatedness that applies in a case
that will suffice for the interests of most people, that of finite type morphisms of
Noetherian schemes. We will then give a more general version for more general
readers.

12.7.1. Theorem (Valuative criterion for separatedness, DVR version). — Sup-
pose π : X → Y is a morphism of finite type of locally Noetherian schemes. Then π is
separated if and only if the following condition holds: for any discrete valuation ring A,
and any diagram of the form

(12.7.1.1) SpecK(A)� _

open emb.
��

// X

π

��
SpecA // Y
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(where the vertical morphism on the left corresponds to the inclusion A ↪→ K(A)), there is
at most one morphism SpecA→ X such that the diagram

(12.7.1.2) SpecK(A) //
� _

open emb.
��

X

π

��
SpecA

≤1

;;

// Y

commutes.

The idea behind the proof is explained in §12.7.3. We can show one direction
right away, in the next exercise.

12.7.A. EXERCISE (THE EASY DIRECTION). Use the Reduced-to-Separated Theo-
rem 10.2.2 to prove one direction of the theorem: that if π is separated, then the
valuative criterion holds.

12.7.B. EXERCISE. Suppose X is an irreducible Noetherian separated curve. If
p ∈ X is a regular closed point, then OX,p is a discrete valuation ring, so each
regular point yields a discrete valuation on K(X). Use the previous exercise to
show that distinct points yield distinct discrete valuations.

Here is the intuition behind the valuative criterion (see Figure 12.5). We think
of Spec of a discrete valuation ring A as a “germ of a curve”, and SpecK(A) as
the “germ minus the origin” (even though it is just a point!). Then the valuative
criterion says that if we have a map from a germ of a curve to Y, and have a lift of
the map away from the origin to X, then there is at most one way to lift the map
from the entire germ. In the case where Y is the spectrum of a field, you can think
of this as saying that limits of one-parameter families are unique (if they exist).

?

FIGURE 12.5. The valuative criterion for separatedness

For example, this captures the idea of what is wrong with the map of the line
with the doubled origin over k (Figure 12.6): we take SpecA to be the germ of the
affine line at the origin, and consider the map of the germ minus the origin to the
line with doubled origin. Then we have two choices for how the map can extend
over the origin.
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FIGURE 12.6. The line with the doubled origin fails the valuative
criterion for separatedness. (You may notice Figure 10.4 embed-
ded in this diagram.)

12.7.C. EXERCISE. Make this precise: show that map of the line with doubled
origin over k to Speck fails the valuative criterion for separatedness. (Earlier argu-
ments were given in Exercises 10.1.D and 10.2.C.)

12.7.2. ⋆⋆ Remark for experts: moduli spaces and the valuative criterion for separatedness.
If Y = Speck, and X is a (fine) moduli space (a term we won’t define here) of some
type of object, then the question of the separatedness of X (over Spec k) has a nat-
ural interpretation: given a family of your objects parametrized by a “punctured
discrete valuation ring”, is there always at most one way of extending it over the
closed point?

12.7.3. Idea behind the proof of Theorem 12.7.1 (the valuative criterion for separatedness,
DVR version). (One direction was done in Exercise 12.7.A.) If π is not separated,
our goal is to produce a diagram (12.7.1.1) that can be completed to (12.7.1.2) in
more than one way. If π is not separated, then δ : X → X ×Y X is a locally closed
embedding that is not a closed embedding.

12.7.D. EXERCISE. Show that you can find points p not in the diagonal ∆ of X×Y X
and q in ∆ such that p ∈ q, and there are no points “between p and q” (no points r
distinct from p and q with p ∈ r and r ∈ q). (Exercise 7.4.C may shed some light.)

LetQ be the scheme obtained by giving the induced reduced subscheme struc-
ture to q. Let B = OQ,p be the local ring of Q at p.

12.7.E. EXERCISE. Show that B is a Noetherian local integral domain of dimension
1.

If Bwere regular, then we would be done: composing the inclusion morphism
Q → X ×Y X with the two projections induces the same morphism q → X (i.e.,
Spec κ(q)→ X) but different extensions to B precisely because p is not in the diag-
onal. To complete the proof, one shows that the normalization of B is Noetherian;
then localizing at any prime above p (there is one by the Lying Over Theorem 7.2.5)
yields the desired discrete valuation ring A.

For an actual proof, see [Stacks, tag 0207] or [Gr-EGA, II.72.3].
With a more powerful invocation of commutative algebra, we can prove a

valuative criterion with much less restrictive hypotheses.
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12.7.4. Theorem (Valuative criterion for separatedness). — Suppose π : X→ Y is a
quasiseparated morphism. Then π is separated if and only if for any valuation ringA with
function field K, and any diagram of the form (12.7.1.1), there is at most one morphism
SpecA→ X such that the diagram (12.7.1.2) commutes.

Because I have already failed to completely prove the DVR version, I feel no
urge to prove this harder fact. The proof of one direction, that π separated implies
that the criterion holds, follows from the identical argument as in Exercise 12.7.A.
For a complete proof, see [Stacks, tags 01KY and 01KZ] or [Gr-EGA, II.7.2.3].

12.7.5. Valuative criteria for (universal closedness and) properness.
There is a valuative criterion for properness too. It is philosophically useful,

and sometimes directly useful, although we won’t need it. It naturally comes from
the valuative criterion for separatedness combined with a valuative criterion for
universal closedness.

12.7.6. Theorem (Valuative criterion for universal closedness and properness,
DVR version). — Suppose π : X→ Y is a morphism of finite type of locally Noetherian
schemes. Then π is universally closed (resp. proper) if and only if for any discrete valuation
ring A and any diagram (12.7.1.1), there is at least one (resp. exactly one) morphism
SpecA→ X such that the diagram (12.7.1.2) commutes.

See [Gr-EGA, II.7.3.8], [Ha1, Thm. II.4.7], or [Gr-EGA’, I.5.5] for proofs. A com-
parison with Theorem 12.7.1 will convince you that these three criteria naturally
form a family.

In the case where Y is a field, you can think of the valuative criterion of proper-
ness as saying that limits of one-parameter families in proper varieties always ex-
ist, and are unique. This is a useful intuition for the notion of properness.

12.7.F. EASY EXERCISE. Use the valuative criterion for properness to prove that
PnA → SpecA is proper if A is Noetherian. (Don’t be fooled: Because this requires
the valuative criterion, this is a difficult way to prove a fact that we already showed
in Theorem 10.3.5.)

12.7.G. EXERCISE (CF. EXERCISE 12.7.B). Suppose X is an irreducible regular (Noe-
therian) curve, proper over a field k (respectively, over Z). Describe a bijection
between the discrete valuations on K(X) for which the elements of k (respectively
Z) have valuation 0, and the closed points of X.

12.7.7. Remarks for experts. There is a moduli-theoretic interpretation similar to
that for separatedness (Remark 12.7.2): X is proper if and only if there is always
precisely one way of filling in a family over a punctured spectrum of a discrete
valuation ring.

12.7.8. Finally, here is a fancier version of the valuative criterion for universal
closedness and properness.

12.7.9. Theorem (Valuative criterion for universal closedness and properness).
— Suppose π : X → Y is a quasiseparated, finite type (hence quasicompact) morphism.
Then π is universally closed (resp. proper) if and only if the following condition holds. For
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any valuation ring A and any diagram of the form (12.7.1.1), there is at least one (resp.
exactly one) morphism SpecA→ X such that the diagram (12.7.1.2) commutes.

Clearly the valuative criterion for properness is a consequence of the valua-
tive criterion for separatedness (Theorem 12.7.4) and the valuative criterion for
universal closedness. For proofs, see [Stacks, tag 01KF] or [Gr-EGA, II.7.3.8].

12.7.10. On the importance of valuation rings in general. Although we have
only discussed discrete valuation rings in depth, general valuation rings should
not be thought of as an afterthought. Serre makes the case to Grothendieck in a
letter, [GrS, p. 125]:

Tu es bien sévère pour les Valuations! Je persiste pourtant à les garder, pour plusieurs
raisons: d’abord une pratique: n rédacteurs ont sué dessus, il n’y a rien à reprocher au
fourbi, on ne doit pas le vider sans raisons très sérieuses (et tu n’en as pas). . . . Même
un noethérien impénitent a besoin des valuations discrètes, et de leurs extension; en fait,
Tate, Dwork, et tous les gen p-adiques te diront qu’on ne peut se limiter au cas discret
et que le cas de rang 1 est indispensable; à ce moment, les méthodes noethériennes devi-
ennent un vrai carcan, et on comprend beaucoup mieux en rédigeant le cas général que
uniquement le cas de rang 1. . . . Il n’y a pas lieu d’en faire un plat, bien sûr, et c’est
pourquoi j’avias vivement combattu le plan Weil initial qui en faisait le théorème central
de l’Algèbre Commutative, mais d’autre part il faut le garder.

You are very harsh on Valuations! I persist nonetheless in keeping them, for several
reasons, of which the first is practical: n people have sweated over them, there is nothing
wrong with the result, and it should not be thrown out without very serious reasons (which
you do not have). . . . Even an unrepentant Noetherian needs discrete valuations and their
extensions; in fact, Tate, Dwork and all the p-adic people will tell you that one cannot
restrict oneself to the discrete case and the rank 1 case is indispensable; Noetherian methods
then become a burden, and one understands much better if one considers the general case
and not only the rank 1 case. . . . It is not worth making a mountain out of it, of course,
which is why I energetically fought Weil’s original plan to make it the central theorem of
Commutative Algebra, but on the other hand it must be kept.

12.8 ⋆ More sophisticated facts about regular local rings

Regular local rings have essentially every good property you could want, but
some of them require hard work. We now discuss a few fancier facts that may help
you sleep well at night.

12.8.1. Localizations of regular local rings are regular local rings.

12.8.2. Fact ([E, Cor. 19.14], [Mat2, Thm. 19.3]). — If (A,m) is a regular local ring,
then any localization of A at a prime is also a regular local ring.

(We will not need this, and hence will not prove it.) This major theorem was
an open problem in commutative algebra for a long time until settled by Serre and
Auslander-Buchsbaum using homological methods.
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Hence to check if SpecA is regular (ANoetherian), it suffices to check at closed
points (at maximal ideals). Assuming Fact 12.8.2 (and using Exercise 5.1.E), you
can check regularity of a Noetherian scheme by checking at closed points.

We will prove two important cases of Fact 12.8.2. The first you can do right
now.

12.8.A. EXERCISE. Suppose X is a Noetherian dimension 1 scheme that is regu-
lar at its closed points. Show that X is reduced. Hence show (without invoking
Fact 12.8.2) that X is regular.

The second important case will be proved in §21.3.12:

12.8.3. Theorem. — If X is a finite type scheme over a perfect field k that is regular at its
closed points, then X is regular.

More generally, Exercise 21.3.G will show that Fact 12.8.2 holds if A is the
localization of a finite type algebra over a perfect field.

12.8.B. EXERCISE (GENERALIZING EXERCISE 12.3.E). Suppose k is an algebraically
closed field of characteristic 0. Assuming Theorem 12.8.3, show that there exists a
regular hypersurface of every positive degree d in Pn. (As in Exercise 12.3.E, feel
free to weaken the hypotheses.)

12.8.4. Regular local rings are unique factorization domains, integrally closed,
and Cohen-Macaulay.

12.8.5. Fact (Auslander-Buchsbaum Theorem). — Regular local rings are unique
factorization domains.

(This is a hard theorem, so we will not prove it, and will therefore not use it.
For a proof, see [E, Thm. 19.19], [Mat2, Thm. 20.3] or [Gr-EGA, IV4.21.11.1], or
[Mu7, §III.7] in the special case of varieties.) Thus regular schemes are factorial,
and hence normal by Exercise 5.4.F.

12.8.6. Remark: Factoriality is weaker than regularity. The implication “regular im-
plies factorial” is strict. Here is an example showing this. Suppose k is an alge-
braically closed field of characteristic not 2. LetA = k[x1, . . . , xn]/(x

2
1+· · ·+x2n) (cf.

Exercise 5.4.I). Note that SpecA is clearly singular at the origin. In Exercise 14.2.V,
we will show that A is a unique factorization domain when n ≥ 5, so SpecA
is factorial. In particular, A(x1,...,xn) is a Noetherian local ring that is a unique
factorization domain, but not regular. (More generally, it is a consequence of
Grothendieck’s proof of a conjecture of P. Samuel that a Noetherian local ring that
is a complete intersection — in particular a hypersurface — that is factorial in codi-
mension at most 3 must be factorial, [SGA2, Exp. XI, Cor. 3.14]. For a shorter and
somewhat more elementary proof, see [CL].)

12.8.7. Regular local rings are integrally closed. The Auslander-Buchsbaum Theorem
(Fact 12.8.5) implies that regular local rings are integrally closed (by Exercise 5.4.F).
We will prove this (without appealing to Fact 12.8.5) in the most important geomet-
ric cases in §26.3.5.
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12.8.8. Regular local rings are Cohen-Macaulay. In §26.2.5, we will show that regular
local rings are Cohen-Macaulay (a notion defined in Chapter 26).

12.9 ⋆ Filtered rings and modules, and the Artin-Rees Lemma

We conclude Chapter 12 by discussing the Artin-Rees Lemma 12.9.3, which
was used to prove Proposition 12.5.2. The Artin-Rees Lemma generalizes the in-
tuition behind Proposition 12.5.2, that any function that is analytically zero at a
point actually vanishes in an open neighborhood of that point (§12.5.3). Because
we will use it later (proving the Cohomology and Base Change Theorem 28.1.6),
and because it is useful to recognize it in other contexts, we discuss it in some
detail.

12.9.1. Definitions. Suppose I is an ideal of a ring A. A descending filtration of an
A-moduleM

(12.9.1.1) M =M0 ⊃M1 ⊃M2 ⊃ · · ·

is called an I-filtration if IdMn ⊂Mn+d for all d, n ≥ 0. An example is the I-adic
filtration where Mk = IkM. We say an I-filtration is I-stable if for some s and all
d ≥ 0, IdMs =Md+s. For example, the I-adic filtration is I-stable.

Let A•(I) be the graded ring ⊕n≥0In. This is called the Rees algebra of the
ideal I in A, although we will not need this terminology. DefineM•(I) := ⊕Mn. It
is naturally a graded module over A•(I).

12.9.2. Proposition. If A is Noetherian, M is a finitely generated A-module, and
(12.9.1.1) is an I-filtration, thenM•(I) is a finitely generated A•(I)-module if and only if
the filtration (12.9.1.1) is I-stable.

Proof. Note that A•(I) is Noetherian (by Exercise 4.5.D(b), as A is Noetherian, and
I is a finitely generated A-module).

Assume first that M•(I) is finitely generated over the Noetherian ring A•(I),
and hence Noetherian. Consider the increasing chain of A•(I)-submodules whose
kth element Lk is

M⊕M1 ⊕M2 ⊕ · · · ⊕Mk ⊕ IMk ⊕ I2Mk ⊕ · · ·

(which agrees with M•(I) up until Mk, and then “I-stabilizes”). This chain must
stabilize by Noetherianness. But ∪Lk = M•(I), so for some s ∈ Z≥0, Ls = M•(I),
so IdMs =Ms+d for all d ≥ 0— (12.9.1.1) is I-stable.

For the other direction, assume that Md+s = I
dMs for a fixed s and all d ≥ 0.

ThenM•(I) is generated over A•(I) byM⊕M1⊕ · · · ⊕Ms. But eachMj is finitely
generated, soM•(I) is indeed a finitely generated A•(I)-module. □

12.9.3. Artin-Rees Lemma. — Suppose A is a Noetherian ring, and (12.9.1.1) is an I-
stable filtration of a finitely generated A-module M. Suppose that L ⊂M is a submodule,
and let Ln := L ∩Mn. Then

L = L0 ⊃ L1 ⊃ L2 ⊃ · · ·

is an I-stable filtration of L.
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Proof. Note that L• is an I-filtration, as ILn ⊂ IL ∩ IMn ⊂ L ∩Mn+1 = Ln+1. Also,
L•(I) is an A•(I)-submodule of the finitely generated A•(I)-module M•(I), and
hence finitely generated by Exercise 3.6.X (as A•(I) is Noetherian, see the proof of
Proposition 12.9.2). □

An important special case is the following.

12.9.4. Corollary. — Suppose I ⊂ A is an ideal of a Noetherian ring, andM is a finitely
generated A-module, and L is a submodule. Then for some integer s, Id(L ∩ IsM) =
L ∩ Id+sM for all d ≥ 0.

Warning: it need not be true that IdL = L ∩ IdM for all d. (Can you think of a
counterexample to this statement?)

Proof. Apply the Artin-Rees Lemma 12.9.3 to the filtrationMn = InM. □

12.9.A. EXERCISE (KRULL INTERSECTION THEOREM).
(a) Suppose I is an ideal of a Noetherian ring A, and M is a finitely generated A-
module. Show that there is some a ≡ 1 (mod I) such that a ∩∞j=1 IjM = 0. Hint:
Apply the Artin-Rees Lemma 12.9.3 with L = ∩∞j=1IjM andMn = InM. Show that
L = IL, and apply the first version of Nakayama (Lemma 7.2.8).
(b) Show that if A is a Noetherian integral domain or a Noetherian local ring, and
I is a proper ideal, then ∩∞j=1Ij = 0. In particular, you will have proved Proposi-
tion 12.5.2: if (A,m) is a Noetherian local ring, then ∩imi = 0.

12.9.B. EXERCISE. Make the following precise, and prove it (thereby justifying
the intuition in §12.5.3): if X is a locally Noetherian scheme, and f is a function
on X that is analytically zero at a point p ∈ X, then f vanishes in a (Zariski) open
neighborhood of p.
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CHAPTER 13

Quasicoherent and coherent sheaves

Quasicoherent and coherent sheaves generalize the notion of a vector bundle.
To motivate them, we first discuss vector bundles, and their interpretation as lo-
cally free sheaves.

Speaking very informally, a vector bundle V on a geometric space X (such as
a manifold) is a family of vector spaces continuously parametrized by points of
X. In other words, for each point p of X, there is a vector space, and these vector
spaces are glued into a space V so that, as p varies, the vector space above p varies
continuously. Nontrivial examples to keep in mind are the tangent bundle to a
manifold, and the Möbius strip over a circle (interpreted as a line bundle). We
will make this somewhat more precise in §13.1, but if you have not seen this idea
before, you shouldn’t be concerned; the main thing we will use this notion for is
motivation.

A free sheaf on a ringed space X is an OX-module isomorphic to O⊕I
X where

the sum is over some index set I. A locally free sheaf on a ringed space X is an
OX-module locally isomorphic to a free sheaf. This corresponds to the notion of
a vector bundle (§13.1). Quasicoherent sheaves form a convenient abelian cate-
gory containing the locally free sheaves that is much smaller than the full category
of O-modules. Quasicoherent sheaves generalize free sheaves in much the way
that modules generalize free modules. Coherent sheaves are, roughly speaking, a
finite rank version of quasicoherent sheaves, which form a well-behaved abelian
category containing finite rank locally free sheaves (or equivalently, finite rank vec-
tor bundles). Just as the notion of free modules leads us to the notion of modules
in general, and finitely generated modules, the notion of free sheaves will lead us
inevitably to the notion of quasicoherent sheaves and coherent sheaves. (There is
a slight fib in comparing finitely generated modules to coherent sheaves, as you
will find out in §13.6.)

13.1 Vector bundles and locally free sheaves

We recall somewhat more precisely the notion of vector bundles on manifolds.
Arithmetically-minded readers shouldn’t tune out: for example, fractional ideals
of the ring of integers in a number field (defined in §9.7.1) turn out to be an exam-
ple of a “line bundle on a smooth curve” (Exercise 13.1.M).

A rank n vector bundle on a manifold M is a map π : V →M with the struc-
ture of an n-dimensional real vector space on π−1(x) for each point x ∈ M, such
that for every x ∈M, there is an open neighborhood U and a homeomorphism

ϕ : U× Rn → π−1(U)

369
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over U (so that the diagram

(13.1.0.1) π−1(U)

π|
π−1(U) ##F

FF
FF

FF
FF
oo ∼= // U× Rn

projection to first factor
{{xxx

xx
xx
xx
x

U

commutes) that is an isomorphism of vector spaces over each x ∈ U. An isomor-
phism (13.1.0.1) is called a trivialization over U.

We call n the rank of the vector bundle. A rank 1 vector bundle is called a
line bundle. (It can also be convenient to be agnostic about the rank of the vector
bundle, so it can have different ranks on different connected components. It is also
sometimes convenient to consider infinite-rank vector bundles.)

13.1.1. Transition functions. Given trivializations over U1 and U2, over their
intersection, the two trivializations must be related by an element T12 of GLn with
entries consisting of functions onU1∩U2. If {Ui} is a cover ofM, and we are given
trivializations over each Ui, then the {Tij} must satisfy the cocycle condition:

(13.1.1.1) Tjk|Ui∩Uj∩Uk
◦ Tij|Ui∩Uj∩Uk

= Tik|Ui∩Uj∩UK
.

(This implies Tij = T−1ji .) The data of the Tij are called transition functions (or
transition matrices) for the trivialization.

This is reversible: given the data of a cover {Ui} and transition functions Tij,
we can recover the vector bundle (up to unique isomorphism) by “gluing together
the various Ui × Rn along Ui ∩Uj using Tij”.

13.1.2. The sheaf of sections. Fix a rank n vector bundle V → M. The sheaf of
sections F of V (Exercise 2.2.G) is an OM-module — given any open setU, we can
multiply a section over U by a function on U and get another section.

Moreover, given a trivialization over U, the sections over U are naturally iden-
tified with n-tuples of functions of U.

U× Rn

π

��
U

n-tuple of functions

VV

Thus given a trivialization, over each open set Ui, we have an isomorphism
F |Ui

∼= O⊕n
Ui

. We say that such an F is a locally free sheaf of rank n. (A sheaf F

is free of rank n, or sometimes trivial of rank n, if F ∼= O⊕n.)

13.1.3. Transition functions for the sheaf of sections. Suppose we have a vector
bundle on M, along with a trivialization over an open cover Ui. Suppose we
have a section of the vector bundle over M. (This discussion will apply with M
replaced by any open subset.) Then over each Ui, the section corresponds to an
n-tuple functions over Ui, say s⃗i.

13.1.A. EXERCISE. Show that overUi∩Uj, the vector-valued function s⃗i is related
to s⃗j by the (same) transition functions: Tijs⃗i = s⃗j. (Don’t do this too quickly —
make sure your i’s and j’s are on the correct side.)
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Given a locally free sheaf F with rankn, and a trivializing open neighborhood
of F (an open cover {Ui} such that over each Ui, F |Ui

∼= O⊕n
Ui

as O-modules), we
have transition functions Tij ∈ GLn(O(Ui ∩ Uj)) satisfying the cocycle condition
(13.1.1.1). Thus the data of a locally free sheaf of rank n is equivalent to the data of
a vector bundle of rank n. This change of perspective is useful, and is similar to
an earlier change of perspective when we introduced ringed spaces: understand-
ing spaces is the same as understanding (sheaves of) functions on the spaces, and
understanding vector bundles (a type of “space over M”) is the same as under-
standing functions.

13.1.4. Definition. A rank 1 locally free sheaf is called an invertible sheaf. (Unim-
portant aside: “invertible sheaf” is a heinous term for something that is essentially
a line bundle. The motivation is that if X is a locally ringed space, and F and G are
OX-modules with F⊗OX

G ∼= OX, then F and G are invertible sheaves [MO33489].
Thus in the monoid of OX-modules under tensor product, invertible sheaves are
the invertible elements. We will never use this fact. People often informally use
the phrase “line bundle” when they mean “invertible sheaf”. The phrase line sheaf
has been proposed but has not caught on.)

13.1.5. Locally free sheaves on schemes.
We can generalize the notion of locally free sheaves to schemes (or more gen-

erally, ringed spaces) without change. A locally free sheaf of rank n on a scheme
X is defined as an OX-module F that is locally a free sheaf of rank n. Precisely,
there is an open cover {Ui} of X such that for each Ui, F |Ui

∼= O⊕n
Ui

. This open
cover determines transition functions — the data of a cover {Ui} of X, and func-
tions Tij ∈ GLn(O(Ui ∩Uj)) satisfying the cocycle condition (13.1.1.1) — which in
turn determine the locally free sheaf. As before, given these data, we can find the
sections over any open set U. Informally, they are sections of the free sheaves over
each U ∩Ui that agree on overlaps. More formally, for each i, they are

s⃗i =

 si1
...
sin

 ∈ Γ(U ∩Ui,OX)n,

satisfying Tijs⃗i = s⃗j on U ∩Ui ∩Uj.
You should think of these as vector bundles, but just keep in mind that they

are not the “same”, just equivalent notions. We will later (Definition 17.1.4) define
the “total space” of the vector bundle V → X (a scheme over X) in terms of the
sheaf version of Spec (or more precisely, Spec(SymV•)). But the locally free sheaf
perspective will prove to be more useful. As one example: the definition of a
locally free sheaf is much shorter than that of a vector bundle.

As in our motivating discussion, it is sometimes convenient to let the rank vary
among connected components, or to consider infinite rank locally free sheaves.

13.1.6. Useful constructions, in the form of a series of important exercises.
We now give some useful constructions in the form of a series of exercises

about locally free sheaves on a scheme. They are useful, important, and surpris-
ingly nontrivial! Two hints: Exercises 13.1.B–13.1.H will apply for ringed spaces
in general, so you shouldn’t use special properties of schemes. Furthermore, they
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are all local on X, so you can reduce to the case where the locally free sheaves in
question are actually free.

13.1.B. EXERCISE. Suppose F and G are locally free sheaves on X of rank m and
n respectively. Show that HomOX

(F ,G ) is a locally free sheaf of rankmn.

13.1.C. EXERCISE. If E is a locally free sheaf on X of (finite) rank n, Exercise 13.1.B
implies that E ∨ := Hom(E ,OX) is also a locally free sheaf of rank n. This is called
the dual of E (cf. §2.3.4). Given transition functions for E , describe transition func-
tions for E ∨. (Note that if E is rank 1, i.e., invertible, the transition functions
of the dual are the inverse of the transition functions of the original.) Show that
E ∼= E ∨∨. (Caution: your argument showing that there is a canonical isomor-
phism (F∨)∨ ∼= F better not also show that there is an isomorphism F∨ ∼= F !
We will see an example in §14.1 of a locally free F that is not isomorphic to its
dual: the invertible sheaf O(1) on Pn.)

13.1.D. EXERCISE. If F and G are locally free sheaves, show that F ⊗G is a locally
free sheaf. (Here ⊗ is tensor product as OX-modules, defined in Exercise 2.6.J.) If
F is an invertible sheaf, show that F ⊗ F∨ ∼= OX.

13.1.E. EXERCISE. Recall that tensor products tend to be only right-exact in gen-
eral. Show that tensoring by a locally free sheaf is exact. More precisely, if F is a
locally free sheaf, and G ′ → G → G ′′ is an exact sequence of OX-modules, then
so is G ′ ⊗ F → G ⊗ F → G ′′ ⊗ F . (Possible hint: it may help to check exact-
ness by checking exactness at stalks. Recall that the tensor product of stalks can be
identified with the stalk of the tensor product, so for example there is a “natural”
isomorphism (G ⊗OX

F )p ∼= Gp ⊗OX,p
Fp, Exercise 2.6.J(b).)

13.1.F. EXERCISE. If E is a locally free sheaf of finite rank, and F and G are
OX-modules, show that Hom(F ,G ⊗ E ) ∼= Hom(F ⊗ E ∨,G ). (Possible hint: first
consider the case where E is free.)

13.1.G. EXERCISE AND IMPORTANT DEFINITION. Show that the invertible sheaves
on X, up to isomorphism, form an abelian group under tensor product. This is
called the Picard group of X, and is denoted PicX.

13.1.H. EXERCISE. If π : X → Y is a morphism of ringed spaces, and G is a locally
free sheaf of rank n on Y, figure out how to define a “pulled back” locally free
sheaf of rank n on X, denoted π∗G . Then show that Pic is a contravariant functor
from the category of ringed spaces to the category Ab of abelian groups.

Unlike the previous exercises, the next one is specific to schemes.

13.1.I. EXERCISE. Suppose s is a section of a locally free sheaf F on a scheme X.
Define the notion of the subscheme cut out by s = 0, denoted (for obvious reasons)
V(s). Be sure to check that your definition is independent of choices! (This exercise
gives a new solution to Exercise 4.5.P.) Hint: given a trivialization over an open
set U, s corresponds to a number of functions f1, . . . on U; on U, take the scheme
cut out by these functions. Alternate hint that avoids coordinates: figure out how
to define it as the largest closed subscheme on which s restricts to 0.



November 18, 2017 draft 373

13.1.7. Random concluding remarks.
We define rational (and regular) sections of a locally free sheaf on a scheme

X just as we did rational (and regular) functions (see for example §5.5 and §6.5).

13.1.J. EXERCISE. Show that locally free sheaves on locally Noetherian normal
schemes satisfy “Hartogs’s Lemma”: sections defined away from a set of codimen-
sion at least 2 extend over that set. (Algebraic Hartogs’s Lemma for Noetherian
normal schemes is Theorem 11.3.11.)

13.1.K. EASY EXERCISE. Suppose s is a nonzero rational section of an invertible
sheaf on a locally Noetherian normal scheme. Show that if s has no poles, then s
is regular. (Hint: Exercise 12.5.H.)

13.1.8. Remark. Based on your intuition for line bundles on manifolds, you might
hope that every point has a “small” open neighborhood on which all invertible
sheaves (or locally free sheaves) are trivial. Sadly, this is not the case. We will
eventually see (§19.11.1) that for the curve y2 − x3 − x = 0 in A2C, every nonempty
open set has nontrivial invertible sheaves. (This will use the fact that it is an open
subset of an elliptic curve.)

13.1.L. ⋆ EXERCISE (FOR THOSE WITH SUFFICIENT COMPLEX-ANALYTIC BACKGROUND).
Recall the analytification functor (Exercises 6.3.N and 10.1.F), that takes a complex
finite type reduced scheme and produces a complex analytic space.
(a) If L is an invertible sheaf on a complex (algebraic) variety X, define (up to
unique isomorphism) the corresponding invertible sheaf on the complex variety
Xan.
(b) Show that the induced map PicX→ PicXan is a group homomorphism.
(c) Show that this construction is functorial: if π : X→ Y is a morphism of complex
varieties, the following diagram commutes:

Pic Y π∗
//

��

PicX

��
Pic Yan

π∗
an // PicXan

where the vertical maps are the ones you have defined.

13.1.M. ⋆ EXERCISE (FOR THOSE WITH SUFFICIENT ARITHMETIC BACKGROUND;
SEE ALSO PROPOSITION 14.2.10 AND §14.2.13). Recall the definition of the ring
of integers OK in a number field K, Remark 9.7.1. A fractional ideal a of OK is
a nonzero OK-submodule of K such that there is a nonzero a ∈ OK such that
aa ⊂ OK. Products of fractional ideals are defined analogously to products of
ideals in a ring (defined in Exercise 3.4.C): ab consists of (finite) OK-linear combi-
nations of products of elements of a and elements of b. Thus fractional ideals form
a semigroup under multiplication, with OK as the identity. In fact fractional ideals
of OK form a group.

(a) Explain how a fractional ideal on a ring of integers in a number field
yields an invertible sheaf. (Although we won’t need this, it is worth not-
ing that a fractional ideal is the same as an invertible sheaf with a trivial-
ization at the generic point.)
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(b) A fractional ideal is principal if it is of the form rOK for some r ∈ K×.
Show that any two that differ by a principal ideal yield the same invert-
ible sheaf.

(c) Show that two fractional ideals that yield the same invertible sheaf differ
by a principal ideal.

(d) The class group is defined to be the group of fractional ideals modulo
the principal ideals (i.e., modulo K×). Give an isomorphism of the class
group with the Picard group of OK.

(This discussion applies to any Dedekind domain. See Exercise 14.2.S for a follow-
up.)

13.1.9. The problem with locally free sheaves.
Recall that OX-modules form an abelian category: we can talk about kernels,

cokernels, and so forth, and we can do homological algebra. Similarly, vector
spaces form an abelian category. But locally free sheaves (i.e., vector bundles),
along with reasonably natural maps between them (those that arise as maps of
OX-modules), don’t form an abelian category. As a motivating example in the
category of differentiable manifolds, consider the map of the trivial line bundle on
R (with coordinate t) to itself, corresponding to multiplying by the coordinate t.
Then this map jumps rank, and if you try to define a kernel or cokernel you will
get confused.

This problem is resolved by enlarging our notion of nice OX-modules in a
natural way, to quasicoherent sheaves.

OX-modules ⊃ quasicoherent sheaves ⊃ locally free sheaves
(abelian category) (abelian category) (not an abelian category)

You can turn this into two definitions of quasicoherent sheaves, equivalent to
those we will give in §13.2. We want a notion that is local on X of course. So
we ask for the smallest abelian subcategory of ModOX

that is “local” and includes
vector bundles. It turns out that the main obstruction to vector bundles to be an
abelian category is the failure of cokernels of maps of locally free sheaves — as
OX-modules — to be locally free; we could define quasicoherent sheaves to be
those OX-modules that are locally cokernels, yielding a description that works
more generally on ringed spaces, as described in Exercise 13.4.B. You may wish to
later check that our future definitions are equivalent to these.

Similarly, in the locally Noetherian setting, finite rank locally free sheaves will
sit in a nice smaller abelian category, that of coherent sheaves.

quasicoherent sheaves ⊃ coherent sheaves ⊃ finite rank locally free sheaves
(abelian category) (abelian category) (not an abelian category)

13.1.10. Remark: Quasicoherent and coherent sheaves on ringed spaces. We will discuss
quasicoherent and coherent sheaves on schemes, but they can be defined more
generally (see Exercise 13.4.B for quasicoherent sheaves, and [Se1, Def. 2] for co-
herent sheaves). Many of the results we state will hold in greater generality, but
because the proofs look slightly different, we restrict ourselves to schemes to avoid
distraction.
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13.2 Quasicoherent sheaves

We now define the notion of quasicoherent sheaf. In the same way that a scheme
is defined by “gluing together rings”, a quasicoherent sheaf over that scheme is
obtained by “gluing together modules over those rings”. Given an A-module M,
we defined an O-module M̃ on SpecA long ago (Exercise 4.1.D) — the sections
over D(f) wereMf.

13.2.1. Theorem. — Let X be a scheme, and F an OX-module. Suppose P is the property
of affine open subschemes SpecA of X that F |SpecA ∼= M̃ for some A-module M. Then P
satisfies the two hypotheses of the Affine Communication Lemma 5.3.2.

We prove this in a moment.

13.2.2. Definition. If X is a scheme, then an OX-module F is quasicoherent if for
every affine open subset SpecA ⊂ X, F |SpecA ∼= M̃ for some A-module M. By
Theorem 13.2.1, it suffices to check this for a collection of affine open sets covering
X. For example, M̃ is a quasicoherent sheaf on SpecA, and all locally free sheaves
on X are quasicoherent.

13.2.A. UNIMPORTANT EXERCISE (NOT EVERY OX-MODULE IS A QUASICOHERENT
SHEAF).
(a) Suppose X = Spec k[t]. Let F be the skyscraper sheaf supported at the origin
[(t)], with group k(t) and the usual k[t]-module structure. Show that this is an
OX-module that is not a quasicoherent sheaf. (More generally, if X is an integral
scheme, and p ∈ X is not the generic point, we could take the skyscraper sheaf at p
with group the function field of X. Except in silly circumstances, this sheaf won’t
be quasicoherent.) See Exercises 8.1.F and 13.3.I for more (pathological) examples
of OX-modules that are not quasicoherent.
(b) Suppose X = Speck[t]. Let F be the skyscraper sheaf supported at the generic
point [(0)], with group k(t). Give this the structure of an OX-module. Show that
this is a quasicoherent sheaf. Describe the restriction maps in the distinguished
topology of X. (Remark: Your argument will apply more generally, for example
when X is an integral scheme with generic point η, and F is the skyscraper sheaf
iη,∗K(X).)

13.2.B. UNIMPORTANT EXERCISE (NOT EVERY QUASICOHERENT SHEAF IS LOCALLY
FREE). Use the example of Exercise 13.2.A(b) to show that not every quasicoherent
sheaf is locally free.

13.2.C. EXERCISE. Show that every (finite) rank n vector bundle on A1k is trivial of
rank n. Hint: finitely generated modules over a principal ideal domain are finite
direct sums of cyclic modules, as mentioned in Remark 12.5.14. See the aside in
§14.2.8 for the difficult generalization to Ank .

13.2.3. Proof of Theorem 13.2.1. Clearly if SpecA has property P, then so does the
distinguished open SpecAf: ifM is an A-module, then M̃|SpecAf

∼= M̃f as sheaves
of OSpecAf

-modules (both sides agree on the level of distinguished open sets and
their restriction maps).
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We next show the second hypothesis of the Affine Communication Lemma 5.3.2.
Suppose we have modules M1, . . . , Mn, where Mi is an Afi -module, along with
isomorphisms ϕij : (Mi)fj → (Mj)fi of Afifj -modules, satisfying the cocycle con-
dition (13.1.1.1). We want to construct an M such that M̃ gives us M̃i on D(fi) =

SpecAfi , or equivalently, isomorphisms ρi : Γ(D(fi), M̃)→Mi, so that the bottom
triangle of

(13.2.3.1) M
⊗Afi

zzttt
ttt

ttt
t ⊗Afj

$$JJ
JJJ

JJJ
JJ

Mfi

ρi

∼
{{xx
xx
xx
xx
x ⊗Afj

$$I
II

II
II

II
Mfj

ρj

∼
##F

FF
FF

FF
F

⊗Afi

zzuu
uu
uu
uu
u

Mi

⊗Afj ""F
FF

FF
FF

FF
Mfifj::

∼
zzvvv

vv
vv
vv

dd

∼
$$H

HH
HH

HH
HH

Mj

⊗Afi||xx
xx
xx
xx
x

(Mi)fj
ϕij

∼
// (Mj)fi

commutes.

13.2.D. EXERCISE. Why does this suffice to prove the result? In other words, why
does this imply that F |SpecA ∼= M̃?

We already know that M should be Γ(SpecA,F ), as F is a sheaf. Consider
elements of M1 × · · · ×Mn that “agree on overlaps”; let this set be M. In other
words,

(13.2.3.2) 0 //M //M1 × · · · ×Mn

γ //M12 ×M13 × · · · ×M(n−1)n

is an exact sequence (where Mij = (Mi)fj
∼= (Mj)fi , and the map γ is the “differ-

ence” map). So M is a kernel of a morphism of A-modules, hence an A-module.
We are left to show that Mi

∼=Mfi (and that this isomorphism satisfies (13.2.3.1)).
(At this point, we may proceed in a number of ways, and the reader may wish to
find their own route rather than reading on.)

For convenience assume i = 1. Localization is exact (Exercise 1.6.F(a)), so
tensoring (13.2.3.2) by Af1 yields

(13.2.3.3) 0 //Mf1
// (M1)f1 × (M2)f1 × · · · × (Mn)f1

//M12 × · · · ×M1n × (M23)f1 × · · · × (M(n−1)n)f1

is an exact sequence of Af1-modules.
We now identify many of the modules appearing in (13.2.3.3) in terms of M1.

First of all, f1 is invertible in Af1 , so (M1)f1 is canonically M1. Also, (Mj)f1
∼=

(M1)fj via ϕ1j. Hence if i, j ̸= 1, (Mij)f1
∼= (M1)fifj via ϕ1i and ϕ1j (here the

cocycle condition is implicitly used). Furthermore, (M1i)f1
∼= (M1)fi via ϕ1i.

Thus we can write (13.2.3.3) as

(13.2.3.4) 0 //Mf1
//M1 × (M1)f2 × · · · × (M1)fn

α // (M1)f2 × · · · × (M1)fn × (M1)f2f3 × · · · × (M1)fn−1fn
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By assumption, F |SpecAf1

∼= M̃1 for some M1, so by considering the cover

SpecAf1 = SpecAf1 ∪ SpecAf1f2 ∪ SpecAf1f3 ∪ · · · ∪ SpecAf1fn

(notice the “redundant” first term), and identifying sections of F over SpecAf1 in
terms of sections over the open sets in the cover and their pairwise overlaps, we
have an exact sequence of Af1-modules

0 //M1
//M1 × (M1)f2 × · · · × (M1)fn

β // (M1)f2 × · · · × (M1)fn × (M1)f2f3 × · · · × (M1)fn−1fn

which is very similar to (13.2.3.4). Indeed, the final map β of the above sequence is
the same as the map α of (13.2.3.4), so kerα = kerβ, i.e., we have an isomorphism
M1

∼=Mf1 .

13.2.E. EXERCISE. Finally, show that the bottom triangle of (13.2.3.1) is commuta-
tive, perhaps by showing that each vertex of the triangle can be identified with the
sections of F over SpecAf1f2 .

□

13.3 Characterizing quasicoherence using the distinguished affine
base

Because quasicoherent sheaves are locally of a very special form, in order to
“know” a quasicoherent sheaf, we need only know what the sections are over every
affine open set, and how to restrict sections from an affine open set U to a distin-
guished affine open subset of U. We make this precise by defining what I will call
the distinguished affine base of the Zariski topology — not a base in the usual sense.
The point of this discussion is to give a useful characterization of quasicoherence,
but you may wish to just jump to §13.3.3.

The open sets of the distinguished affine base are the affine open subsets of
X. We have already observed that this forms a base. But forget that fact. We like
distinguished open sets SpecAf ↪→ SpecA, and we don’t really understand open
embeddings of one random affine open subset in another. So we just remember
the “nice” inclusions.

13.3.1. Definition. The distinguished affine base of a scheme X is the data of the
affine open sets and the distinguished inclusions.

In other words, we remember only some of the open sets (the affine open sets),
and only some of the morphisms between them (the distinguished morphisms). For
experts: if you think of a topology as a category (the category of open sets), we
have described a subcategory.

We can define a sheaf on the distinguished affine base in the obvious way: we
have a set (or abelian group, or ring) for each affine open set, and we know how
to restrict to distinguished open sets. (You should think through the statement of
the identity and gluability axioms yourself.)
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Given a sheaf F on X, we get a sheaf on the distinguished affine base. You
can guess where we are going: we will show that all the information of the sheaf
is contained in the information of the sheaf on the distinguished affine base.

As a warm-up, we can recover stalks as follows. (We will be implicitly using
only the following fact. We have a collection of open subsets, and some inclusions
among these subsets, such that if we have any p ∈ U,V where U and V are in our
collection of open sets, there is some W containing p, and contained in U and V
such that W ↪→ U and W ↪→ V are both in our collection of inclusions. In the case
we are considering here, this is the key Proposition 5.3.1 that given any two affine
open sets SpecA, SpecB in X, SpecA∩SpecB could be covered by affine open sets
that were simultaneously distinguished in SpecA and SpecB. In fancy language:
the category of affine open sets, and distinguished inclusions, forms a filtered set.)

The stalk Fp is the colimit lim−→(f ∈ F (U)) where the colimit is over all open
sets contained in X. We compare this to lim−→(f ∈ F (U)) where the colimit is over all
affine open sets, and all distinguished inclusions. You can check that the elements
of one correspond to elements of the other. (Think carefully about this!)

13.3.A. EXERCISE. Show that a section of a sheaf on the distinguished affine base
is determined by the section’s germs.

13.3.2. Theorem. —

(a) A sheaf on the distinguished affine base Fb determines a unique (up to unique
isomorphism) sheaf F which when restricted to the affine base is Fb. (Hence
if you start with a sheaf, and take the sheaf on the distinguished affine base, and
then take the induced sheaf, you get the sheaf you started with.)

(b) A morphism of sheaves on a distinguished affine base uniquely determines a
morphism of sheaves.

(c) An OX-module “on the distinguished affine base” yields an OX-module.

This proof is identical to our argument of §2.5 showing that sheaves are (es-
sentially) the same as sheaves on a base, using the “sheaf of compatible germs”
construction. The main reason for repeating it is to let you see that all that is
needed is for the open sets to form a filtered set (or in the current case, that the
category of open sets and distinguished inclusions is filtered).

For experts: (a) and (b) are describing an equivalence of categories between
sheaves on the Zariski topology of X and sheaves on the distinguished affine base
of X.

Proof. (a) Suppose Fb is a sheaf on the distinguished affine base. Then we can
define stalks.

For any open set U of X, define the sheaf of compatible germs

F (U) := {(fp ∈ Fb
p )p∈U : for all p ∈ U,

there exists Up with p ∈ Up ⊂ U, Fp ∈ Fb(Up)

such that Fpq = fq for all q ∈ Up}

where eachUp is in our base, and Fpq means “the germ of Fp at q”. (As usual, those
who want to worry about the empty set are welcome to.)

This really is a sheaf: convince yourself that we have restriction maps, identity,
and gluability, really quite easily.
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I next claim that if U is in our base, that F (U) = Fb(U). We clearly have a
map Fb(U) → F (U). This is an isomorphism on stalks, and hence an isomor-
phism by Exercise 2.4.E.

13.3.B. EXERCISE. Prove (b) (cf. Exercise 2.5.C).

13.3.C. EXERCISE. Prove (c) (cf. Remark 2.5.3).

The proof of Theorem 13.3.2 is now complete. □

13.3.3. A characterization of quasicoherent sheaves in terms of distinguished
inclusions. We use this perspective to give a useful characterization of quasico-
herent sheaves among OX-modules. Suppose F is an OX-module, and SpecAf ↪→
SpecA ⊂ X is a distinguished open subscheme of an affine open subscheme of
X. Let ϕ : Γ(SpecA,F ) → Γ(SpecAf,F ) be the restriction map. The source of ϕ
is an A-module, and the target is an Af-module, so by the universal property of
localization (Exercise 1.3.D), ϕ naturally factors as:

Γ(SpecA,F )
ϕ //

⊗AAf ((QQ
QQQ

QQQ
QQQ

Q
Γ(SpecAf,F )

Γ(SpecA,F )f

α

66mmmmmmmmmmmm

13.3.D. VERY IMPORTANT EXERCISE. Show that an OX-module F is quasicoherent
if and only if for each such distinguished SpecAf ↪→ SpecA, α is an isomorphism.

Thus a quasicoherent sheaf is (equivalent to) the data of one module for each
affine open subset (a module over the corresponding ring), such that the mod-
ule over a distinguished open set SpecAf is given by localizing the module over
SpecA. The next exercise shows that this will be an easy criterion to check.

13.3.E. IMPORTANT EXERCISE (CF. THE QCQS LEMMA 7.3.5). Suppose X is a
quasicompact and quasiseparated scheme (i.e., covered by a finite number of affine
open sets, the pairwise intersection of which is also covered by a finite number of
affine open sets). Suppose F is a quasicoherent sheaf on X, and let f ∈ Γ(X,OX)
be a function on X. Show that the restriction map

resXf⊂X : Γ(X,F )→ Γ(Xf,F )

(here Xf is the open subset of Xwhere f doesn’t vanish) is precisely localization. In
other words show that there is an isomorphism Γ(X,F )f → Γ(Xf,F ) making the
following diagram commute.

Γ(X,F )
resXf⊂X //

⊗Γ(X,OX)(Γ(X,OX)f) %%LL
LLL

LLL
LL

Γ(Xf,F )

Γ(X,F )f

∼

88rrrrrrrrrr

(Hint: Apply the exact functor ⊗Γ(X,OX)Γ(X,OX)f to the exact sequence

0→ Γ(X,F )→ ⊕iΓ(Ui,F )→ ⊕Γ(Uijk,F )
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where the Ui form a finite affine cover of X and Uijk form a finite affine cover of
Ui ∩Uj.)

13.3.F. IMPORTANT EXERCISE (COROLLARY TO EXERCISE 13.3.E: PUSHFORWARDS
OF QUASICOHERENT SHEAVES ARE QUASICOHERENT IN REASONABLE CIRCUM-
STANCES). Suppose π : X → Y is a quasicompact quasiseparated morphism, and
F is a quasicoherent sheaf on X. Show that π∗F is a quasicoherent sheaf on Y.

13.3.G. EXERCISE (GOOD PRACTICE: THE SHEAF OF NILPOTENTS). If A is a ring,
and f ∈ A, show that N(Af) ∼= N(A)f. Use this to define/construct the quasicoher-
ent sheaf of nilpotents on any scheme X. This is an example of an ideal sheaf (of
OX).

13.3.H. IMPORTANT EXERCISE (TO BE USED REPEATEDLY). Generalize Exercise 13.3.E
as follows. Suppose X is a quasicompact quasiseparated scheme, L is an invert-
ible sheaf on X with section s, and F is a quasicoherent sheaf on X. As in Ex-
ercise 13.3.E, let Xs be the open subset of X where s doesn’t vanish. Show that
any section of F over Xs can be interpreted as the quotient of a global section of
F ⊗OX

L ⊗n by sn. In other words, any section of F over Xs can be extended over
all of X, once you multiply it by a large enough power of s. More precisely: note
that ⊕n≥0Γ(X,L ⊗n) is a graded ring, and we interpret s as a degree 1 element of it.
Note also that ⊕n≥0Γ(X,F ⊗OX

L ⊗n) is a graded module over this ring. Describe
a natural map ((

⊕n≥0Γ(X,F ⊗OX
L ⊗n)

)
s

)
0
→ Γ(Xs,F )

and show that it is an isomorphism. (Hint: after showing the existence of the
natural map, show it is an isomorphism in the affine case.)

13.3.I. LESS IMPORTANT EXERCISE. Give a counterexample to show that Exer-
cise 13.3.E need not hold without the quasicompactness hypothesis. (Possible hint:
take an infinite disjoint union of affine schemes. The key idea is that infinite direct
products do not commute with localization.)

13.3.4. ⋆⋆ Grothendieck topologies. The distinguished affine base isn’t a topol-
ogy in the usual sense — the union of two affine sets isn’t necessarily affine, for
example. It is however a first new example of a generalization of a topology — the
notion of a site or a Grothendieck topology. We give the definition to satisfy the
curious, but we certainly won’t use this notion. (For a clean statement, see [Stacks,
tag 00VH]; this is intended only as motivation.) The idea is that we should abstract
away only those notions we need to define sheaves. We need the notion of open
set, but it turns out that we won’t even need an underlying set, i.e., we won’t even
need the notion of points! Let’s think through how little we need. For our discus-
sion of sheaves to work, we needed to know what the open sets were, and what
the (allowed) inclusions were, and these should “behave well”, and in particular
the data of the open sets and inclusions should form a category. (For example,
the composition of an allowed inclusion with another allowed inclusion should
be an allowed inclusion — in the distinguished affine base, a distinguished open
set of a distinguished open set is a distinguished open set.) So we just require the
data of this category. At this point, we can already define presheaf (as just a con-
travariant functor from this category of “open sets”). We saw this idea earlier in
Exercise 2.2.A.
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In order to extend this definition to that of a sheaf, we need to know more
information. We want two open subsets of an open set to intersect in an open
set, so we want the category to be closed under fibered products (cf. Exercise 1.3.O).
For the identity and gluability axioms, we need to know when some open sets cover
another, so we also remember this as part of the data of a Grothendieck topology.
The data of the coverings satisfy some obvious properties. Every open set covers
itself (i.e., the identity map in the category of open sets is a covering). Coverings pull
back: if we have a map Y → X, then any cover of X pulls back to a cover of Y. Finally,
a cover of a cover should be a cover. Such data (satisfying these axioms) is called a
Grothendieck topology or a site. (There are useful variants of this definition in the
literature. Again, we are following [Stacks].) We can define the notion of a sheaf
on a Grothendieck topology in the usual way, with no change. A topos is a scary
name for a category of sheaves of sets on a Grothendieck topology.

Grothendieck topologies are used in a wide variety of contexts in and near
algebraic geometry. Étale cohomology (using the étale topology), a generalization
of Galois cohomology, is a central tool, as are more general flat topologies, such
as the smooth topology. The definition of a Deligne-Mumford or Artin stack uses
the étale and smooth topology, respectively. Tate developed a good theory of non-
archimedean analytic geometry over totally disconnected ground fields such as Qp
using a suitable Grothendieck topology. Work in K-theory (related for example to
Voevodsky’s work) uses exotic topologies.

13.4 Quasicoherent sheaves form an abelian category

Morphisms from one quasicoherent sheaf on a scheme X to another are de-
fined to be just morphisms as OX-modules. In this way, the quasicoherent sheaves
on a scheme X form a category, denoted QCohX. (By definition it is a full subcat-
egory of ModOX

.) We now show that quasicoherent sheaves on X form an abelian
category.

When you show that something is an abelian category, you have to check
many things, because the definition has many parts. However, if the objects you
are considering lie in some ambient abelian category, then it is much easier. You
have seen this idea before: there are several things you have to do to check that
something is a group. But if you have a subset of group elements, it is much easier
to check that it forms a subgroup.

You can look at back at the definition of an abelian category, and you will see
that in order to check that a subcategory is an abelian subcategory, it suffices to
check only the following:

(i) 0 is in the subcategory
(ii) the subcategory is closed under finite sums

(iii) the subcategory is closed under kernels and cokernels

In our case of QCohX ⊂ ModOX
, the first two are cheap: 0 is certainly quasico-

herent, and the subcategory is closed under finite sums: if F and G are sheaves
on X, and over SpecA, F ∼= M̃ and G ∼= Ñ, then F ⊕ G = M̃⊕N (do you see
why?), so F ⊕ G is a quasicoherent sheaf.
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We now check (iii), using the characterization of Important Exercise 13.3.D.
Suppose α : F → G is a morphism of quasicoherent sheaves. Then on any affine
open set U, where the morphism is given by β : M→ N, define (kerα)(U) = kerβ
and (cokerα)(U) = cokerβ. Then these behave well under inversion of a single
element: if

0→ K→M→ N→ P → 0

is exact, then so is
0→ Kf →Mf → Nf → Pf → 0,

from which (kerβ)f ∼= ker(βf) and (cokerβ)f ∼= coker(βf). Thus both of these
define quasicoherent sheaves. Moreover, by checking stalks, they are indeed the
kernel and cokernel of α (exactness can be checked stalk-locally). Thus the quasi-
coherent sheaves indeed form an abelian category.

13.4.A. EXERCISE. Show that a sequence of quasicoherent sheaves F → G → H
on X is exact if and only if it is exact on every open set in any given affine cover
of X. (In particular, taking sections over an affine open SpecA is an exact functor
from the category of quasicoherent sheaves on X to the category of A-modules.
Recall that taking sections is only left-exact in general, see §2.6.F.) In particular, we
may check injectivity or surjectivity of a morphism of quasicoherent sheaves by
checking on an affine cover of our choice.

Caution: If 0 → F → G → H → 0 is an exact sequence of quasicoherent
sheaves, then for any open set

0→ F (U)→ G (U)→H (U)

is exact, and exactness on the right is guaranteed to hold only if U is affine. (To set
you up for cohomology: whenever you see left-exactness, you expect to eventually
interpret this as a start of a long exact sequence. So we are expecting H1’s on the
right, and now we expect that H1(SpecA,F ) = 0. This will indeed be the case.)

13.4.1. Warning for those already familiar with vector bundles. Morphisms of vector
bundles are more restrictive than morphisms of quasicoherent sheaves that hap-
pen to be locally free sheaves. A locally free subsheaf of a locally free sheaf does
not always yield a subvector bundle of a vector bundle. The archetypal example
is the exact sequence of quasicoherent sheaves on A1k = Speck[t] corresponding to
the following exact sequence of k[t]-modules:

(13.4.1.1) 0→ tk[t]→ k[t]→ k→ 0.

The locally free sheaf t̃k[t] is a subsheaf of k̃[t], but it does not correspond to a
“subvector bundle”; the cokernel is not a vector bundle. (This example came up in
§13.1.9.)

13.4.B. LESS IMPORTANT EXERCISE (CONNECTION TO ANOTHER DEFINITION, AND
QUASICOHERENT SHEAVES ON RINGED SPACES IN GENERAL). Show that an OX-
module F on a scheme X is quasicoherent if and only if there exists an open cover
by Ui such that on each Ui, F |Ui

is isomorphic to the cokernel of a map of two
free sheaves:

O⊕I
Ui
→ O⊕J

Ui
→ F |Ui

→ 0

is exact. We have thus connected our definitions to the definition given at the very
start of the chapter. This is the definition of a quasicoherent sheaf on a ringed space
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in general. It is useful in many circumstances, for example in complex analytic
geometry.

13.5 Module-like constructions

In a similar way, basically any nice construction involving modules extends
to quasicoherent sheaves. (One exception: the Hom of two A-modules is an A-
module, but the Hom of two quasicoherent sheaves is quasicoherent only in “rea-
sonable” circumstances, see Exercise 13.7.A. The failure of “niceness” is the failure
of Hom to commute with localization — see the aside in Exercise 13.7.A(a) for an
example.)

13.5.1. Locally free sheaves from free modules.

13.5.A. EXERCISE (POSSIBLE HELP FOR LATER PROBLEMS).
(a) Suppose

(13.5.1.1) 0→ F ′ → F → F ′′ → 0

is a short exact sequence of quasicoherent sheaves on X. Suppose U = SpecA is
an affine open set where F ′, F ′′ are free, say F ′|SpecA = Ã⊕a, F ′′|SpecA = Ã⊕b.
(Here a and b are assumed to be finite for convenience, but this is not necessary,
so feel free to generalize to the infinite rank case.) Show that F is also free on
SpecA, and that 0→ F ′ → F → F ′′ → 0 can be interpreted as coming from the
tautological exact sequence 0→ A⊕a → A⊕(a+b) → A⊕b → 0. (As a consequence,
given an exact sequence of quasicoherent sheaves (13.5.1.1) where F ′ and F ′′ are
locally free, F must also be locally free.)
(b) In the finite rank case, show that given an open covering by trivializing affine
open sets (of the form described in (a)), the transition functions (really, matrices) of
F may be interpreted as block upper triangular matrices, where the top left a× a
blocks are transition functions for F ′, and the bottom b × b blocks are transition
functions for F ′′.

13.5.B. EXERCISE. Suppose (13.5.1.1) is a short exact sequence of quasicoherent
sheaves on X. By Exercise 13.5.A(a), if F ′ and F ′′ are locally free, then F is too.
(a) If F and F ′′ are locally free of finite rank, show that F ′ is too. Hint: Reduce
to the case X = SpecA and F and F ′′ free. Interpret the map ϕ : F → F ′′ as
an n × m matrix M with values in A, with m the rank of F and n the rank of
F ′′. For each point p of X, show that there exist n columns {c1, . . . , cn} of M that
are linearly independent at p and hence near p (as linear independence is given
by nonvanishing of the appropriate n × n determinant). Thus X can be covered
by distinguished open subsets in bijection with the choices of n columns of M.
Restricting to one subset and renaming columns, reduce to the case where the
determinant of the first n columns ofM is invertible. Then change coordinates on
A⊕m = F (SpecA) so that M with respect to the new coordinates is the identity
matrix in the first n columns, and 0 thereafter. Finally, in this case interpret F ′ as
˜A⊕(m−n).

(b) If F ′ and F are both locally free, show that F ′′ need not be. (Hint: consider
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(13.4.1.1), which we will soon interpret as the closed subscheme exact sequence
(13.5.4.1) for a point on A1.)

13.5.2. Tensor products. Another important example is tensor products.

13.5.C. EXERCISE. If F and G are quasicoherent sheaves, show that F ⊗ G is a
quasicoherent sheaf described by the following information: If SpecA is an affine
open, and Γ(SpecA,F ) = M and Γ(SpecA,G ) = N, then Γ(SpecA,F ⊗ G ) =
M⊗AN, and the restriction map Γ(SpecA,F⊗G )→ Γ(SpecAf,F⊗G ) is precisely
the localization map M ⊗A N → (M ⊗A N)f ∼= Mf ⊗Af

Nf. (We are using the
algebraic fact that (M ⊗A N)f ∼= Mf ⊗Af

Nf. You can prove this by universal
property if you want, or by using the explicit construction.)

Note that thanks to the machinery behind the distinguished affine base, sheafi-
fication is taken care of. This is a feature we will use often: constructions involv-
ing quasicoherent sheaves that involve sheafification for general sheaves don’t re-
quire sheafification when considered on the distinguished affine base. Along with
the fact that injectivity, surjectivity, kernels and so on may be computed on affine
opens, this is the reason that it is particularly convenient to think about quasico-
herent sheaves in terms of affine open sets.

Given a section s of F and a section t of G , we have a section s ⊗ t of F ⊗ G .
If F is an invertible sheaf, this section is often denoted st.

13.5.3. Tensor algebra constructions.
For the next exercises, recall the following. If M is an A-module, then the

tensor algebra T•(M) is a noncommutative algebra, graded by Z≥0, defined as
follows. T0(M) = A, Tn(M) = M ⊗A · · · ⊗A M (where n terms appear in the
product), and multiplication is what you expect.

The symmetric algebra Sym•
M is a symmetric algebra, graded by Z≥0, de-

fined as the quotient of T•(M) by the (two-sided) ideal generated by all elements
of the form x⊗y−y⊗x for all x, y ∈M. Thus Symn

M is the quotient ofM⊗· · ·⊗M
by the relations of the form m1 ⊗ · · · ⊗mn −m ′

1 ⊗ · · · ⊗m ′
n where (m ′

1, . . . ,m
′
n)

is a rearrangement of (m1, . . . ,mn).
The exterior algebra ∧•M is defined to be the quotient of T•M by the (two-

sided) ideal generated by all elements of the form x⊗ x for all x ∈M. Expanding
(a+b)⊗(a+b), we see that a⊗b = −b⊗a in ∧2M. This implies that if 2 is invertible
inA (e.g., ifA is a field of characteristic not 2), ∧nM is the quotient ofM⊗· · ·⊗M
by the relations of the formm1 ⊗ · · · ⊗mn − (−1)sgn(σ)mσ(1) ⊗ · · · ⊗mσ(n) where
σ is a permutation of {1, . . . , n}. The exterior algebra is a “skew-commutative” A-
algebra.

Better: both Sym and ∧ can be defined by universal properties. For exam-
ple, any map of A-modules M⊗n → N that is symmetric in the n entries factors
uniquely through Symn

A
(M).

It is most correct to write T•A(M), Sym•
A
(M), and ∧•

A(M), but the “base ring”
A is usually omitted for convenience.

13.5.D. EXERCISE. Suppose F is a quasicoherent sheaf. Define the quasicoherent
sheaves TnF , SymnF , and ∧nF . (One possibility: describe them on each affine
open set, and use the characterization of Important Exercise 13.3.D.) If F is locally
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free of rankm, show that TnF , SymnF , and ∧nF are locally free, and find their
ranks. (Remark: These constructions can be defined for O-modules on an arbitrary
ringed space.) We note that in this case, ∧rank FF is denoted det F , and is called
the determinant (line) bundle or (both better and worse) the determinant locally
free sheaf.

You can also define the sheaf of noncommutative algebras T•F , the sheaf
of commutative algebras Sym• F , and the sheaf of skew-commutative algebras
∧•F .

13.5.E. EXERCISE. Suppose 0 → F ′ → F → F ′′ → 0 is an exact sequence of
locally free sheaves. Show that for any r, there is a filtration of SymrF

SymrF = G 0 ⊃ G 1 ⊃ · · · ⊃ G r ⊃ G r+1 = 0

with subquotients

G p/G p+1 ∼= (SympF ′)⊗ (Symr−pF ′′).

(Here are two different possible hints for this and Exercise 13.5.F: (1) Interpret
the transition matrices for F as block upper triangular, with two blocks, where
one diagonal block gives the transition matrices for F ′, and the other gives the
transition matrices for F ′′ (cf. Exercise 13.5.1.1(b)). Then appropriately interpret
the transition matrices for SymrF as block upper triangular, with r+ 1 blocks. (2)
It suffices to consider a small enough affine open set SpecA, where F ′, F , F ′′ are
free, and to show that your construction behaves well with respect to localization
at an element f ∈ A. In such an open set, the sequence is 0 → A⊕p → A⊕(p+q) →
A⊕q → 0 by the Exercise 13.5.A. Let e1, . . . , ep be the standard basis of A⊕p, and
f1, . . . , fq be the the standard basis of A⊕q. Let e ′1, . . . , e ′p be denote the images of
e1, . . . , ep in A⊕(p+q). Let f ′1, . . . , f ′q be any lifts of f1, . . . , fq to A⊕(p+q). Note that
f ′i is well-defined modulo e ′1, . . . , e ′p. Note that

SymrF |SpecA ∼= ⊕ri=0 SymiF ′|SpecA ⊗OSpec A
Symr−iF ′′|SpecA.

Show that G p := ⊕ri=p SymiF ′|SpecA⊗OSpec A
Symr−iF ′′|SpecA gives a well-defined

(locally free) subsheaf that is independent of the choices made, e.g., of the basis e1,
. . . , ep , f1, . . . , fq, and the lifts f ′1, . . . , f ′q.)

13.5.F. USEFUL EXERCISE. Suppose 0→ F ′ → F → F ′′ → 0 is an exact sequence
of locally free sheaves. Show that for any r, there is a filtration of ∧rF :

∧rF = G 0 ⊃ G 1 ⊃ · · · ⊃ G r ⊃ G r+1 = 0

with subquotients
G p/G p+1 ∼= (∧pF ′)⊗ (∧r−pF ′′)

for each p. In particular, if the sheaves have finite rank, then det F = (det F ′) ⊗
(det F ′′).

13.5.G. EXERCISE. Suppose F is locally free of rank n. Describe a map ∧rF ×
∧n−rF → ∧nF that induces an isomorphism ∧rF → (∧n−rF )

∨⊗∧nF . This is
called a perfect pairing of vector bundles. (If you know about perfect pairings of
vector spaces, do you see why this is a generalization?) You might use this later in
showing duality of Hodge numbers of regular varieties over algebraically closed
fields, Exercise 21.5.L.
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13.5.H. EXERCISE (DETERMINANT LINE BUNDLES BEHAVE WELL IN EXACT SEQUENCES).
Suppose 0 → F1 → · · · → Fn → 0 is an exact sequence of finite rank locally free
sheaves on X. Show that “the alternating product of determinant bundles is triv-
ial”:

det(F1)⊗ det(F2)
∨ ⊗ det(F3)⊗ det(F4)

∨ ⊗ · · · ⊗ det(Fn)
(−1)n ∼= OX.

(Hint: break the exact sequence into short exact sequences. Use Exercise 13.5.B(a)
to show that they are short exact sequences of finite rank locally free sheaves. Then
use Exercise 13.5.F.)

13.5.4. Important: Quasicoherent sheaves of ideals correspond to closed sub-
schemes. Recall that if i : X ↪→ Y is a closed embedding, then we have a surjection
of sheaves on Y: OY // // i∗OX (§8.1). (The i∗ is often omitted, as we are consid-
ering the sheaf on X as being a sheaf on Y.) The kernel IX/Y is a “sheaf of ideals”
in Y: for each open subsetU of Y, the sections form an ideal in the ring of functions
on U.

Compare (hard) Exercise 8.1.H and the characterization of quasicoherent sheaves
given in (possibly hard) Exercise 13.3.D. You will see that a sheaf of ideals is qua-
sicoherent if and only if it comes from a closed subscheme. (An example of a
non-quasicoherent sheaf of ideals was given in Exercise 8.1.F.) We call

(13.5.4.1) 0→ IX/Y → OY → i∗OX → 0

the closed subscheme exact sequence corresponding to X ↪→ Y. See (13.4.1.1) for
an example.

13.5.5. Torsion-free sheaves (a stalk-local condition) and torsion sheaves. An A-
moduleM is said to be torsion-free if am = 0 implies that either a is a zerodivisor
in A orm = 0.

In the case whereA is an integral domain, which is basically the only context in
which we will use this concept, the definition of torsion-freeness can be restated as
am = 0 only if a = 0 orm = 0. In this case, the torsion submodule ofM, denoted
Mtors, consists of those elements of M annihilated by some nonzero element of
A. (If A is not an integral domain, this construction needn’t yield an A-module.)
Clearly M is torsion-free if and only if Mtors = 0. We say a module M over an
integral domain A is torsion ifM =Mtors; this is equivalent toM⊗A K(A) = 0.

If X is a scheme, then an OX-module F is said to be torsion-free if Fp is a
torsion-free OX,p-module for all p. (Caution: [Gr-EGA] calls this “strictly torsion-
free”.)

13.5.6. Definition: torsion quasicoherent sheaves on reduced schemes. Motivated by the
definition ofMtors above, we say that a quasicoherent sheaf on a reduced scheme is
torsion if its stalk at the generic point of every irreducible component is 0. We will
mainly use this for coherent sheaves on regular curves, where this notion is very
simple indeed (see Exercise 13.7.G(b)), but in the literature it comes up in more
general situations.

13.6 Finite type and coherent sheaves
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Here are three natural finiteness conditions on an A-module M. In the case
when A is a Noetherian ring, which is the case that almost all of you will ever care
about, they are all the same.

The first is the most naive: a module could be finitely generated. In other
words, there is a surjection A⊕p →M→ 0.

The second is reasonable too. It could be finitely presented — it could have a
finite number of generators with a finite number of relations: there exists a finite
presentation, i.e., an exact sequence

A⊕q → A⊕p →M→ 0.

13.6.A. EXERCISE (“FINITELY PRESENTED IMPLIES ALWAYS FINITELY PRESENTED”).
Suppose M is a finitely presented A-module, and ϕ : A⊕p ′ → M is any surjection.
Show that kerϕ is finitely generated. Hint: Write M as the quotient of A⊕p by
a finitely generated module K. Figure out how to map the short exact sequence
0→ K→ A⊕p →M→ 0 to the exact sequence 0→ kerϕ→ A⊕p ′ →M→ 0, and
use the Snake Lemma (Example 1.7.5).

13.6.1. The third notion is frankly a bit surprising. We say that an A-module M is
coherent if (i) it is finitely generated, and (ii) whenever we have a map A⊕p →M

(not necessarily surjective!), the kernel is finitely generated.

13.6.2. Proposition. — If A is Noetherian, then these three definitions are the same.

Proof. Clearly coherent implies finitely presented, which in turn implies finitely

generated. So suppose M is finitely generated. Take any A⊕p α //M . Then
kerα is a submodule of a finitely generated module over A, and is thus finitely
generated by Exercise 3.6.X. ThusM is coherent. □

Hence most people can think of these three notions as the same thing.

13.6.3. Proposition. — The coherent A-modules form an abelian subcategory of the
category of A-modules.

The proof in general is given in §13.8 in a series of short exercises. You should
try them only if you are particularly curious.

Proof ifA is Noetherian. Recall from our discussion at the start of §13.4 that we must
check three things:

(i) The 0-module is coherent.
(ii) The category of coherent modules is closed under finite sums.

(iii) The category of coherent modules is closed under kernels and cokernels.

The first two are clear. For (iii), suppose that f : M → N is a map of finitely gen-
erated modules. Then coker f is finitely generated (it is the image of N), and ker f
is too (it is a submodule of a finitely generated module over a Noetherian ring,
Exercise 3.6.X). □

13.6.B. ⋆ EASY EXERCISE (ONLY IMPORTANT FOR NON-NOETHERIAN PEOPLE). Show
A is coherent as an A-module if and only if the notion of finitely presented agrees
with the notion of coherent.
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13.6.C. EXERCISE. If f ∈ A, show that if M is a finitely generated (resp. finitely
presented, coherent) A-module, then Mf is a finitely generated (resp. finitely pre-
sented, coherent) Af-module. (The “coherent” case is the tricky one.)

13.6.D. EXERCISE. If (f1, . . . , fn) = A, and Mfi is a finitely generated (resp.
finitely presented, coherent) Afi -module for all i, then M is a finitely generated
(resp. finitely presented, coherent) A-module. Hint for the finitely presented case:
Exercise 13.6.A.

13.6.4. Definition. A quasicoherent sheaf F is finite type (resp. finitely pre-
sented, coherent) if for every affine open SpecA, Γ(SpecA,F ) is a finitely gen-
erated (resp. finitely presented, coherent) A-module. Note that coherent sheaves
are always finite type, and that on a locally Noetherian scheme, all three notions
are the same (by Proposition 13.6.2). Proposition 13.6.3 implies that the coherent
sheaves on X form an abelian category, which we denote CohX.

Thanks to the Affine Communication Lemma 5.3.2, and the two previous ex-
ercises 13.6.C and 13.6.D, it suffices to check “finite typeness” (resp. finite presen-
tation, coherence) on the open sets in a single affine cover. Notice that finite rank
locally free sheaves are always finite type, and if OX is coherent, finite rank locally
free sheaves on X are coherent. (If OX is not coherent, then coherence is a pretty
useless notion on X.)

13.6.5. Associated points of coherent sheaves. Our discussion of associated points
in §5.5 immediately implies a notion of associated point for a coherent sheaf on
a locally Noetherian scheme, with all the good properties described in §5.5. (The
affine case was done there, and the only obstacle to generalizing them to coher-
ent sheaves was that we didn’t know what coherent sheaves were.) The phrase
associated point of a locally Noetherian scheme X (without explicit mention of
a coherent sheaf) means “associated point of OX”, and similarly for embedded
points.

13.6.6. Why coherence? Proposition 13.6.3 is a good motivation for the definition of
coherence: it gives a small (in a non-technical sense) abelian category in which we
can think about vector bundles.

There are two sorts of people who should care about the details of this defi-
nition, rather than living in a Noetherian world where coherent means finite type.
Complex geometers should care. They consider complex-analytic spaces with the
classical topology. One can define the notion of coherent OX-module in a way
analogous to this (see [Se1, Def. 2]). Then Oka’s Theorem states that the structure
sheaf of Cn (hence of any complex manifold) is coherent, and this is very hard (see
[GR, §2.5] or [Rem, §7.2]).

The second sort of people who should care are the sort of arithmetic people
who may need to work with non-Noetherian rings, see §3.6.21, or work in non-
archimedean analytic geometry.

Warning: it is not uncommon in the later literature to incorrectly define co-
herent as finitely generated. Please only use the correct definition, as the wrong
definition causes confusion. Besides doing this for the reason of honesty, it will
also help you see what hypotheses are actually necessary to prove things. And
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that always helps you remember what the proofs are — and hence why things are
true.

13.7 Pleasant properties of finite type and coherent sheaves

We begin with an exercise that Hom behaves reasonably if the source is coher-
ent.

13.7.A. EXERCISE.
(a) Suppose F is a coherent sheaf on X, and G is a quasicoherent sheaf on X. Show
that Hom(F ,G ) is a quasicoherent sheaf. Hint: Describe it on affine open sets, and
show that it behaves well with respect to localization with respect to f. To show
that HomA(M,N)f ∼= HomAf

(Mf,Nf), use Exercise 1.6.G. Up to here, you need
only the fact that F is finitely presented. (Aside: For an example of quasicoherent
sheaves F and G on a scheme X such that Hom(F ,G ) is not quasicoherent, let A
be a discrete valuation ring with uniformizer t, let X = SpecA, let F = M̃ and
G = Ñ with M = ⊕∞i=1A and N = A. Then Mt = ⊕∞i=1At, and of course Nt = At.
Consider the homomorphism ϕ : Mt → Nt sending 1 in the ith factor of Mt to
1/ti. Then ϕ is not the localization of any element of HomA(M,N).)
(b) If further G is coherent and OX is coherent, show that Hom(F ,G ) is also coher-
ent.
(c) Suppose F is a coherent sheaf on X, and G is a quasicoherent sheaf on X.
Show that Hom(F , ·) is a left-exact covariant functor QCohX → QCohX, and that
Hom(·,G ) is a left-exact contravariant functor CohX → QCohX (cf. Exercise 2.6.H).
(In fact left-exactness has nothing to do with coherence or quasicoherence — it is
true even for OX-modules, as remarked in §2.6.4. But the result is easier in the
category of quasicoherent sheaves.)

13.7.1. Duals of coherent sheaves. From Exercise 13.7.A(b), assuming OX is coher-
ent, if F is coherent, its dual F∨ := Hom(F ,OX) (see §2.3.4) is too. This gen-
eralizes the notion of duals of vector bundles in Exercise 13.1.C. Your argument
there generalizes to show that there is always a natural “double dual” morphism
F → (F∨)∨. Unlike in the vector bundle case, this is not always an isomor-
phism. (For an example, let F be the coherent sheaf associated to k[t]/(t) on
A1 = Speck[t], and show that F∨ = 0.) Coherent sheaves for which the “dou-
ble dual” morphism is an isomorphism are called reflexive sheaves, but we won’t
use this notion. The canonical map F ⊗ F∨ → OX is called the trace map — can
you see why?

13.7.B. EXERCISE. Suppose F is a finite rank locally free sheaf, and G is a quasico-
herent sheaf. Describe an isomorphism Hom(F ,G ) ∼= F∨ ⊗ G . (This holds more
generally if G is an O-module, but we won’t use that, so you may as well prove
the simpler result given in this exercise.)

13.7.C. EXERCISE. Suppose

(13.7.1.1) 0→ F → G →H → 0
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is an exact sequence of quasicoherent sheaves on a scheme X, where H is a locally
free quasicoherent sheaf, and suppose E is a quasicoherent sheaf. By left-exactness
of Hom (Exercise 2.6.H),

0→ Hom(H ,E )→ Hom(G ,E )→ Hom(F ,E )→ 0

is exact except possibly on the right. Show that it is also exact on the right. (Hint:
this is local, so you can assume that X is affine, say SpecA, and H = Ã⊕n, so
(13.7.1.1) can be written as 0 → M → N → A⊕n → 0. Show that this exact
sequence splits, so we can write N = M ⊕ A⊕n in a way that respects the exact
sequence.) In particular, if F , G , H , and OX are all coherent, and H is locally
free, then we have an exact sequence of coherent sheaves

0→H ∨ → G ∨ → F∨ → 0.

13.7.D. EXERCISE (THE SUPPORT OF A FINITE TYPE QUASICOHERENT SHEAF IS
CLOSED). Suppose F is a sheaf of abelian groups. Recall Definition 2.4.2 of
the support of a section s of F , and the definition (cf. Exercise 2.7.F(b)) of the sup-
port of F . (Support is a stalk-local notion, and hence behaves well with respect
to restriction to open sets, or to stalks. Warning: Support is where the germ(s) are
nonzero, not where the value(s) are nonzero.) Show that the support of a finite type
quasicoherent sheaf on a scheme X is a closed subset. (Hint: Reduce to the case X
affine. Choose a finite set of generators of the corresponding module.) Show that
the support of a quasicoherent sheaf need not be closed. (Hint: If A = C[t], then
C[t]/(t−a) is anA-module supported at a. Consider ⊕a∈CC[t]/(t−a). Be careful:
this example won’t work if ⊕ is replaced by

∏
.)

13.7.2. Remark. In particular, if X is a locally Noetherian scheme, the sheaf of
nilpotents (Exercise 13.3.G) is coherent and hence finite type, and thus has closed
support. This makes precise the statement promised in §4.2.1, that in good (Noe-
therian) situations, the fuzz on a scheme is supported on a closed subset. Also, as
promised in Remark 5.2.2, if X is a locally Noetherian scheme, the reduced locus
forms an open subset. (We already knew all of this as of Remark 5.5.5, but now we
know it twice as well.)

We next come to a geometric interpretation of Nakayama’s Lemma, which is
why Nakayama’s Lemma should be considered a geometric fact (with an algebraic
proof).

13.7.E. USEFUL EXERCISE: GEOMETRIC NAKAYAMA (GENERATORS OF A FIBER
GENERATE A FINITE TYPE QUASICOHERENT SHEAF NEARBY). Suppose X is a
scheme, and F is a finite type quasicoherent sheaf. Show that if U ⊂ X is an open
neighborhood of p ∈ X and a1, . . . , an ∈ F (U) so that their images a1|p, . . . , an|p
generate the fiber F |p (defined as Fp ⊗ κ(p), §4.3.7), then there is an affine open
neighborhood p ∈ SpecA ⊂ U of p such that “a1|SpecA, . . . , an|SpecA generate
F |SpecA” in the following senses:

(i) a1|SpecA, . . . , an|SpecA generate F (SpecA) as an A-module;
(ii) for any q ∈ SpecA, a1, . . . , an generate the stalk Fq as an OX,q-module

(and hence for any q ∈ SpecA, the fibers a1|q, . . . , an|q generate the fiber
F |q as a κ(q)-vector space).
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In particular, if Fp⊗κ(p) = 0, then there exists an open neighborhood V of p such
that F |V = 0.

13.7.F. USEFUL EXERCISE (LOCAL FREENESS OF A FINITELY PRESENTED SHEAF IS
A STALK-LOCAL PROPERTY; AND FREE STALKS IMPLY LOCAL FREENESS NEARBY).
Suppose F is a finitely presented sheaf on a scheme X. Show that if Fp is a free
OX,p-module for some p ∈ X, then F is locally free in some open neighborhood
of p. Hence F is locally free if and only if Fp is a free OX,p-module for all p ∈ X.
Hint: Find an open neighborhood U of p, and n elements of F (U) that generate
Fp. Using Geometric Nakayama, Exercise 13.7.E, show that the sections generate
Fq for all q in some open neighborhood Y of p in U. Thus you have described a
surjection O⊕n

Y → F |Y . Show that the kernel of this map is finite type, and hence
has closed support (say Z ⊂ Y), which does not contain p. Thus O⊕n

Y\Z
→ F |Y\Z is

an isomorphism.

This is enlightening in a number of ways. It shows that for finitely presented
sheaves, local freeness is a stalk-local condition. Furthermore, on an integral scheme,
any coherent sheaf F is automatically free over the generic point (do you see
why?), so every finitely presented sheaf on an integral scheme is locally free over
a dense open subset. And any finitely presented sheaf that is 0 at the generic point
of an irreducible scheme is necessarily 0 on a dense open subset. The last two sen-
tences show the utility of generic points; such statements would have been more
mysterious in classical algebraic geometry.

13.7.G. EXERCISE. (Torsion-free and torsion sheaves were defined in §13.5.5.)
(a) Show that torsion-free coherent sheaves on a regular (hence implicitly locally
Noetherian) curve are locally free.
(b) Show that torsion coherent sheaves on a quasicompact regular integral curve
are supported at a finite number of closed points.
(c) Suppose F is a coherent sheaf on a quasicompact (for convenience) regular
curve. Describe a canonical short exact sequence 0 → Ftors → F → Flf → 0,
where Ftor is a torsion sheaf, and Flf is locally free.

To answer Exercise 13.7.G, use Useful Exercise 13.7.F (local freeness can be
checked at stalks) to reduce to the discrete valuation ring case, and recall Re-
mark 12.5.14, the structure theorem for finitely generated modules over a princi-
pal ideal domainA: any such module can be written as the direct sum of principal
modules A/(a). For discrete valuation rings, this means that the summands are of
the form A or A/mk. Hence:

13.7.3. Proposition. — If M is a finitely generated module over a discrete valuation
ring, thenM is torsion-free if and only ifM is free.

(Exercise 24.2.B is closely related.)
Proposition 13.7.3 is false without the finite generation hypothesis: consider

M = K(A) for a suitably general ring A. It is also false if we give up the “di-
mension 1” hypothesis: consider (x, y) ⊂ C[x, y]. And it is false if we give up
the “regular” hypothesis: consider (x, y) ⊂ C[x, y]/(xy). (These examples require
some verification.) Hence Exercise 13.7.G(a) is false if we give up the “dimension
1” or “regular” hypothesis.
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13.7.4. Rank of a quasicoherent sheaf at a point.
Suppose F is a quasicoherent sheaf on a scheme X, and p is a point of X. The

vector space F |p := Fp/mFp = Fp ⊗OX,p
κ(p) can be interpreted as the fiber of

the sheaf at the point, where m is the maximal ideal of OX,p, and κ(p) is as usual
the residue field OX,p/m at p. A section of F over an open set containing p can be
said to take on a value at that point, which is an element of this vector space. The
rank of a quasicoherent sheaf F at a point p is dimκ(p) Fp/mFp (possibly infi-
nite). More explicitly, on any affine set SpecA where p = [p] and F (SpecA) =M,
then the rank is dimK(A/p)Mp/pMp. Note that this definition of rank is consistent
with the notion of rank of a locally free sheaf. In the locally free case, the rank
is a (locally) constant function of the point. The converse is sometimes true, see
Exercise 13.7.K below.

If X is irreducible, and F is a quasicoherent (usually coherent) sheaf on X,
then rank F (with no mention of a point) by convention means at the generic
point. (For example, a rank 0 quasicoherent sheaf on an integral scheme is a torsion
quasicoherent sheaf, see Definition 13.5.6.)

13.7.H. EXERCISE. Consider the coherent sheaf F on A1k = Spec k[t] correspond-
ing to the module k[t]/(t). Find the rank of F at every point of A1. Don’t forget
the generic point!

13.7.I. EXERCISE. Show that at any point, rank(F ⊕G ) = rank(F )+ rank(G ) and
rank(F ⊗ G ) = rank F rank G . (Hint: Show that direct sums and tensor products
commute with ring quotients and localizations, i.e., (M⊕N)⊗R (R/I) ∼=M/IM⊕
N/IN, (M ⊗R N) ⊗R (R/I) ∼= (M ⊗R R/I) ⊗R/I (N ⊗R R/I) ∼= M/IM ⊗R/I N/IM,
etc.)

If F is a finite type quasicoherent sheaf, then the rank of F at p is finite, and
by Nakayama’s Lemma, the rank is the minimal number of generators of Mp as
an Ap-module.

13.7.J. IMPORTANT EXERCISE. If F is a finite type quasicoherent sheaf on X, show
that rank(F ) is an upper semicontinuous function on X. Hint: generators at a
point p are generators nearby by Geometric Nakayama’s Lemma, Exercise 13.7.E.
(The example in Exercise 13.7.D shows the necessity of the finite type hypothesis.)

13.7.K. IMPORTANT HARD EXERCISE.
(a) If X is reduced, F is a finite type quasicoherent sheaf on X, and the rank is
constant, show that F is locally free. Then use upper semicontinuity of rank (Ex-
ercise 13.7.J) to show that finite type quasicoherent sheaves on an integral scheme
are locally free on a dense open set. (By examining your proof, you will see that the
integrality hypothesis can be relaxed. In fact, reducedness is all that is necessary.)
Hint: Reduce to the case where X is affine. Then show it in an open neighbor-
hood of an arbitrary point p as follows. Suppose n = rank F . Choose n genera-
tors of the fiber F |p (a basis as an κ(p)-vector space). By Geometric Nakayama’s
Lemma 13.7.E, we can find a smaller open neighborhood p ∈ SpecA ⊂ X, with
F |SpecA = M̃, so that the chosen generators F |p lift to generators m1, . . . , mn of
M. Let ϕ : A⊕n → M with (r1, . . . , rn) 7→ ∑ rimi. If kerϕ ̸= 0, then suppose
(r1, . . . , rn) is in the kernel, with r1 ̸= 0. As r1 ̸= 0, there is some p where r1 /∈ p —
here we use the reduced hypothesis. Then r1 is invertible in Ap, so Mp has fewer
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than n generators, contradicting the constancy of rank.
(b) Show that part (a) can be false without the condition of X being reduced. (Hint:
Consider A = k[x]/(x2),M = k.)

You can use the notion of rank to help visualize finite type quasicoherent
sheaves, or even quasicoherent sheaves. For example, I think of a coherent sheaf
as generalizing a finite rank vector bundle as follows: to each point there is an
associated vector space, and although the ranks can jump, they fit together in
families as well as one might hope. You might try to visualize the example of
Example 13.7.H. Nonreducedness can fit into the picture as well — how would
you picture the coherent sheaf on Speck[ϵ]/(ϵ2) corresponding to k[ϵ]/(ϵ)? How
about k[ϵ]/(ϵ2)⊕ k[ϵ]/(ϵ)?

13.7.5. Degree of a finite morphism at a point. Suppose π : X→ Y is a finite morphism.
Then π∗OX is a finite type (quasicoherent) sheaf on Y, and the rank of this sheaf at
a point p is called the degree of the finite morphism at p. By Exercise 13.7.J, the
degree of π is a upper semicontinuous function on Y. The degree can jump: con-
sider the closed embedding of a point into a line corresponding to k[t] → k given
by t 7→ 0. It can also be constant in cases that you might initially find surprising —
see Exercise 9.3.3, where the degree is always 2, but the 2 is obtained in a number
of different ways.

13.7.L. EXERCISE. Suppose π : X→ Y is a finite morphism. By unwinding the defi-
nition, verify that the degree of π at p is the dimension of the space of functions of
the scheme-theoretic preimage of p, considered as a vector space over the residue
field κ(p). In particular, the degree is zero if and only if π−1(p) is empty.

13.8 ⋆⋆ Coherent modules over non-Noetherian rings

This section is intended for people who might work with non-Noetherian rings,
or who otherwise might want to understand coherent sheaves in a more general
setting. Read this only if you really want to!

Suppose A is a ring. Recall the definition of when an A-module M is finitely
generated, finitely presented, and coherent. The reason we like coherence is that
coherent modules form an abelian category. Here are some accessible exercises
working out why these notions behave well. Some repeat earlier discussion in
order to keep this section self-contained.

The notion of coherence of a module is only interesting in the case that a ring is
coherent over itself. Similarly, coherent sheaves on a scheme X will be interesting
only when OX is coherent (“over itself”). In this case, coherence is clearly the
same as finite presentation. An example where non-Noetherian coherence comes
up is the ring R⟨x1, . . . , xn⟩ of “restricted power series” over a valuation ring R of
a non-discretely valued K (for example, a completion of the algebraic closure of
Qp). This is relevant to Tate’s theory of non-archimedean analytic geometry over
K (which you can read about in [BCDKT], for example). The importance of the
coherence of the structure sheaf underlines the importance of Oka’s Theorem in
complex geometry (stated in §13.6.5).
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13.8.A. EXERCISE. Show that coherent implies finitely presented implies finitely
generated. (This was discussed at the start of §13.6.)

13.8.B. EXERCISE. Show that 0 is coherent.

Suppose for problems 13.8.C–13.8.I that

(13.8.0.1) 0→M→ N→ P → 0

is an exact sequence of A-modules. In this series of problems, we will show that if
two of {M,N, P} are coherent, the third is as well, which will prove very useful.

13.8.1. Hint †. The following hint applies to several of the problems: try to write

0 // A⊕p //

��

A⊕(p+q) //

��

A⊕q //

��

0

0 //M // N // P // 0

and possibly use the Snake Lemma 1.7.5.

13.8.C. EXERCISE. Show that N finitely generated implies P finitely generated.
(You will only need right-exactness of (13.8.0.1).)

13.8.D. EXERCISE. Show thatM, P finitely generated impliesN finitely generated.
Possible hint: †. (You will only need right-exactness of (13.8.0.1).)

13.8.E. EXERCISE. Show that N,P finitely generated need not imply M finitely
generated. (Hint: if I is an ideal, we have 0→ I→ A→ A/I→ 0.)

13.8.F. EXERCISE. Show thatN coherent,M finitely generated impliesM coherent.
(You will only need left-exactness of (13.8.0.1).)

13.8.G. EXERCISE. Show thatN, P coherent impliesM coherent. Hint for (i) in the
definition of coherence (§13.6.1):

A⊕q

��

##G
GG

GG
GG

G

A⊕p

�� !!C
CC

CC
CC

CC

0 //M

��

// N

��

// P //

��>
>>

>>
>>

> 0

0 0 0

(You will only need left-exactness of (13.8.0.1).)

13.8.H. EXERCISE. Show that M finitely generated and N coherent implies P
coherent. Hint for (ii) in the definition of coherence (§13.6.1) : †.

13.8.I. EXERCISE. Show thatM, P coherent implies N coherent. (Hint: †.)

13.8.J. EXERCISE. Show that a finite direct sum of coherent modules is coherent.
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13.8.K. EXERCISE. Suppose M is finitely generated, N coherent. Then if ϕ : M →
N is any map, then show that Imϕ is coherent.

13.8.L. EXERCISE. Show that the kernel and cokernel of maps of coherent modules
are coherent.

At this point, we have verified that coherent A-modules form an abelian sub-
category of the category of A-modules. (Things you have to check: 0 should be
in this set; it should be closed under finite sums; and it should be closed under
taking kernels and cokernels.)

13.8.M. EXERCISE. Suppose M and N are coherent submodules of the coherent
module P. Show that M + N and M ∩ N are coherent. (Hint: consider the right
mapM⊕N→ P.)

13.8.N. EXERCISE. Show that if A is coherent (as an A-module) then finitely pre-
sented modules are coherent. (Of course, if finitely presented modules are coher-
ent, then A is coherent, as A is finitely presented!)

13.8.O. EXERCISE. IfM is finitely presented andN is coherent, show that Hom(M,N)
is coherent. (Hint: Hom is left-exact in its first argument.)

13.8.P. EXERCISE. IfM is finitely presented, andN is coherent, show thatM⊗AN
is coherent.

13.8.Q. EXERCISE. If f ∈ A, show that if M is a finitely generated (resp. finitely
presented, coherent) A-module, then Mf is a finitely generated (resp. finitely pre-
sented, coherent) Af-module. (Hint: localization is exact, Exercise 1.6.F(a).) This
exercise is repeated from Exercise 13.6.C to make this section self-contained.

13.8.R. EXERCISE. Suppose (f1, . . . , fn) = A. Show that ifMfi is finitely generated
for all i, then M is too. (Hint: SayMfi is generated bymij ∈M as an Afi -module.
Show that the mij generate M. To check surjectivity ⊕i,jA → M, it suffices to
check “on D(fi)” for all i.)

13.8.S. EXERCISE. Suppose (f1, . . . , fn) = A. Show that if Mfi is coherent for all i,
then M is too. (Hint: if ϕ : A⊕p → M, then (kerϕ)fi = ker(ϕfi), which is finitely
generated for all i. Then apply the previous exercise.)





CHAPTER 14

Line bundles: Invertible sheaves and divisors

We next describe convenient and powerful ways of working with and classify-
ing line bundles (invertible sheaves). We begin with a fundamental example, the
line bundles O(n) on projective space, §14.1. We then introduce Weil divisors (for-
mal sums of codimension 1 subsets), and use them to determine PicX in a number
of circumstances, §14.2. We finally discuss sheaves of ideals that happen to be in-
vertible (effective Cartier divisors), §14.3. A central theme is that line bundles are
closely related to “codimension 1 information”.

14.1 Some line bundles on projective space

We now describe an important family of invertible sheaves on projective space
over a field k.

As a warm-up, we begin with the invertible sheaf OP1
k
(1) on P1k = Projk[x0, x1].

The subscript P1k refers to the space on which the sheaf lives, and is often omitted
when it is clear from the context. We describe the invertible sheaf O(1) using transi-
tion functions. It is trivial on the usual affine open sets U0 = D(x0) = Speck[x1/0]
and U1 = D(x1) = Speck[x0/1]. (We continue to use the convention xi/j for de-
scribing coordinates on patches of projective space, see §4.4.9.) Thus the data of
a section over U0 is a polynomial in x1/0. The transition function from U0 to U1
is multiplication by x0/1 = x−1

1/0
. The transition function from U1 to U0 is hence

multiplication by x1/0 = x−10/1.
This information is summarized below:

open cover U0 = Spec k[x1/0] U1 = Spec k[x0/1]

trivialization and transition functions k[x1/0]

×x0/1=x
−1
1/0

--
k[x0/1]

×x1/0=x
−1
0/1

mm

To test our understanding, let’s compute the global sections of O(1). This will
generalize our hands-on calculation that Γ(P1k,OP1

k
) ∼= k (Example 4.4.6). A global

section is a polynomial f(x1/0) ∈ k[x1/0] and a polynomial g(x0/1) ∈ k[x0/1] such
that f(1/x0/1)x0/1 = g(x0/1). A little thought will show that f must be linear:
f(x1/0) = ax1/0 + b, and hence g(x0/1) = a+ bx0/1. Thus

dim Γ(P1k,O(1)) = 2 ̸= 1 = dim Γ(P1k,O).

397
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Thus O(1) is not isomorphic to O , and we have constructed our first (proved) ex-
ample of a nontrivial line bundle!

We next define more generally OP1
k
(n) on P1k. It is defined in the same way,

except that the transition functions are the nth powers of those for O(1).

open cover U0 = Spec k[x1/0] U1 = Spec k[x0/1]

trivialization and transition functions k[x1/0]

×xn0/1=x
−n
1/0

--
k[x0/1]

×xn1/0=x
−n
0/1

mm

In particular, thanks to the explicit transition functions, we see that O(n) = O(1)⊗n

(with the obvious meaning if n is negative: (O(1)⊗(−n))∨). Clearly also O(m) ⊗
O(n) = O(m+ n).

14.1.A. IMPORTANT EXERCISE. Show that dim Γ(P1,O(n)) = n+ 1 if n ≥ 0, and 0
otherwise.

14.1.1. Example. Long ago (in Exercise 2.6.J(a)), we warned that sheafification
was necessary when tensoring OX-modules: if F and G are two OX-modules on a
ringed space, then it is not necessarily true that F (X)⊗OX(X) G (X) ∼= (F ⊗ G )(X).
We now have an example: let X = P1k, F = O(1), G = O(−1), and use the fact that
O(−1) has no nonzero global sections.

14.1.B. EXERCISE. Show that if m ̸= n, then O(m) ̸∼= O(n). Hence conclude that
we have an injection of groups Z ↪→ PicP1k given by n 7→ O(n).

It is useful to identify the global sections of O(n) with the homogeneous poly-
nomials of degree n in x0 and x1, i.e., with the degree n part of k[x0, x1] (cf.
§14.1.2 for the generalization to Pm). Can you see this from your solution to Ex-
ercise 14.1.A? We will see that this identification is natural in many ways. For
example, you can show that the definition of O(n) doesn’t depend on a choice of
affine cover, and this polynomial description is also independent of cover. (For
this, see Example 4.5.12; you can later compare this to Exercise 28.1.M.) As an im-
mediate check of the usefulness of this point of view, ask yourself: where does the
section x30 − x0x

2
1 of O(3) vanish? The section x0 + x1 of O(1) can be multiplied by

the section x20 of O(2) to get a section of O(3). Which one? Where does the rational
section x40(x1 + x0)/x

7
1 of O(−2) have zeros and poles, and to what order? (We

saw the notion of zeros and poles in Definition 12.5.7, and will meet them again in
§14.2, but you should intuitively answer these questions already.)

We now define the invertible sheaf OPm
k
(n) on the projective space Pmk . On the

usual affine open set Ui = Speck[x0/i, . . . , xm/i]/(xi/i − 1) = SpecAi, it is trivial,
so sections (as an Ai-module) are isomorphic to Ai. The transition function from
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Ui to Uj is multiplication by xni/j = x
−n
j/i

.

Ui = Spec k[x0/i, . . . , xm/i]/(xi/i − 1) Uj = Speck[x0/j, . . . , xm/j]/(xj/j − 1)

k[x0/i, . . . , xm/i]/(xi/i − 1)

×xni/j=x
−n
j/i ..

k[x0/j, . . . , xm/j]/(xj/j − 1)
×xnj/i=x

−n
i/j

nn

Note that these transition functions clearly satisfy the cocycle condition.

14.1.C. ESSENTIAL EXERCISE (CF. EXERCISE 8.2.K). Show that dimk Γ(Pmk ,OPm
k
(n)) =(

m+n
m

)
.

14.1.2. As in the case of P1, sections of O(n) on Pmk are naturally identified with
homogeneous degree n polynomials in our m + 1 variables. (Important question:
Do you see why? Can you work out this dictionary?) Thus x + y + 2z is a section
of O(1) on P2. It isn’t a function, but we know where this section vanishes —
precisely where x+ y+ 2z = 0.

Also, notice that for fixed m,
(
m+n
m

)
is a polynomial in n of degree m for

n ≥ 0 (or better: for n ≥ −m). This should be telling you that this function
“wants to be a polynomial,” but won’t succeed without assistance. We will later
define h0(Pmk ,O(n)) := dimk Γ(Pmk ,O(n)), and later still we will define higher
cohomology groups, and we will define the Euler characteristic χ(Pmk ,O(n)) :=∑∞
i=0(−1)

ihi(Pmk ,O(n)) (cohomology will vanish in degree higher than m). We
will discover the moral that the Euler characteristic is better-behaved than h0, and
so we should now suspect (and later prove, see Theorem 18.1.3, Remark r:preproof,
and Exercise 18.3.B) that this polynomial is in fact the Euler characteristic, and the
reason that it agrees with h0 for n ≥ 0 is because all the other cohomology groups
should vanish.

We finally note that we can define O(n) on PmA for any ring A: the above
definition applies without change.

14.1.3. These are the only line bundles on Pmk .
Suppose that k is a field. We will see in §14.2.9 that these O(n) are the only

invertible sheaves on Pmk . The next Exercise shows this whenm = 1, although this
approach will soon be trumped.

14.1.D. EXERCISE. Show that every invertible sheaf on P1k is of the form O(n) for
some n. Hint: use the classification of finitely generated modules over a principal
ideal domain (Remark 12.5.14) to show that all invertible sheaves on A1k are triv-
ial (a special case of Exercise 13.2.C). Reduce to determining possible transition
functions between the two open subsets in the standard cover of P1k.

Caution: there can exist invertible sheaves on P1A not of the form O(n). You
may later be able to think of examples. (Hints to find an example for when you
know more: what if SpecA is disconnected? Or if that leads to too silly an example,
what if SpecA has nontrivial invertible sheaves?)
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14.2 Line bundles and Weil divisors

The notion of Weil divisors gives a great way of understanding and classifying
line bundles, at least on Noetherian normal schemes. Some of what we discuss will
apply in more general circumstances, and the expert is invited to consider gener-
alizations by judiciously weakening hypotheses in various statements. Before we
get started, you should be warned: this is one of those topics in algebraic geome-
try that is hard to digest — learning it changes the way in which you think about
line bundles. But once you become comfortable with the imperfect dictionary to
divisors, it becomes second nature.

For the rest of this section, we consider only Noetherian schemes. We do this be-
cause we will use finite decomposition into irreducible components (Exercise 5.3.B),
and Algebraic Hartogs’s Lemma 11.3.11.

Define a Weil divisor as a formal Z-linear combination of codimension 1 ir-
reducible closed subsets of X. In other words, a Weil divisor is defined to be an
object of the form ∑

Y ⊂ X codimension 1

nY [Y]

where the nY are integers, all but a finite number of which are zero. Weil divisors
obviously form an abelian group, denoted WeilX. For example, if X is a curve, the
Weil divisors are linear combinations of closed points.

We say that [Y] is an irreducible (Weil) divisor. A Weil divisor D =
∑
nY [Y]

is said to be effective if nY ≥ 0 for all Y. In this case we say D ≥ 0, and by
D1 ≥ D2 we mean D1 − D2 ≥ 0. The support of a Weil divisor D, denoted
SuppD, is the subset ∪nY ̸=0Y. If U ⊂ X is an open set, we define the restriction
map WeilX→WeilU by

∑
nY [Y] 7→∑Y∩U̸=∅ nY [Y ∩U].

Suppose now that X is regular in codimension 1. We add this hypothesis because
we will use properties of discrete valuation rings. Assume also that X is reduced.
(This is only so we can talk about rational functions without worrying about them
being defined at embedded points. Feel free to relax this hypothesis.) Suppose
that L is an invertible sheaf, and s a rational section not vanishing everywhere on
any irreducible component of X. (Rational sections are given by a section over a
dense open subset of X, with the obvious equivalence, §13.1.7.) Then s determines
a Weil divisor

div(s) :=
∑
Y

valY(s)[Y]

where the summation runs over all irreducible divisors Y of X. We call div(s)
the divisor of zeros and poles of the rational section s (cf. Definition 12.5.7). To
determine the valuation valY(s) of s along Y, take any open set U containing the
generic point of Y where L is trivializable, along with any trivialization over U;
under this trivialization, s is a nonzero rational function on U, which thus has a
valuation. Any two such trivializations differ by an invertible function (transition
functions are invertible), so this valuation is well-defined. Note that valY(s) = 0

for all but finitely many Y, by Exercise 12.5.G.
Now consider the set {(L , s)} of pairs of line bundles L with nonzero rational

sections s of L , up to isomorphism. This set (after taking quotient by isomorphism)
forms an abelian group under tensor product ⊗, with identity (OX, 1). (Tricky
question: what is the inverse of (L , s) in this group?) It is important to notice that
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if t is an invertible function on X, then multiplication by t gives an isomorphism
(L , s) ∼= (L , st). Similarly, (L , s)/(L , u) = (O, s/u). The map div yields a group
homomorphism

(14.2.0.1) div : {(L , s)}/isomorphism→WeilX.

14.2.A. EASIER EXERCISE.
(a) (divisors of rational functions) Verify that on A1k, div(x3/(x+1)) = 3[(x)]−[(x+1)]
(“= 3[0] − [−1]”).
(b) (divisor of rational sections of a nontrivial invertible sheaf) On P1k, there is a rational
section of O(1) “corresponding to” x2/(x + y). Figure out what this means, and
calculate div(x2/(x+ y)).

The homomorphism (14.2.0.1) will be the key to determining all the line bun-
dles on many X. (Note that any invertible sheaf will have such a rational section.
For each irreducible component, take a nonempty open set not meeting any other
irreducible component; then shrink it so that L is trivial; choose a trivialization;
then take the union of all these open sets, and choose the section on this union cor-
responding to 1 under the trivialization.) We will see that in reasonable situations,
this map div will be injective, and often an isomorphism. Thus by forgetting the
rational section (i.e., taking an appropriate quotient), we will have described the
Picard group of all line bundles. Let’s put this strategy into action.

14.2.1. Proposition. — If X is normal and Noetherian then the map div is injective.

Proof. Suppose div(L , s) = 0. Then s has no poles. By Exercise 13.1.K, s is a regular
section. We now show that the morphism ×s : OX → L is in fact an isomorphism;
this will prove the Proposition, as it will give an isomorphism (OX, 1) ∼= (L , s).

It suffices to show that ×s is an isomorphism on an open subset U of X where
L is trivial, as X is covered by trivializing open neighborhoods of L (as L is
locally trivial). Choose an isomorphism i : L |U → OU. Composing ×s with i
yields a map ×s ′ : OU → OU that is multiplication by a rational function s ′ = i(s)
that has no zeros and no poles. The rational function s ′ is regular because it has
no poles (Exercise 12.5.H), and 1/s ′ is regular for the same reason. Thus s ′ is an
invertible function on U, so ×s ′ is an isomorphism. Hence ×s is an isomorphism
over U. □

Motivated by this, we try to find an inverse to div, or at least to determine the
image of div.

14.2.2. Important Definition. Assume now that X is irreducible (purely to avoid
making (14.2.2.1) look uglier — but feel free to relax this, see Exercise 14.2.B). As-
sume also that X is normal — this will be a standing assumption for the rest of
this section. Suppose D is a Weil divisor. Define the sheaf OX(D) by

(14.2.2.1) Γ(U,OX(D)) := {t ∈ K(X)× : div |Ut+D|U ≥ 0} ∪ {0}.

Here div |Utmeans take the divisor of t considered as a rational function onU, i.e.,
consider just the irreducible divisors of U. (The subscript X in OX(D) is omitted
when it is clear from context.) The sections of OX(D) over U are the rational func-
tions on U that have poles and zeros “constrained by D”: a positive coefficient
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in D allows a pole of that order; a negative coefficient demands a zero of that or-
der. Away from the support of D, this is (isomorphic to) the structure sheaf (by
Algebraic Hartogs’s Lemma 11.3.11).

14.2.3. Remark. It will be helpful to note that OX(D) comes along with a canonical
“rational section” corresponding to 1 ∈ K(X)×. (It is a rational section in the sense
that it is a section over a dense open set, namely the complement of SuppD.)

14.2.B. LESS IMPORTANT EXERCISE. Generalize the definition of OX(D) to the case
when X is not necessarily irreducible. (This is just a question of language. Once
you have done this, feel free to drop this hypothesis in the rest of this section.)

14.2.C. EASY EXERCISE. Verify that OX(D) is a quasicoherent sheaf. (Hint: the
distinguished affine criterion for quasicoherence of Exercise 13.3.D.)

In good situations, OX(D) is an invertible sheaf. For example, let X = A1k.
Consider

OX (−2[(x)] + [(x− 1)] + [(x− 2)]) ,

often written O(−2[0] + [1] + [2]) for convenience. Then 3x3/(x − 1) is a global
section; it has the required two zeros at x = 0 (and even one to spare), and takes
advantage of the allowed pole at x = 1, and doesn’t have a pole at x = 2, even
though one is allowed. (Unimportant aside: the statement remains true in charac-
teristic 2, although the explanation requires editing.)

14.2.D. EASY EXERCISE. (This is a consequence of later discussion as well, but
you should be able to do this by hand.)
(a) Show that any global section of OA1

k
(−2[(x)] + [(x − 1)] + [(x − 2)]) is a k[x]-

multiple of x2/(x− 1)(x− 2).
(b) Extend the argument of (a) to give an isomorphism

OA1
k
(−2[(x)] + [(x− 1)] + [(x− 2)]) ∼= OA1

k
.

In the next several exercises, we show that in good circumstances, OX(D) is an
invertible sheaf. (In fact the OX(D) construction can be useful even if OX(D) is not
an invertible sheaf, but this won’t concern us here. An example of an OX(D) that
is not an invertible sheaf is given in Exercise 14.2.H.)

14.2.E. HARD BUT IMPORTANT EXERCISE. Suppose L is an invertible sheaf, and
s is a nonzero rational section of L .
(a) Describe an isomorphism O(div s) ∼= L . (You will use the normality hypoth-
esis!) Hint: show that those open subsets U for which O(div s)|U ∼= OU form a
base for the Zariski topology. For each such U, define ϕU : O(div s)(U) → L (U)
sending a rational function t (with zeros and poles “constrained by div s”) to st.
Show that ϕU is an isomorphism (with the obvious inverse map, division by s).
Argue that this map induces an isomorphism of sheaves ϕ : O(div s)→ L .
(b) Let σ be the map from K(X) to the rational sections of L , where σ(t) is the ra-
tional section of OX(D) ∼= L defined via (14.2.2.1) (as described in Remark 14.2.3).
Show that the isomorphism of (a) can be chosen such that σ(1) = s. (Hint: the map
in part (a) sends 1 to s.)
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14.2.F. EXERCISE (THE EXAMPLE OF §14.1). Suppose X = Pnk , L = O(1), s is
the section of O(1) corresponding to x0, and D = div s. Verify that O(mD) ∼=
O(m), and the canonical rational section of O(mD) is precisely sm. (Watch out for
possible confusion: 1 has no pole along x0 = 0, but σ(1) = sm does have a zero if
m > 0.) For this reason, O(1) is sometimes called the hyperplane class in PicX.
(Of course, x0 can be replaced by any linear form.)

14.2.4. Definition. IfD is a Weil divisor on (Noetherian normal irreducible) X such
that D = div f for some rational function f, we say that D is principal. Principal
divisors clearly form a subgroup of WeilX; denote this group of principal divisors
PrinX. Note that div induces a group homomorphism K(X)× → PrinX. If X can be
covered with open sets Ui such that on Ui, D is principal, we say that D is locally
principal. Locally principal divisors form a subgroup of WeilX, which we denote
LocPrinX. (This notation is not standard.)

14.2.5. Important observation. As a consequence of Exercise 14.2.E(a) (taking
L = O), ifD is principal (and X is normal, a standing hypothesis), then O(D) ∼= O .
(Diagram (14.2.7.1) will imply that the converse holds: if O(D) ∼= O , thenD is prin-
cipal.) Thus if D is locally principal, OX(D) is locally isomorphic to OX — OX(D) is
an invertible sheaf.

14.2.G. IMPORTANT EXERCISE. Suppose OX(D) is an invertible sheaf.
(a) Show that div(σ(1)) = D, where σ was defined in Exercise 14.2.E(b).
(b) Show the converse to Observation 14.2.5: show that D is locally principal.

14.2.6. Remark. In definition (14.2.2.1), it may seem cleaner to consider those s
such that div s ≥ D|U. The reason for the convention comes from our desire that
divσ(1) = D. (Taking the “opposite” convention would yield the dual bundle, in
the case where D is locally principal.)

14.2.H. LESS IMPORTANT EXERCISE: A WEIL DIVISOR THAT IS NOT LOCALLY PRIN-
CIPAL. Let X = Speck[x, y, z]/(xy − z2), a cone, and let D be the line z = x = 0

(see Figure 12.1).
(a) Show thatD is not locally principal. (Hint: consider the stalk at the origin. Use
the Zariski tangent space, see Problem 12.1.3.) In particular OX(D) is not an invert-
ible sheaf.
(b) Show that div(x) = 2D. This corresponds to the fact that the plane x = 0 is
tangent to the cone X along D.

14.2.I. IMPORTANT EXERCISE. If X is Noetherian and factorial, show that for
any Weil divisor D, O(D) is an invertible sheaf. (Hint: It suffices to deal with
the case where D is irreducible, say D = [Y], and to cover X by open sets so that
on each open set U there is a function whose divisor is [Y ∩ U]. One open set
will be X − Y. Next, we find an open set U containing an arbitrary p ∈ Y, and a
function onU. As OX,p is a unique factorization domain, the prime corresponding
to Y is codimension 1 and hence principal by Lemma 11.1.6. Let f be a generator
of this prime ideal, interpreted as an element of K(X). It is regular at p, it has a
finite number of zeros and poles, and through p, [Y] is the “only zero” (the only
component of the divisor of zeros). Let U be X minus all the other zeros and
poles.)
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14.2.7. The class group. We can now get a handle on the Picard group of a
normal Noetherian scheme. Define the class group of X, ClX, by WeilX/PrinX.
By taking the quotient of the inclusion (14.2.0.1) by PrinX, we have the inclusion
PicX ↪→ ClX. This is summarized in the convenient and enlightening diagram.

(14.2.7.1) {(L , s)}/iso.

��

∼

div
// LocPrinX

(O(D),σ(1))←[D
tt

/ PrinX
��

� � // WeilX

/ PrinX
��

PicX {L }/iso. ∼ // LocPrinX/PrinX �
� //

O(D)←[Djj
ClX

This diagram is very important, and although it is short to state, it takes time to
digest.

In particular, if A is a unique factorization domain, then all Weil divisors on
SpecA are principal by Lemma 11.1.6, so Cl SpecA = 0, and hence Pic SpecA = 0.

14.2.8. As k[x1, . . . , xn] has unique factorization, Cl(Ank ) = 0, so Pic(Ank ) = 0 .
Geometers might find this believable — “Cn is a contractible manifold, and hence
should have no nontrivial line bundles” — even if some caution is in order, as
the kinds of line bundles being considered are entirely different: holomorphic vs.
topological or C∞. (Aside: for this reason, you might expect that Ank also has no
nontrivial vector bundles. This is the Quillen-Suslin Theorem, formerly known as
Serre’s Conjecture, part of Quillen’s work leading to his 1978 Fields Medal. The
case n = 1was Exercise 13.2.C. For a short proof by Vaserstein, see [Lan, p. 850].)

Removing a closed subset of X of codimension greater than 1 doesn’t change
the class group, as it doesn’t change the Weil divisor group or the principal divi-
sors. (Warning: it can affect the Picard group, see Exercise 14.2.Q.)

Removing a subset of codimension 1 changes the Weil divisor group in a con-
trollable way. Suppose Z is an irreducible codimension 1 subset of X. Then we
clearly have an exact sequence:

0 // Z
17→[Z] // WeilX // Weil(X− Z) // 0.

When we take the quotient by principal divisors, taking into account the fact that
we may lose exactness on the left, we get an excision exact sequence for class
groups:

(14.2.8.1) Z
17→[Z] // ClX // Cl(X− Z) // 0.

(Do you see why?)
For example, if U is an open subscheme of X = An, PicU = {0}.
As another application, let X = Pnk , and Z be the hyperplane x0 = 0. We have

Z // ClPnk // ClAnk // 0

from which ClPnk is generated by the class [Z], and PicPnk is a subgroup of this.

14.2.9. By Exercise 14.2.F, [Z] 7→ O(1), and as O(n) is nontrivial for n ̸= 0 (Exer-
cise 14.1.B), [Z] is not torsion in ClPnk . Hence Pic(Pnk ) ↪→ Cl(Pnk ) is an isomorphism,
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and Pic(Pnk ) ∼= Z , with generator O(1). The degree of an invertible sheaf on Pn is
defined using this: define deg O(d) to be d.

We have gotten good mileage from the fact that the Picard group of the spec-
trum of a unique factorization domain is trivial. More generally, Exercise 14.2.I
gives us:

14.2.10. Proposition. — If X is Noetherian and factorial, then for any Weil divisor D,
O(D) is invertible, and hence the map PicX→ ClX is an isomorphism.

This can be used to make the connection to the class group in number theory
precise, see Exercise 13.1.M; see also §14.2.13.

14.2.11. Mild but important generalization: twisting line bundles by divisors. The
above constructions can be extended, with OX replaced by an arbitrary invertible
sheaf, as follows. Let L be an invertible sheaf on a normal Noetherian scheme X.
Then define L (D) by OX(D)⊗ L .

14.2.J. EASY EXERCISE.
(a) Assume for convenience that X is irreducible. Show that sections of L (D) can
be interpreted as rational sections of L with zeros and poles constrained by D,
just as in (14.2.2.1):

Γ(U,L (D)) := {t nonzero rational section of L : div |Ut+D|U ≥ 0} ∪ {0}.

(b) Suppose D1 and D2 are locally principal. Show that

(O(D1))(D2) ∼= O(D1 +D2).

14.2.12. Fun examples.
We can now actually calculate some Picard and class groups. First, a useful ob-

servation: notice that you can restrict invertible sheaves on Y to any subscheme X,
and this can be a handy way of checking that an invertible sheaf is not trivial. Effec-
tive Cartier divisors (§8.4.1) sometimes restrict too: if you have an effective Cartier
divisor on Y, then it restricts to a closed subscheme on X, locally cut out scheme-
theoretically by one equation. If you are fortunate and this equation doesn’t vanish
on any associated point of X (§13.6.5), then you get an effective Cartier divisor on
X. You can check that the restriction of effective Cartier divisors corresponds to
restriction of invertible sheaves (in the sense of Exercise 13.1.H).

14.2.K. EXERCISE: A TORSION PICARD GROUP. Suppose that Y is a hypersurface in
Pnk corresponding to an irreducible degree d polynomial. Show that Pic(Pnk −Y) ∼=
Z/(d). (For differential geometers: this is related to the fact that π1(Pnk − Y) ∼=
Z/(d).) Hint: (14.2.8.1).

The next two exercises explore consequences of Exercise 14.2.K, and provide
us with some examples promised in Exercise 5.4.N.

14.2.L. EXERCISE (GENERALIZING EXERCISE 5.4.N). Keeping the same notation,
assume d > 1 (so Pic(Pn − Y) ̸= 0), and let H0, . . . , Hn be the n + 1 coordinate
hyperplanes on Pn. Show that Pn − Y is affine, and Pn − Y −Hi is a distinguished
open subset of it. Show that the Pn − Y −Hi form an open cover of Pn − Y. Show
that Pic(Pn − Y − Hi) = 0. Then by Exercise 14.2.T, each Pn − Y − Hi is the Spec
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of a unique factorization domain, but Pn − Y is not. Thus the property of being a
unique factorization domain is not an affine-local property — it satisfies only one
of the two hypotheses of the Affine Communication Lemma 5.3.2.

14.2.M. EXERCISE. Keeping the same notation as the previous exercise, show that
on Pn − Y, Hi (restricted to this open set) is an effective Cartier divisor that is not
cut out by a single equation. (Hint: Otherwise it would give a trivial element of
the class group.)

14.2.N. EXERCISE. Show thatA := R[x, y]/(x2+y2−1) is not a unique factorization
domain, but A⊗R C is. Hint: Exercise 14.2.L.

14.2.O. EXERCISE: PICARD GROUP OF P1 × P1. Consider

X = P1k ×k P1k ∼= Projk[w, x, y, z]/(wz− xy),

a smooth quadric surface (see Figure 8.2, and Example 9.6.2). Show that PicX ∼=
Z ⊕ Z as follows: Show that if L = {∞} ×k P1 ⊂ X and M = P1 ×k {∞} ⊂ X, then
X − L −M ∼= A2. This will give you a surjection Z ⊕ Z ↠ ClX. Show that O(L)
restricts to O on L and O(1) on M. Show that O(M) restricts to O on M and O(1)
on L. (This exercise takes some time, but is enlightening.)

14.2.P. EXERCISE. Show that irreducible smooth projective surfaces (over k) can
be birational but not isomorphic. Hint: show P2 is not isomorphic to P1×P1 using
the Picard group. (Aside: we will see in Exercise 20.2.D that the Picard group of
the “blown up plane” is Z2, but in Exercise 20.2.E we will see that the blown up
plane is not isomorphic to P1 × P1, using a little more information in the Picard
group.)

This is unlike the case for curves: birational irreducible smooth projective
curves (over k) must be isomorphic, as we will see in Theorem 17.4.3. Nonetheless,
any two surfaces are related in a simple way: if X and X ′ are projective, regular,
and birational, then X can be sequentially blown up at judiciously chosen points,
and X ′ can too, such that the two results are isomorphic (see [Ha1, Thm. V.5.5];
blowing up will be discussed in Chapter 22).

14.2.Q. EXERCISE: PICARD GROUP OF THE CONE. Let X = Speck[x, y, z]/(xy−z2),
a cone, where char k ̸= 2. (The characteristic hypothesis is not necessary for the
result, but is included so you can use Exercise 5.4.H to show normality of X.) Show
that PicX = 0, and ClX ∼= Z/2. Hint: show that the class of Z = {x = z = 0} (the
“affine cone over a line”) generates ClX by showing that its complement D(x) is
isomorphic to an open subset of A2k. Show that 2[Z] = div(x) and hence principal,
and that Z is not principal, Exercise 14.2.H. (Remark: You know enough to show
that X−{(0, 0, 0)} is factorial. So although the class group is insensitive to removing
loci of codimension greater than 1, §14.2.8, this is not true of the Picard group.)

A Weil divisor (on a normal scheme) with a nonzero multiple corresponding
to a line bundle is called Q-Cartier. (We won’t use this terminology beyond the
next exercise.) Exercise 14.2.Q gives an example of a Weil divisor that does not
correspond to a line bundle, but is nonetheless Q-Cartier. We now give an example
of a Weil divisor that is not Q-Cartier.
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14.2.R. EXERCISE (A NON-Q-CARTIER DIVISOR). On the cone over the smooth
quadric surface X = Spec k[w, x, y, z]/(wz − xy), let Z be the Weil divisor cut out
by w = x = 0. Exercise 12.1.D showed that Z is not cut out scheme-theoretically
by a single equation. Show more: that if n ̸= 0, then n[Z] is not locally principal.
Hint: show that the complement of an effective Cartier divisor on an affine scheme
is also affine, using Proposition 7.3.4. Then if some multiple of Z were locally
principal, then the closed subscheme of the complement of Z cut out by y = z = 0
would be affine — any closed subscheme of an affine scheme is affine. But this is
the scheme y = z = 0 (also known as the wx-plane) minus the point w = x = 0,
which we have seen is non-affine, §4.4.1.

14.2.S. ⋆ EXERCISE (FOR THOSE WITH SUFFICIENT ARITHMETIC BACKGROUND).
Identify the (ideal) class group of the ring of integers OK in a number field K, as de-
fined in Exercise 13.1.M, with the class group of Spec OK, as defined in this section.
In particular, you will recover the common description of the class group as for-
mal sums of prime ideals, modulo an equivalence relation coming from principal
fractional ideals.

14.2.13. More on class groups and unique factorization.
As mentioned in §5.4.6, there are few commonly used means of checking that

a ring is a unique factorization domain. The next exercise is one of them, and
it is useful. For example, it implies the classical fact that for rings of integers in
number fields, the class group is the obstruction to unique factorization (see Exer-
cise 13.1.M and Proposition 14.2.10).

14.2.T. EXERCISE. Suppose thatA is a Noetherian integral domain. Show thatA is
a unique factorization domain if and only if A is integrally closed and Cl SpecA =
0. (One direction is easy: we have already shown that unique factorization do-
mains are integrally closed in their fraction fields. Also, Lemma 11.1.6 shows that
all codimension 1 prime ideals of a unique factorization domain are principal, so
that implies that Cl SpecA = 0. It remains to show that if A is integrally closed
and Cl SpecA = 0, then all codimension 1 prime ideals are principal, as this char-
acterizes unique factorization domains (Proposition 11.3.5). Algebraic Hartogs’s
Lemma 11.3.11, may arise in your argument.) This is the third important charac-
terization of unique factorization domains promised in §5.4.6.

My final favorite method of checking that a ring is a unique factorization do-
main (§5.4.6) is Nagata’s Lemma. It is also the least useful.

14.2.U. ⋆⋆ EXERCISE (NAGATA’S LEMMA). Suppose A is a Noetherian domain,
x ∈ A an element such that (x) is prime and Ax = A[1/x] is a unique factorization
domain. Then A is a unique factorization domain. (Hint: Exercise 14.2.T. Use the
short exact sequence

Z[(x)]→ Cl SpecA→ Cl SpecAx → 0

(14.2.8.1) to show that Cl SpecA = 0. Prove that A[1/x] is integrally closed, then
show thatA is integrally closed as follows. Suppose Tn+an−1Tn−1+ · · ·+a0 = 0,
where ai ∈ A, and T ∈ K(A). Then by integral closedness of Ax, we have that
T = r/xm, where if m > 0, then r /∈ (x). Then we quickly get a contradiction if
m > 0.)
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This leads to a fun algebra fact promised in Remark 12.8.6. Suppose k is an
algebraically closed field of characteristic not 2. Let A = k[x1, . . . , xn]/(x

2
1 + · · · +

x2m) where m ≤ n. When m ≤ 2, we get some special behavior. (If m = 0, we get
affine space; if m = 1, we get a nonreduced scheme; if m = 2, we get a reducible
scheme that is the union of two affine spaces.)

If m ≥ 3, we have verified that SpecA is normal, in Exercise 5.4.I(b). In fact,
if m ≥ 3, then A is a unique factorization domain unless m = 3 or m = 4 (Exer-
cise 5.4.L; see also Exercise 12.1.E). For the casem = 3:

A = k[x, y, z,w1, . . . , wn−3]/(x
2 + y2 − z2)

is not a unique factorization domain, as it is has nonzero class group (by essentially
the same argument as for Exercise 14.2.Q).

The failure at 4 comes from the geometry of the quadric surface: we have
checked that in Spec k[w, x, y, z]/(wz − xy), there is a codimension 1 irreducible
subset — the cone over a line in a ruling — that is not principal.

14.2.V. EXERCISE (THE CASE m ≥ 5). Suppose that k is algebraically closed of
characteristic not 2. Show that if ℓ ≥ 3, then

A = k[a, b, x1, . . . , xn]/(ab− x
2
1 − · · ·− x2ℓ )

is a unique factorization domain, by using Nagata’s Lemma with x = a.

14.3 ⋆ Effective Cartier divisors “=” invertible ideal sheaves

We now give a different means of describing invertible sheaves on a scheme.
One advantage of this over Weil divisors is that it can give line bundles on every-
where nonreduced schemes (such a scheme can’t be regular at any codimension 1
prime). But we won’t use this, so it is less important.

SupposeD ↪→ X is a closed subscheme such that the corresponding ideal sheaf
I is an invertible sheaf. Then I is locally trivial; supposeU is a trivializing affine
open set SpecA. Then the closed subscheme exact sequence (13.5.4.1)

0→ I → OX → OD → 0

corresponds to
0→ I→ A→ A/I→ 0

with I ∼= A as A-modules. Thus I is generated by a single element, say a, and this
exact sequence starts as

0 // A
×a // A

As multiplication by a is injective, a is not a zerodivisor. We conclude that D is lo-
cally cut out by a single equation, that is not a zerodivisor. This was the definition
of effective Cartier divisor given in §8.4.1. This argument is clearly reversible, so we
have a quick new definition of effective Cartier divisor (an ideal sheaf I that is an
invertible sheaf — or equivalently, the corresponding closed subscheme).

14.3.A. EASY EXERCISE. Show that a is unique up to multiplication by an invert-
ible function.
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In the case where X is locally Noetherian, we can use the language of associ-
ated points (§13.6.5), so we can restate this definition as: D is locally cut out by a
single equation, not vanishing at any associated point of X.

We now define an invertible sheaf corresponding toD. The seemingly obvious
definition would be to take ID, but instead we define the invertible sheaf O(D)
corresponding to an effective Cartier divisor to be the dual: I ∨

D . (The reason for
the dual is Exercise 14.3.C.)

14.3.B. EXERCISE. Check that this agrees with our earlier definition of O(D),
Important Definition 14.2.2.

The ideal sheaf ID is then O(−D). We have an exact sequence

0→ O(−D)→ O → OD → 0.

The invertible sheaf O(D) has a canonical section sD: Tensoring 0 → I → O
with I ∨ gives us O → I ∨. (Easy unimportant fact: instead of tensoring I → O
with I ∨, we could have dualized I → O , and we would get the same section.)

14.3.C. IMPORTANT AND SURPRISINGLY TRICKY EXERCISE. Recall that a section of
a locally free sheaf on X cuts out a closed subscheme of X (Exercise 13.1.I). Show
that this section sD cuts out D. (Compare this to Remark 14.2.6.)

This construction is reversible:

14.3.D. EXERCISE. Suppose L is an invertible sheaf, and s is a section that is lo-
cally not a zerodivisor. (Make sense of this! In particular, if X is locally Noetherian,
this means “s does not vanish at an associated point of X”, see §13.6.5.) Show that
s = 0 cuts out an effective Cartier divisor D, and O(D) ∼= L .

14.3.E. EXERCISE. Suppose I and J are invertible ideal sheaves (hence cor-
responding to effective Cartier divisors, say D and D ′ respectively). Show that
I J is an invertible ideal sheaf. (We define the product of two quasicoherent
ideal sheaves I J as you might expect: on each affine, we take the product of
the two corresponding ideals. To make sure this is well-defined, we need only
check that if A is a ring, and f ∈ A, and I, J ⊂ A are two ideals, then (IJ)f = IfJf
in Af.) We define the corresponding Cartier divisor to be D + D ′. Verify that
O(D+D ′) ∼= O(D)⊗ O(D ′).

We thus have an important correspondence between effective Cartier divisors
(closed subschemes whose ideal sheaves are invertible, or equivalently locally cut
out by one non-zerodivisor, or in the locally Noetherian case, locally cut out by
one equation not vanishing at an associated point) and ordered pairs (L , s) where
L is an invertible sheaf, and s is a section that is not locally a zerodivisor (or in the
locally Noetherian case, not vanishing at an associated point). The effective Cartier
divisors form an abelian semigroup. We have a map of semigroups, from effective
Cartier divisors to invertible sheaves with sections not locally zerodivisors (and
hence also to the Picard group of invertible sheaves).
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We get lots of invertible sheaves, by taking differences of two effective Cartier
divisors. In fact we “usually get them all” — it is very hard to describe an invert-
ible sheaf on a finite type k-scheme that is not describable in such a way. For ex-
ample, there are none if the scheme is regular or even factorial (basically by Propo-
sition 14.2.10 for factoriality; and regular schemes are factorial by the Auslander-
Buchsbaum Theorem 12.8.5). Exercise 16.6.F will imply that there are none if the
scheme is projective. It holds in all other reasonable circumstances, see [Gr-EGA,
IV4.21.3.4]. However, it does not always hold; the first and best example is due to
Kleiman, see [Kl3].



CHAPTER 15

Quasicoherent sheaves and projective A-schemes

The first two sections of this chapter are relatively straightforward, and the
last two are trickier.

15.1 The quasicoherent sheaf corresponding to a graded module

We now describe quasicoherent sheaves on a projective A-scheme. Recall that
a projectiveA-scheme is produced from the data of Z≥0-graded ring S•, with S0 =
A, and S+ is a finitely generated ideal (a “finitely generated graded ring over A”,
§4.5.6). The resulting scheme is denoted ProjS•.

Suppose M• is a graded S•-module, graded by Z. (While reading the next sec-
tion, you may wonder why we don’t grade by Z≥0. You will see that it doesn’t
matter. A Z-grading will make things cleaner when we produce an M• from a
quasicoherent sheaf on ProjS•.) We define the quasicoherent sheaf M̃• as follows.
(I will avoid calling it M̃, as this might cause confusion with the affine case; but
M̃• is not graded in any way.) For each homogeneous f of positive degree, we define

a quasicoherent sheaf M̃•(f) on the distinguished open D(f) = {p : f(p) ̸= 0} by
˜((M•)f)0 — note that ((M•)f)0 is an ((S•)f)0-module, and recall that D(f) is iden-

tified with Spec((S•)f)0 (Exercise 4.5.F). As in (4.5.7.1), the subscript 0 means “the

0-graded piece”. We have obvious isomorphisms of the restriction of M̃•(f) and

M̃•(g) toD(fg), satisfying the cocycle conditions. (Think through this yourself, to
be sure you agree with the word “obvious”!) By Exercise 2.5.D, these sheaves glue
together to a single sheaf M̃• on ProjS•. We then discard the temporary notation

M̃•(f).
The O-module M̃• is clearly quasicoherent, because it is quasicoherent on each

D(f), and quasicoherence is local.

15.1.A. EXERCISE. Give an isomorphism between the stalk of M̃• at a point cor-
responding to homogeneous prime p ⊂ S• and ((M•)p)0. (Remark: You can use
this exercise to give an alternate definition of M̃• in terms of “compatible stalks”,
cf. Exercise 4.5.M.)

Given a map of graded modules ϕ : M• → N•, we get an induced map of
sheaves M̃• → Ñ•. Explicitly, over D(f), the map M• → N• induces (M•)f →
(N•)f, which induces ϕf : ((M•)f)0 → ((N•)f)0; and this behaves well with re-
spect to restriction to smaller distinguished open sets, i.e., the following diagram

411
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commutes.

((M•)f)0
ϕf //

��

((N•)f)0

��
((M•)fg)0

ϕfg // ((N•)fg)0.

Thus ∼ is a functor from the category of graded S•-modules to the category of
quasicoherent sheaves on ProjS•.

15.1.B. EASY EXERCISE. Show that ∼ is an exact functor. (Hint: everything in the
construction is exact.)

15.1.C. EXERCISE. Show that if M• and M ′
• agree in high enough degrees, then

M̃• ∼= M̃ ′
•. Then show that the map from graded S•-modules (up to isomorphism)

to quasicoherent sheaves on ProjS• (up to isomorphism) is not a bijection. (Really:
show this isn’t an equivalence of categories.)

Exercise 15.1.C shows that ∼ isn’t an isomorphism (or equivalence) of cate-
gories, but it is close. The relationship is akin to that between presheaves and
sheaves, and the sheafification functor (see §15.4).

15.1.D. EXERCISE. Describe a map of S0-modules M0 → Γ(ProjS•, M̃•). (This
foreshadows the “saturation map” of §15.4.5 that takes a graded module to its
saturation, see Exercise 15.4.C.)

15.1.1. Example: Homogeneous ideals of S• give closed subschemes of ProjS•.
Recall that a homogeneous ideal I• ⊂ S• yields a closed subscheme ProjS•/I• ↪→
ProjS•. For example, suppose S• = k[w, x, y, z], so ProjS• ∼= P3. The ideal I• =
(wz − xy, x2 − wy, y2 − xz) yields our old friend, the twisted cubic (defined in
Exercise 8.2.A)

15.1.E. EXERCISE. Show that if the functor ∼ is applied to the exact sequence of
graded S•-modules

0→ I• → S• → S•/I• → 0

we obtain the closed subscheme exact sequence (13.5.4.1) for ProjS•/I• ↪→ ProjS•.

All closed subschemes of ProjS• arise in this way; we saw this in Exercise 8.2.C,
and will see it again in a different way in Exercise 15.4.H.

15.1.2. Remark. If M• is finitely generated (resp. finitely presented, coherent),
then so is M̃•, [Ro, (4.4.11)]. We will not need this fact.

15.2 Invertible sheaves (line bundles) on projective A-schemes

Suppose M• is a graded S•-module. Define the graded module M(n)• by

M(n)m :=Mn+m. Thus the quasicoherent sheaf M̃(n)• satisfies

Γ(D(f), M̃(n)•) = ((M•)f)n
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where here the subscript means we take the nth graded piece. (These subscripts
are admittedly confusing!)

15.2.A. EXERCISE. If S• = A[x0, . . . , xm], so ProjS• = PmA , show S̃(n)• ∼= O(n)
using transition functions (cf. §14.1). (Recall from §14.1.2 that the global sections
of O(n) should be identified with the homogeneous degree n polynomials in x0,
. . . , xm. Can you see that in the context of this exercise?)

15.2.1. Definition. Motivated by this, if S• is a graded ring generated in degree 1,

we define OProjS•(n) (or simply O(n), where S• is implicit) by S̃(n)•.

15.2.B. IMPORTANT EXERCISE. If S• is generated in degree 1, show that OProjS•(n)
is an invertible sheaf.

If S• is generated in degree 1, and F is a quasicoherent sheaf on ProjS•, define
F (n) := F ⊗ O(n). This is often called twisting F by O(n), or twisting F by n.
More generally, if L is an invertible sheaf, then F ⊗L is often called twisting F
by L .

15.2.C. EXERCISE. If S• is generated in degree 1, show that M̃•(n) ∼= M̃(n)•.
(Hereafter, we can be cavalier with the placement of the “dot” in such situations.)

15.2.D. EXERCISE. If S• is generated in degree 1, show that O(m + n) ∼= O(m) ⊗
O(n).

15.2.2. Unimportant remark. Even if S• is not generated in degree 1, then by Exer-
cise 6.4.G, Sd• is generated in degree 1 for some d. In this case, we may define the
invertible sheaves O(dn) for n ∈ Z. This does not mean that we can’t define O(1);
this depends on S•. For example, if S• is the polynomial ring k[x, y] with the usual
grading, except without linear terms (so S• = k[x2, xy, y2, x3, x2y, xy2, y3]), then
S2• and S3• are both generated in degree 1, meaning that we may define O(2) and
O(3). There is good reason to call their “difference” O(1).

15.3 Globally generated and base-point-free line bundles

We now come to a topic that is harder, but that will be important. Throughout
this section, S• will be a finitely generated graded ring overA, generated in degree
1. We will prove the following result.

15.3.1. Theorem. — Any finite type quasicoherent sheaf F on ProjS• can be presented
in the form

⊕finiteO(−n)→ F → 0.

Because we can work with the line bundles O(−n) in a hands-on way, this
result will give us great control over all coherent sheaves (and in particular, vector
bundles) on ProjS•. As just a first example, it will allow us to show that every
coherent sheaf on a projective k-scheme has a finite-dimensional space of global
sections (Corollary 18.1.5). (This fact will grow up to be the fact that the higher
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pushforwards of coherent sheaves under proper morphisms are also coherent, see
Theorem 18.8.1(d) and Grothendieck’s Coherence Theorem 18.9.1.)

Rather than proceeding directly to a proof, we use this as an excuse to intro-
duce notions that are useful in wider circumstances (global generation, base-point-
freeness, ampleness), and their interrelationships. But first we use it as an excuse to
mention an important classical result.

15.3.2. The Hilbert Syzygy Theorem.
Given any coherent sheaf F on Pnk , Theorem 15.3.1 gives the existence of a

surjectionϕ : ⊕finite O(−m)→ F → 0. The kernel of the surjection is also coherent,
so iterating this construction, we can construct an infinite resolution of F by a
direct sum of line bundles:

· · · ⊕finite O(m2,j)→ ⊕finiteO(m1,j)→ ⊕finiteO(m0,j)→ F → 0.

The Hilbert Syzygy Theorem states that there is in fact a finite resolution, of length
at most n. (The Hilbert Syzygy Theorem in fact states more.) Because we won’t
use this, we don’t give a proof, but [E] (especially [E, Thm. 1.13] and the links
thereafter) has an excellent discussion. (Hilbert’s original statement, and the dis-
cussion in [E], is about graded modules. The connection to the statement here on
coherent sheaves is provided by the exactness of the functor ∼, Exercise 15.1.B.)
See the comments after Theorem 3.6.17 for the original history of this result.

15.3.3. Globally generated sheaves. Suppose X is a scheme, and F is an O-
module. The most important definition of this section is the following: F is glob-
ally generated (or generated by global sections) if it admits a surjection from a
free sheaf on X:

O⊕I // // F .

Here I is some index set. The global sections in question are the images of the |I|

sections corresponding to 1 in the various summands of O⊕I
X ; those images gener-

ate the stalks of F . We say F is finitely globally generated (or generated by a
finite number of global sections) if the index set I can be taken to be finite.

More definitions in more detail: we say that F is globally generated at a point
p (or sometimes generated by global sections at p) if we can find ϕ : O⊕I → F
that is surjective on stalks at p:

O⊕I
p

ϕp // // Fp.

(It would be more precise to say that the stalk of F at p is generated by global
sections of F .) The key insight is that global generation at p means that every
germ at p is a linear combination (over the local ring OX,p) of germs of global
sections.

Note that F is globally generated if it is globally generated at all points p. (Rea-
son: Exercise 2.4.E showed that isomorphisms can be checked on the level of stalks.
An easier version of the same argument shows that surjectivity can also be checked
on the level of stalks.) Notice that we can take a single index set for all of X, by
taking the union of all the index sets for each p.

15.3.A. EASY EXERCISE (REALITY CHECK). Show that every quasicoherent sheaf
on every affine scheme is globally generated. Show that every finite type quasi-
coherent sheaf on every affine scheme is generated by a finite number of global
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sections. (Hint for both: for any A-module M, there is a surjection onto M from a
free A-module.)

Clearly if F and G are globally generated, then so is F ⊕ G is as well (and
similarly for finitely globally generated, generated at a point p, etc.). Similarly for
tensor product:

15.3.B. EASY EXERCISE (GLOBALLY GENERATED ⊗ GLOBALLY GENERATED IS GLOB-
ALLY GENERATED). Show that if quasicoherent sheaves F and G are globally
generated at a point p, then so is F ⊗ G .

15.3.C. EASY BUT IMPORTANT EXERCISE. Suppose F is a finite type quasicoherent
sheaf on X.
(a) Show that F is globally generated at p if and only if “the fiber of F is generated
by global sections at p”, i.e., the map from global sections to the fiber Fp/mFp is
surjective, where m is the maximal ideal of OX,p. (Hint: Geometric Nakayama,
Exercise 13.7.E.)
(b) Show that if F is globally generated at p, then “F is globally generated near
p”: there is an open neighborhood U of p such that F is globally generated at
every point of U.
(c) Suppose further that X is a quasicompact scheme. Show that if F is globally
generated at all closed points of X, then F is globally generated at all points of X.
(Note that nonempty quasicompact schemes have closed points, Exercise 5.1.E.)

15.3.D. EASY EXERCISE. If F is a finite type quasicoherent sheaf on X, and X is
quasicompact, show that F is globally generated if and only if it is generated by a
finite number of global sections.

15.3.E. EASY EXERCISE. An invertible sheaf L on X is globally generated if and
only if for any point p ∈ X, there is a global section of L not vanishing at p. (See
Theorem 16.4.1 for why we care.)

15.3.4. Definitions. If L is an invertible sheaf on X, then those points where all
global sections of L vanish are called the base points of L , and the set of base
points is called the base locus of L ; it is a closed subset of X. (We can refine this to
a closed subscheme: by taking the scheme-theoretic intersection of the vanishing
loci of the sections of L , we obtain the scheme-theoretic base locus.) The com-
plement of the base locus is the base-point-free locus. If L has no base points,
it is base-point-free. By the previous discussion, (i) the base-point-free locus is
an open subset of X, and (ii) L is generated by global sections if and only if it is
base-point-free. By Exercise 15.3.B, the tensor of two base-point-free line bundles
is base-point-free.

(Remark: We will see in Exercise 18.2.I that if X is a k-scheme, and L is an
invertible sheaf on X, and K/k is any field extension, then L is base-point-free if
and only if it is “base-point-free after base change to K”. You could reasonably
prove this now.)

15.3.5. Base-point-free line bundles and maps to projective space. The main reason we
care about the definitions above is the following. Recall Exercise 6.3.M(a), which
shows that n + 1 functions on a scheme X with no common zeros yield a map to
Pn. This notion generalizes.
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15.3.F. EASY EXERCISE (A VITALLY IMPORTANT CONSTRUCTION). Suppose s0,
. . . , sn are n + 1 global sections of an invertible sheaf L on a scheme X, with no
common zero. Define a corresponding map to Pn:

X
[s0,...,sn] // Pn

Hint: If U is an open subset on which L is trivial, choose a trivialization, then
translate the si into functions using this trivialization, and use Exercise 6.3.M(a) to
obtain a morphism U→ Pn. Then show that all of these maps (for different U and
different trivializations) “agree”, using Exercise 6.3.M(b).

(In Theorem 16.4.1, we will see that this yields all maps to projective space.)
Note that this exercise as written “works over Z” (as all morphisms are “over”
the final object in the category of schemes), although many readers will just work
over a particular base such as a given field k. Here is some convenient classical
language which is used in this case.

15.3.6. Definitions. A linear series on a k-scheme X is a k-vector space V (usually
finite-dimensional), an invertible sheaf L , and a linear map λ : V → Γ(X,L ). Such
a linear series is often called “V”, with the rest of the data left implicit. If the map
λ is an isomorphism, it is called a complete linear series, and is often written |L |.
The language of base points (Definition 15.3.4) readily translates to this situation.
For example, given a linear series, any point x ∈ X on which all elements of the
linear series V vanish, we say that x is a base point of V . If V has no base points,
we say that it is base-point-free. The set of base points is called the base locus
of the linear series. One can similarly define the scheme-theoretic base locus (or
base scheme, although this phrase can have another meaning) of the linear series.

As a reality check, you should understand why an n + 1-dimensional linear
series on a k-scheme Xwith base-point-free locus U defines a morphism U→ Pnk .

15.3.7. Serre’s Theorem A. We are now able to state a celebrated result of Serre.

15.3.8. Serre’s Theorem A. — Suppose S• is generated in degree 1, and finitely gener-
ated over A = S0. Let F be any finite type quasicoherent sheaf on ProjS•. Then there
exists some n0 such that for all n ≥ n0, F (n) is finitely globally generated.

We could now prove Serre’s Theorem A directly, but will continue to use this
as an excuse to introduce more ideas; it will be a consequence of Theorem 16.6.2.

15.3.9. Proof of Theorem 15.3.1 assuming Serre’s Theorem A (Theorem 15.3.8). Suppose
we have m global sections s1, . . . , sm of F (n) that generate F (n). This gives a
map

⊕mO // F (n)

given by (f1, . . . , fm) 7→ f1s1 + · · · + fmsm on any open set. Because these global
sections generate F (n), this is a surjection. Tensoring with O(−n) (which is exact,
as tensoring with any locally free sheaf is exact, Exercise 13.1.E) gives the desired
result. □

15.4 Quasicoherent sheaves and graded modules
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(This section answers some fundamental questions, but it is surprisingly tricky.
You may wish to skip this section, or at least the proofs, on first reading, unless you
have a particular need for them.)

Throughout this section, S• is a finitely generated graded algebra generated
in degree 1, so in particular we have the invertible sheaf O(n) for all n by Exer-
cise 15.2.B. Also, throughout,M• is a graded S•-module, and F is a quasicoherent
sheaf on ProjS•.

We know how to get quasicoherent sheaves on ProjS• from graded S•-modules.
We will now see that we can get them all in this way. We will define a functor Γ•
from (the category of) quasicoherent sheaves on ProjS• to (the category of) graded
S•-modules that will attempt to reverse the ∼ construction. They are not quite in-
verses, as ∼ can turn two different graded modules into the same quasicoherent
sheaf (see for example Exercise 15.1.C). But we will see a natural isomorphism

Γ̃•(F ) ∼= F . In fact Γ•(M̃•) is a better (“saturated”) version of M•, and there is a
saturation functor M• → Γ•(M̃•) that is akin to groupification and sheafification
— it is adjoint to the forgetful functor from saturated graded modules to graded
modules. And thus we come to the fundamental relationship between ∼ and Γ•:
they are an adjoint pair.

graded S•-modules
∼

uujjjj
jjjj

jjjj
jjjj

saturate

��

QCohProjS•

equivalence

Γ• ))TTT
TTTT

TTTT
TTTT

saturated graded S•-modules

forget

SS

We now make some of this precise, but as little as possible to move forward. In
particular, we will show that every quasicoherent sheaf on a projective A-scheme
arises from a graded module (Corollary 15.4.3), and we will see a new approach to
Exercise 8.2.C, that every closed subscheme of ProjS• arises from a homogeneous
ideal I• ⊂ S• (Exercise 15.4.H).

15.4.1. Definition of Γ•. When you do Essential Exercise 14.1.C (on global sections
of OPm

k
(n)), you will suspect that in good situations,

Mn
∼= Γ(ProjS•, M̃(n)•).

Motivated by this, we define

Γn(F ) := Γ(ProjS•,F (n)).

15.4.A. EXERCISE. Describe a morphism of S0-modules Mn → Γ(ProjS•, M̃(n)•),
extending the n = 0 case of Exercise 15.1.D.

15.4.B. EXERCISE. Show that Γ•(F ) is a graded S•-module. (Hint: consider Sn →
Γ(ProjS•,O(n)).)

15.4.C. EXERCISE. Show that the map M• → Γ•(M̃•) arising from the previous
two exercises is a map of S•-modules. We call this the saturation map.
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15.4.D. EXERCISE.
(a) Show that the saturation map need not be injective, nor need it be surjective.
(Hint: S• = k[x],M• = k[x]/(x2) orM• = xk[x].)
(b) On the other hand, show that if S• is a finitely generated graded ring over a field
S0 = k, and M• is finitely generated, then the saturation map is an isomorphism
in large degree. In other words, show that there exists an n0 such that Mn →
Γ(ProjS•, M̃(n)•), is an isomorphism for n ≥ n0.

15.4.E. EXERCISE. Show that Γ• is a functor from QCohProjS•
to the category of

graded S•-modules. In other words, if F → G is a morphism of quasicoherent
sheaves on ProjS•, describe the natural map Γ•F → Γ•G , and show that such
maps respect the identity and composition. Thus the saturation map can be better
called the saturation functor.

15.4.2. ⋆ The reverse map. Now that we have defined the saturation map M• →
Γ•M̃•, we will describe a map Γ̃•F → F . While subtler to define, it will have the
advantage of being an isomorphism.

15.4.F. EXERCISE. Define the natural map Γ̃•F → F as follows. First describe the
map on sections overD(f). Note that sections of the left side are of the formm/fn

where m ∈ Γn deg f(F ), and m/fn = m ′/fn
′

if there is some N with fN(fn
′
m −

fnm ′) = 0. Sections on the right are implicitly described in Exercise 13.3.H. Show
that your map behaves well on overlaps D(f) ∩D(g) = D(fg).

15.4.G. TRICKY EXERCISE. Show that the natural map Γ̃•F → F is an isomor-
phism, by showing that it is an isomorphism of sections over D(f) for any f. First
show surjectivity, using Exercise 13.3.H to show that any section of F overD(f) is
of the formm/fn wherem ∈ Γn deg f(F ). Then verify that it is injective.

15.4.3. Corollary. — Every quasicoherent sheaf on a projective A-scheme arises from the
∼ construction.

15.4.H. EXERCISE (ANOTHER APPROACH TO EXERCISE 8.2.C). Show that each
closed subscheme of ProjS• arises from a homogeneous ideal I• ⊂ S•. (Hint: Sup-
pose Z is a closed subscheme of ProjS•. Consider the exact sequence 0 → IZ →
OProjS• → OZ → 0. Apply Γ•, and then ∼. Be careful: Γ• is left-exact, but not
necessarily exact.) This fulfills promises made in Exercises 8.2.B and 15.1.E.

For the first time, we see that every closed subscheme of a projective scheme is
cut out by homogeneous equations. This is the analog of the fact that every closed
subscheme of an affine scheme is cut out by equations. It is disturbing that it is so
hard to prove this fact. (For comparison, this was easy on the level of the Zariski
topology — see Exercise 4.5.H(c).)

15.4.I. ⋆⋆ EXERCISE (Γ• AND ∼ ARE ADJOINT FUNCTORS). Describe a natural bijec-
tion Hom(M•, Γ•F ) ∼= Hom(M̃•,F ), as follows.

(a) Show that mapsM• → Γ•F are the “same” as maps ((M•)f)0 → ((Γ•F )f)0
as f varies through S+, that are “compatible” as f varies, i.e., if D(g) ⊂
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D(f), there is a commutative diagram

((M•)f)0 //

��

((Γ•F )f)0

��
((M•)g)0 // ((Γ•F )g)0

More precisely, give a bijection between Hom(M•, Γ•F ) and the set of
compatible maps(

Hom((M•)f)0 → ((Γ•F )f)0

)
f∈S+

.

(b) Describe a bijection between the set of compatible maps (Hom((M•)f)0 →
((Γ•F )f)0)f∈S+

and the set of compatible maps Γ(D(f), M̃•)→ Γ(D(f),F ).

15.4.4. The special case M• = S•. We have a saturation map S• → Γ•S̃•, which is a
map of S•-modules. But Γ•S̃• has the structure of a graded ring (basically because
we can multiply sections of O(m) by sections of O(n) to get sections of O(m+ n),
see Exercise 15.2.D).

15.4.J. EXERCISE. Show that the map of graded rings S• → Γ•S̃• induces (via the
construction of Essential Exercise 6.4.A) an isomorphism Proj Γ•S̃• → ProjS•, and
under this isomorphism, the respective O(1)’s are identified.

This addresses the following question: to what extent can we recover S• from
(ProjS•,O(1))? The answer is: we cannot recover S•, but we can recover its “sat-
uration”. And better yet: given a projective A-scheme π : X → SpecA, along with
O(1), we obtain it as a Proj of a graded algebra in a canonical way, via

X ∼= Proj (⊕n≥0Γ(X,O(n))) .

There is one last worry you might have, which is assuaged by the following
exercise.

15.4.K. EXERCISE. Suppose S• is a finitely generated graded ring over a field k,
so X = ProjS• is a projective k-scheme. Show that (⊕n≥0Γ(X,O(n))) is a finitely
generated k-algebra. (Hint: S• and (⊕n≥0Γ(X,O(n))) agree in sufficiently high
degrees, by Exercise 15.4.D.)

15.4.5. ⋆⋆ Saturated S•-modules. We end with a remark: different graded S•-
modules give the same quasicoherent sheaf on ProjS•, but the results of this sec-
tion show that there is a “best” (= saturated) graded module for each quasico-
herent sheaf, and there is a map from each graded module to its “best” version,
M• → Γ•M̃•. A module for which this is an isomorphism (a “best” module) is
called saturated. We won’t use this term later.

This “saturation” map M• → Γ•M̃• is analogous to the sheafification map,
taking presheaves to sheaves. For example, the saturation of the saturation equals
the saturation.

There is a bijection between saturated quasicoherent sheaves of ideals on ProjS•
and closed subschemes of ProjS•.





CHAPTER 16

Pushforwards and pullbacks of quasicoherent sheaves

16.1 Introduction

This chapter is devoted to pushforward and pullbacks of quasicoherent sheaves,
their properties, and some applications.

Suppose B → A is a morphism of rings. Recall (from Exercise 1.5.E) that
(·⊗BA, ·B) is an adjoint pair between the categories ofA-modules and B-modules:
we have a bijection

HomA(N⊗B A,M) ∼= HomB(N,MB)

functorial in both arguments. These constructions behave well with respect to lo-
calization (in an appropriate sense), and hence work (often) in the category of qua-
sicoherent sheaves on schemes (and indeed always in the category of O-modules
on ringed spaces, see Definition 16.3.5, although we won’t particularly care). The
easier construction (M 7→ MB) will turn into our old friend pushforward. The
other (N 7→ A ⊗B N) will be a relative of pullback, whom I’m reluctant to call an
“old friend”.

16.2 Pushforwards of quasicoherent sheaves

We begin with the pushforwards, for which we have already done much of
the work.

The main moral of this section is that in “reasonable” situations, the pushfor-
ward of a quasicoherent sheaf is quasicoherent, and that this can be understood in
terms of one of the module constructions defined above. We begin with a motivat-
ing example:

16.2.A. EXERCISE. Let π : SpecA→ SpecB be a morphism of affine schemes, and
suppose M is an A-module, so M̃ is a quasicoherent sheaf on SpecA. Give an
isomorphism π∗M̃ → M̃B. (Hint: There is only one reasonable way to proceed:
look at distinguished open sets.)

In particular, π∗M̃ is quasicoherent. Perhaps more important, this implies that
the pushforward of a quasicoherent sheaf under an affine morphism is also quasi-
coherent.

421
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16.2.B. EXERCISE. If π : X → Y is an affine morphism, show that π∗ is an exact
functor QCohX → QCohY .

The following result, proved earlier, generalizes the fact that the pushforward
of a quasicoherent sheaf under an affine morphism is also quasicoherent.

16.2.1. Theorem (Exercise 13.3.F). — Suppose π : X→ Y is a quasicompact quasisepa-
rated morphism, and F is a quasicoherent sheaf on X. Then π∗F is a quasicoherent sheaf
on Y.

Coherent sheaves do not always push forward to coherent sheaves. For exam-
ple, consider the structure morphism π : A1k → Spec k, corresponding to k → k[t].
Then π∗OA1

k
is the quasicoherent sheaf corresponding to k[t], which is not a finitely

generated k-module. But in good situations, coherent sheaves do push forward.
For example:

16.2.C. EXERCISE. Suppose π : X → Y is a finite morphism of locally Noetherian
schemes. If F is a coherent sheaf on X, show that π∗F is a coherent sheaf. Hint:
Show first that π∗OX is finite type.

Once we define cohomology of quasicoherent sheaves, we will quickly prove
that if F is a coherent sheaf on Pnk , then Γ(Pnk ,F ) is a finite-dimensional k-module,
and more generally if F is a coherent sheaf on ProjS•, then Γ(ProjS•,F ) is a co-
herent A-module (where S0 = A). This is a special case of the fact that the “push-
forwards of coherent sheaves by projective morphisms are also coherent sheaves”
(Theorem 18.8.1(d)). (The notion of projective morphism, a relative version of
ProjS• → SpecA, will be defined in §17.3.)

More generally, given Noetherian hypotheses, pushforwards of coherent sheaves
by proper morphisms are also coherent sheaves (Grothendieck’s Coherence Theo-
rem 18.9.1).

16.3 Pullbacks of quasicoherent sheaves

We next discuss the pullback of a quasicoherent sheaf: if π : X → Y is a mor-
phism of schemes, π∗ is a covariant functor QCohY → QCohX. The notion of the
pullback of a quasicoherent sheaf can be confusing on first (and second) glance.
(For example, it is not the inverse image sheaf, although we will see that it is re-
lated.)

Here are three contexts in which you have seen the pullback, or can under-
stand it quickly. It may be helpful to keep these in mind, to keep you anchored in
the long discussion that follows. Suppose G is a quasicoherent sheaf on a scheme
Y.

(i) (restriction to open subsets) If i : U ↪→ Y is an open immersion, then i∗G is
G |U, the restriction of G to U (Example 2.2.8).

(ii) (restriction to points) If i : p ↪→ Y is the “inclusion” of a point p in Y (for
example, the closed embedding of a closed point; see Exercise 6.3.J(b)), then i∗G is
G |p, the fiber of G at p (Definition 4.3.7).

The similarity of the notation G |U and G |p is precisely because both are pull-
backs. Pullbacks (especially to locally closed subschemes or generic points) are
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often called restriction. For this reason, if π : X → Y is some sort of inclusion (such
as a locally closed embedding, or an “inclusion of a generic point”) then π∗G is of-
ten written as G |X and called the restriction of G to X, when π can be interpreted
as some type of “inclusion”.

(iii) (pulling back vector bundles) Suppose G is a locally free sheaf on Y, π : X→ Y

is any morphism. If {Ui} are trivializing open neighborhoods for G , and Tij ∈
GLr(OY(Ui ∩ Uj)) are transition matrices for G between Ui and Uj, then {π−1Ui}

are trivializing open neighborhoods for π∗G , and π∗Tij are transition matrices for
π∗G . (This will be established in Theorem 16.3.7(3).)

16.3.1. Strategy. We will see three different ways of thinking about the pullback.
Each has significant disadvantages, but together they give a good understanding.

(a) Because we are understanding quasicoherent sheaves in terms of affine
open sets, and modules over the corresponding rings, we begin with an interpre-
tation in this vein. This will be very useful for proving and understanding facts.
The disadvantage is that it is annoying to make a definition out of this (when the
target is not affine), because gluing arguments can be tedious.

(b) As we saw with fibered product, gluing arguments can be made simpler
using universal properties, so our second “definition” will be by universal prop-
erty. This is elegant, but has the disadvantage that it still needs a construction,
and because it works in the larger category of O-modules, it isn’t clear from the
universal property that it takes quasicoherent sheaves to quasicoherent sheaves.
But if the target is affine, our construction of (a) is easily seen to satisfy universal
property. Furthermore, the universal property is “local on the target”: if π : X→ Y

is any morphism, i : U ↪→ Y is an open immersion, and G is a quasicoherent sheaf
on Y, then if π∗G exists, then its restriction to π−1(U) is (canonically identified
with) (π|U)∗(G |U). Thus if the pullback exists in general (even as an O-module),
affine-locally on Y it looks like the construction of (a) (and thus is quasicoherent).

(c) The third definition is one that works on ringed spaces in general. It is
short, and is easily seen to satisfy the universal property. It doesn’t obviously
take quasicoherent sheaves to quasicoherent sheaves (at least in the way that we
have defined quasicoherent sheaves) — a priori it takes quasicoherent sheaves to
O-modules. But thanks to the discussion at the end of (b) above, which used (a),
this shows that the pullback of a quasicoherent sheaf is indeed quasicoherent.

16.3.2. First attempt at describing the pullback, using affines. Suppose π : X→ Y

is a morphism of schemes, and G is a quasicoherent sheaf on Y. We want to define
the pullback quasicoherent sheaf π∗G on X in terms of affine open sets on X and
Y. Suppose SpecA ⊂ X, SpecB ⊂ Y are affine open sets, with π(SpecA) ⊂ SpecB.
Suppose G |SpecB ∼= Ñ. Perhaps motivated by the fact that pullback should relate
to tensor product, we want

(16.3.2.1) Γ(SpecA,π∗G ) = N⊗B A.

More precisely, we would like Γ(SpecA,π∗G ) and N ⊗B A to be identified. This
could mean that we use this to construct a definition of π∗G , by “gluing all this
information together” (and showing it is well-defined). Or it could mean that we
define π∗G in some other way, and then find a natural identification (16.3.2.1). The
first approach can be made to work (and §16.3.3 is the first step), but we will follow
the second.
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FIGURE 16.1. The pullback of a quasicoherent sheaf (module-theoretically)

16.3.3. We begin this project by fixing an affine open subset SpecB ⊂ Y. To avoid
confusion, let ϕ = π|π−1(SpecB) : π

−1(SpecB) → SpecB. We will define a quasico-
herent sheaf on π−1(SpecB) that will turn out to be ϕ∗(G |SpecB) (and will also be
the restriction of π∗G to π−1(SpecB)).

If SpecAf ⊂ SpecA is a distinguished open set, then

Γ(SpecAf, ϕ∗G ) = N⊗B Af = (N⊗B A)f = Γ(SpecA,ϕ∗G )f

where “=” means “canonically isomorphic”. Define the restriction map Γ(SpecA,ϕ∗G )→
Γ(SpecAf, ϕ∗G ),

(16.3.3.1) Γ(SpecA,ϕ∗G )→ Γ(SpecA,ϕ∗G )⊗A Af,

by α 7→ α ⊗ 1 (of course). Thus ϕ∗G is (or: extends to) a quasicoherent sheaf on
π−1(SpecB) (by Exercise 13.3.D).

We have now defined a quasicoherent sheaf on π−1(SpecB), for every affine
open subset SpecB ⊂ Y. We want to show that this construction, as SpecB varies,
glues into a single quasicoherent sheaf on X.

You are welcome to do this gluing appropriately, for example using the distin-
guished affine base of Y (§13.3.1). This works, but can be confusing, so we take
another approach.

16.3.4. Universal property definition of pullback. Suppose π : X → Y is a mor-
phism of ringed spaces, and G is an OY-module. (We are of course interested in
the case where π is a morphism of schemes, and G is quasicoherent. Even once we
specialize our discussion to schemes, much of our discussion will extend without
change to this more general situation.) We “define” the pullback π∗G as an OX-
module, using the following adjointness universal property: for any OX-module
F , there is a bijection HomOX

(π∗G ,F ) ↔ HomOY
(G , π∗F ), and these bijections

are functorial in F . By universal property nonsense, this determines π∗G up to
unique isomorphism; we just need to make sure that it exists (which is why the
word “define” is in quotes). Notice that we avoid worrying about when the push-
forward of a quasicoherent sheaf F is quasicoherent by working in the larger cat-
egory of O-modules.

16.3.A. IMPORTANT EXERCISE. If Y is affine, say Y = SpecB, show that the con-
struction of the quasicoherent sheaf in §16.3.3 satisfies this universal property of
pullback of G . Thus calling this sheaf π∗G is justified. (Hint: Interpret both sides
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of the alleged bijection explicitly. The adjointness in the ring/module case should
turn up.)

16.3.B. IMPORTANT EXERCISE. Suppose i : U ↪→ X is an open embedding of ringed
spaces, and F is an OX-module. Show that F |U satisfies the universal property of
i∗F (and thus deserves to be called i∗F ). In other words, for each OU-module E ,
describe a bijection

HomOU
(F |U,E ) oo // HomOX

(F , i∗E ),

functorial in E .

We next show that if π∗G satisfies the universal property (for the morphism
π : X → Y), then if j : V ↪→ Y is any open subset, and i : U = π−1(V) ↪→ X (see
(16.3.4.1)), then (π∗G )|U satisfies the universal property for π|U : U → V . Thus
(π∗G )|U deserves to be called π|∗U(G |V). You will notice that we really need to
work with O-modules, not just with quasicoherent sheaves.

(16.3.4.1) π−1(V) U
� � i //

π|U

��

X

π

��
V
� � j // Y

If F ′ is an OU-module, we have a series of bijections (using Important Exer-
cise 16.3.B and adjointness of pullback and pushforward):

HomOU
((π∗G )|U,F

′) ∼= HomOU
(i∗(π∗G ),F ′)

∼= HomOX
(π∗G , i∗F

′)
∼= HomOY

(G , π∗i∗F
′)

∼= HomOY
(G , j∗(π|U)∗F

′)
∼= HomOV

(j∗G , (π|U)∗F
′)

∼= HomOV
(G |V , (π|U)∗F

′).

We have thus described a bijection

HomOU
((π∗G )|U,F

′)↔ HomOV
(G |V , (π|U)∗F

′),

which is clearly (by construction) functorial in F ′. Hence the discussion in the first
paragraph of §16.3.4 is justified. For example, thanks to Important Exercise 16.3.A,
the pullback π∗ exists if Y is an open subset of an affine scheme.

At this point, we could show that the pullback exists, following the idea be-
hind the construction of the fibered product: we would start with the definition
when Y is affine, and “glue”. We will instead take another route.

16.3.5. Third definition: pullback of O-modules via explicit construction. Sup-
pose π : X→ Y is a morphism of ringed spaces, and G is an OY-module. Of course,
our case of interest is if π is a morphism of schemes, and G is quasicoherent. Now
π−1G is a π−1OY-module. (Notice that we are using the ringed space (X, π−1OY),
not (X,OX). The inverse image construction π−1 was discussed in §2.7.) Further-
more, OX is also a π−1OY-module, via the map π−1OY → OX that is part of the
data of the morphism π. Define the pullback of G by π as the OX-module

(16.3.5.1) π∗G := π−1G ⊗π−1OY
OX.
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It is immediate that pullback is a covariant functor π∗ : ModOY
→ModOX

.

16.3.C. IMPORTANT EXERCISE. Show that this definition (16.3.5.1) of pullback
satisfies the universal property. Thus the pullback exists, at least as a functor
ModOY

→ModOX
.

16.3.D. IMPORTANT EXERCISE. Show that if π : X → Y is a morphism of schemes,
then π∗ gives a covariant functor QCohY → QCohX. (You might use §16.3.3, Exer-
cise 16.3.B, Exercise 16.3.A, and/or §16.3.4.)

The following is then immediate from the universal property.

16.3.6. Proposition. — Suppose π : X→ Y is a quasicompact, quasiseparated morphism.
Then (π∗ : QCohY → QCohX, π∗ : QCohX → QCohY) are an adjoint pair: there is an
isomorphism

(16.3.6.1) HomOX
(π∗G ,F ) ∼= HomOY

(G , π∗F ),

functorial in both F ∈ QCohX and G ∈ QCohY .

The “quasicompact and quasiseparated” hypotheses are solely to ensure that
π∗ indeed sends QCohX to QCohY (Exercise 13.3.F = Theorem 16.2.1).

We are now ready to show that pullback has all sorts of desired properties.

16.3.7. Theorem. — Suppose π : X → Y is a morphism of schemes, and G is a quasico-
herent sheaf on Y.

(1) (pullback preserves the structure sheaf) There is a canonical isomorphism π∗OY ∼=
OX.

(2) (pullback preserves finite type quasicoherent sheaves) If G is a finite type quasi-
coherent sheaf, so is π∗G . Hence if X is locally Noetherian, and G is coherent,
then so is π∗G . (It is not always true that the pullback of a coherent sheaf is
coherent, and the interested reader can think of a counterexample.)

(3) (pullback preserves vector bundles, and their transition functions) If G is locally
free sheaf of rank r, then so is π∗G . (In particular, the pullback of an invertible
sheaf is invertible.) Furthermore, if {Ui} are trivializing open neighborhoods for
G , and Tij ∈ GLr(OY(Ui ∩Uj)) are transition matrices for G between Ui and
Uj, then {π−1Ui} are trivializing open neighborhoods for π∗G , and π∗Tij are
transition matrices for π∗G .

(4) (functoriality in the morphism) If ξ : W → X is a morphism of schemes, then
there is a canonical isomorphism ξ∗π∗G ∼= (π ◦ ξ)∗G .

(5) (functoriality in the quasicoherent sheaf) π∗ is a functor QCohY → QCohX.
(6) (pulling back a section) Note that a section of G is the data of a map OY → G .

By (1) and (5), if s : OY → G is a section of G then there is a natural section
π∗s : OX → π∗G of π∗G . The pullback of the locus where s vanishes is the locus
where the pulled-back section π∗s vanishes.

(7) (pullback on stalks) If π : X → Y, π(p) = q, then pullback induces an isomor-
phism

(16.3.7.1) (π∗G )p
∼ // Gq ⊗OY,q

OX,p .
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(8) (pullback on fibers of the quasicoherent sheaves) Pullback of fibers are given as
follows: if π : X→ Y, where π(p) = q, then the map

(π∗G )|p
∼ // G |q ⊗κ(q) κ(p)

induced by (16.3.7.1) is an isomorphism.
(9) (pullback preserves tensor product) π∗(G ⊗OY

G ′) = π∗G ⊗OX
π∗G ′. (Here G ′

is also a quasicoherent sheaf on Y.)
(10) Pullback is a right-exact functor.

All of the above are interconnected in obvious ways that you should be able
to prove by hand. (As just one example: the germ of a pulled back section, (6), is
the expected element of the pulled back stalk, (7).) In fact much more is true, that
you should be able to prove on a moment’s notice, such as for example that the
pullback of the symmetric power of a locally free sheaf is naturally isomorphic to
the symmetric power of the pullback, and similarly for wedge powers and tensor
powers.

16.3.E. IMPORTANT EXERCISE. Prove Theorem 16.3.7. Possible hints: You may
find it convenient to do right-exactness (10) early; it is related to right-exactness of
⊗. For the tensor product fact (9), show that (M⊗BA)⊗(N⊗BA) ∼= (M⊗BN)⊗BA,
and that this behaves well with respect to localization. The proof of the fiber fact
(8) is as follows. Given a ring map B→ A with [m] 7→ [n], where m ⊂ A and n ⊂ B
are maximal ideals, show that (N⊗BA)⊗A (A/m) ∼= (N⊗B (B/n))⊗B/n (A/m) by
showing both sides are isomorphic to N⊗B (A/m).

16.3.F. UNIMPORTANT EXERCISE. Verify that the following is an example showing
that pullback is not left-exact: consider the exact sequence of sheaves on A1k, where
i : p ↪→ A1k is the origin:

0→ OA1
k
(−p)→ OA1

k
→ i∗O |p → 0.

(This is the closed subscheme exact sequence for p ∈ A1k, and corresponds to the
exact sequence of k[t]-modules 0 → tk[t] → k[t] → k → 0. Warning: here O |p is
not the stalk Op; it is the structure sheaf of the scheme p.) Restrict to p.

16.3.G. EXERCISE (THE PUSH-PULL FORMULA, CF. EXERCISE 18.8.B). Suppose
ψ : Z→ Y is any morphism, and both π : X→ Y and π ′ : W → Z are quasicompact
and quasiseparated (so pushforwards send quasicoherent sheaves to quasicoher-
ent sheaves). Suppose F is a quasicoherent sheaf on X. Suppose

(16.3.7.2) W
ψ ′

//

π ′

��

X

π

��
Z

ψ // Y

is a commutative diagram. Describe a natural morphism ψ∗π∗F → π ′
∗(ψ

′)∗F of
quasicoherent sheaves on Z. (Possible hint: first do the special case where (16.3.7.2)
is a Cartesian diagram.)

By applying the above exercise in the special case where Z is a point q of Y,
we see that there is a natural map from the fiber of the pushforward to the sections
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over the fiber:

(16.3.7.3) π∗F ⊗ κ(q)→ Γ(π−1(q),F |π−1(q)).

One might hope that (16.3.7.3) is an isomorphism, i.e., that π∗F “glues together”
the fibers Γ(π−1(q),F |π−1(q)). This is too much to ask, but at least (16.3.7.3) gives
a map. (In fact, under just the right circumstances, (16.3.7.3) is an isomorphism,
see §28.1.)

16.3.H. IMPORTANT EXERCISE (PROJECTION FORMULA, TO BE GENERALIZED IN
EXERCISE 18.8.E). Suppose π : X → Y is quasicompact and quasiseparated, and
F and G are quasicoherent sheaves on X and Y respectively.
(a) Describe a natural morphism (π∗F )⊗ G → π∗(F ⊗ π∗G ).
(b) If G is locally free, show that this natural morphism is an isomorphism. (Hint:
what if G is free?)
(c) If π is affine, then show that this natural morphism is an isomorphism.

16.3.8. Remark: Flatness. Given π : X → Y, if the functor π∗ from quasicoherent
sheaves on Y to quasicoherent sheaves on X is exact (not just right-exact as given
by Theorem 16.3.7(10)), we will say that π is a flat morphism. This is an incred-
ibly important notion. We will return to it (and define it in a different-looking,
equivalent but better way) in Chapter 24; see Exercise 24.2.L.

16.3.9. Remark: Pulling back ideal sheaves. There is one subtlety in pulling back qua-
sicoherent ideal sheaves. Suppose i : X ↪→ Y is a closed embedding, and µ : Y ′ → Y

is an arbitrary morphism. Let X ′ := X ×Y Y ′. As “closed embeddings pull back”
(§9.2.2), the pulled back map i ′ : X ′ → Y ′ is a closed embedding.

X ′ //� _

i ′

��

X� _

i

��
Y ′ µ // Y

Now µ∗ induces canonical isomorphisms µ∗OY ∼= OY ′ and µ∗(i∗OX) ∼= (i ′∗OX ′).
(Why is the latter isomorphism true? Hint: check affine-locally.) But it is not nec-
essarily true that µ∗IX/Y = IX ′/Y ′ . (Exercise 16.3.F yields an example.) This is
because the application of µ∗ to the closed subscheme exact sequence

0→ IX/Y → OY → i∗OX → 0

yields something that is a priori only right-exact:

µ∗IX/Y → OY ′ → i ′∗OX ′ → 0.

Thus, as IX ′/Y ′ is the kernel of OY ′ → i ′∗OX ′ , we see that IX ′/Y ′ is the image of
µ∗IX/Y in OY ′ . We can also see this explicitly from Exercise 9.2.B: affine-locally,
the ideal of the pullback is generated by the pullback of the ideal.

Note also that if µ is flat (Remark 16.3.8), then µ∗IX/Y → IX ′/Y ′ is an isomor-
phism.

16.4 Line bundles and maps to projective schemes
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Theorem 16.4.1, the converse or completion to Exercise 15.3.F, will give one
reason why line bundles are crucially important: they tell us about maps to projec-
tive space, and more generally, to quasiprojective A-schemes. Given that we have
had a hard time naming any non-quasiprojective schemes, they tell us about maps
to essentially all schemes that are interesting to us.

16.4.1. Important Theorem. — For a fixed scheme X, morphisms X → Pn are in
bijection with the data (L , s0, . . . , sn), where L is an invertible sheaf and s0, . . . , sn are
sections of L with no common zeros, up to isomorphism of these data.

(This works over Z, or indeed any base.) Informally: morphisms to Pn corre-
spond to n + 1 sections of a line bundle, not all vanishing at any point, modulo
global sections of O∗

X, as multiplication by an invertible function gives an automor-
phism of L . This is one of those important theorems in algebraic geometry that is
easy to prove, but quite subtle in its effect on how one should think. It takes some
time to properly digest. A “coordinate-free” version is given in Exercise 16.4.E.

16.4.2. Theorem 16.4.1 describes all morphisms to projective space, and hence by
the Yoneda philosophy, this can be taken as the definition of projective space: it
defines projective space up to unique isomorphism. Projective space Pn (over Z) is
the moduli space of line bundles L along with n+1 sections of L with no common zeros.
(Can you give an analogous definition of projective space over X, denoted PnX?)

Every time you see a map to projective space, you should immediately simul-
taneously keep in mind the invertible sheaf and sections.

Maps to projective schemes can be described similarly. For example, if Y ↪→ P2k
is the curve x22x0 = x31 − x1x

2
0, then maps from a scheme X to Y are given by an

invertible sheaf on X along with three sections s0, s1, s2, with no common zeros,
satisfying s22s0 − s

3
1 + s1s

2
0 = 0.

Here more precisely is the correspondence of Theorem 16.4.1. Any n + 1 sec-
tions of L with no common zeros determine a morphism to Pn, by Exercise 15.3.F.
Conversely, if you have a map to projective space π : X → Pn, then we have n + 1
sections of OPn(1), corresponding to the hyperplane sections, x0, . . . , xn. Then
π∗x0, . . . , π∗xn are sections of π∗OPn(1), and they have no common zero. (Re-
minder: it is helpful to think of pulling back invertible sheaves in terms of pulling
back transition functions, see Theorem 16.3.7(3).)

So to prove Theorem 16.4.1, we just need to show that these two constructions
compose to give the identity in either direction.

Proof of Important Theorem 16.4.1. Suppose we are given n + 1 sections s0, . . . , sn
of an invertible sheaf L , with no common zeros, which (via Exercise 15.3.F) in-
duce a morphism π : X → Pn. For each si, we get a trivialization of L on the
open set Xsi where si doesn’t vanish. (More precisely, we have an isomorphism
(L , si) ∼= (O, 1), cf. Important Exercise 14.2.E(a).) The transition functions for L
are precisely si/sj on Xsi ∩ Xsj . As O(1) is trivial on the standard affine open sets
D(xi) of Pn, π∗(O(1)) is trivial on Xsi = π−1(D(xi)). Moreover, si/sj = π∗(xi/xj)
(directly from the construction of π in Exercise 15.3.F). This gives an isomorphism
L ∼= π∗O(1) — the two invertible sheaves have the same transition functions.
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16.4.A. EXERCISE. Show that this isomorphism can be chosen so that (L , s0, . . . , sn) ∼=
(π∗O(1), π∗x0, . . . , π

∗xn), thereby completing one of the two implications of the
theorem.

For the other direction, suppose we are given a map π : X → Pn. Let si =
π∗xi ∈ Γ(X, π∗(O(1))). As the xi’s have no common zeros on Pn, the si’s have
no common zeros on X. The map [s0, . . . , sn] is the same as the map π. We see
this as follows. The preimage of D(xi) (by the morphism [s0, . . . , sn]) is D(si) =
D(π∗xi) = π

−1D(xi), so “the right open sets go to the right open sets”. To show the
two morphismsD(si)→ D(xi) (induced from (s1, . . . , sn) and π) are the same, we
use the fact that maps to an affine scheme D(xi) are determined by their maps of
global sections in the opposite direction (Essential Exercise 6.3.F). Both morphisms
D(si)→ D(xi) corresponds to the ring map π♯ : xj/i = xj/xi 7→ sj/si. □

16.4.3. Remark: Extending Theorem 16.4.1 to rational maps. Suppose s0, . . . , sn are
sections of an invertible sheaf L on a scheme X. Then Theorem 16.4.1 yields a
morphism X−V(s0, . . . , sn)→ Pn. In particular, if X is integral, and the si are not
all 0, these data yield a rational map X 99K Pn.

16.4.4. Examples and applications.

16.4.B. EXERCISE (AUTOMORPHISMS OF PROJECTIVE SPACE). Show that all the
automorphisms of projective space Pnk (fixing k) correspond to (n + 1) × (n +
1) invertible matrices over k, modulo scalars (also known as PGLn+1(k)). (Hint:
Suppose π : Pnk → Pnk is an automorphism. Show that π∗O(1) ∼= O(1). Show that
π∗ : Γ(Pn,O(1))→ Γ(Pn,O(1)) is an isomorphism.)

Exercise 16.4.B will be useful later, especially for the case n = 1. In this case,
these automorphisms are called fractional linear transformations. (For experts:
why was Exercise 16.4.B not stated over an arbitrary base ring A? Where does the
argument go wrong in that case? For what rings A does the result still work?)

16.4.C. EXERCISE. Show that Aut(P1k) is strictly three-transitive on k-valued
points, i.e., given two triplets (p1, p2, p3) and (q1, q2, q3) each of distinct k-valued
points of P1, there is precisely one automorphism of P1 sending pi to qi (i =
1, 2, 3).

Here are more examples of these ideas in action.

16.4.5. Example: the Veronese embedding is |OPn
k
(d)|. Consider the line bundle

OPn
k
(d) on Pnk . We have checked that the sections of this line bundle form a vector

space of dimension
(
n+d
d

)
, with a basis corresponding to homogeneous degree d

polynomials in the projective coordinates for Pnk . Also, they have no common ze-
ros (as for example the subset of sections xd0 , xd1 , . . . , xdn have no common zeros).
Thus the complete linear series is base-point-free, and determines a morphism
Pn → P(

n+d
d )−1. This is the Veronese embedding (Definition 8.2.8). For example,

if n = 2 and d = 2, we get a map P2k → P5k.
In §8.2.8, we saw that this is a closed embedding. The following is a more

general method of checking that maps to projective space are closed embeddings.
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16.4.D. LESS IMPORTANT EXERCISE. Suppose π : X → PnA corresponds to an in-
vertible sheaf L on X, and sections s0, . . . , sn. Show that π is a closed embedding
if and only if

(i) each open set Xsi is affine, and
(ii) for each i, the map of ringsA[y0, . . . , yn]→ Γ(Xsi ,O) given by yj 7→ sj/si

is surjective.

16.4.6. Special case of Example 16.4.5. Recall that the image of the Veronese embed-
ding when n = 1 is called a rational normal curve of degree d (Exercise 8.2.J). Our
map is P1k → Pdk given by [x, y] 7→ [xd, xd−1y, . . . , xyd−1, yd].

16.4.E. EXERCISE. Show that a (finite-dimensional) base-point-free linear series V
on X corresponding to L induces a morphism to projective space

ϕV : X // PV∨ .

(This should be seen as a coordinate-free version of Theorem 16.4.1.)

16.4.F. EXERCISE. (For this exercise, we work over a field k.) Suppose we have a
morphism π : X→ Pn, corresponding to the base-point-free linear series Γ(Pn,O(1))→
Γ(X,L ) (so L = π∗O(1)). If the scheme-theoretic image of X in Pn lies in a hy-
perplane, we say that the linear series (or X itself) is degenerate (and otherwise,
nondegenerate). Show that a base-point-free linear series V → Γ(X,L ) is non-
degenerate if and only if the map V → Γ(X,L ) is an inclusion. In particular, a
complete linear series is always nondegenerate.

16.4.G. EXERCISE. Suppose we are given a map π : P1k → Pnk where the corre-
sponding invertible sheaf on P1k is O(d). (This can reasonably be called a degree
d map, cf. Exercises 17.4.F and 18.6.I.) Show that if d < n, then the image is de-
generate. Show that if d = n and the image is nondegenerate, then the image is
isomorphic (via an automorphism of projective space, Exercise 16.4.B) to a rational
normal curve.

16.4.H. EXERCISE. Define the graded rings R• = k[u, v,w]/(uw − v2) and S• =
k[x, y] (with all variables having degree 1). By Exercise 8.2.I, we have an isomor-
phism ProjR• ∼= ProjS• (via the Veronese embedding ν2). Show that this isomor-
phism is not induced by a map of graded rings S• → R•.

16.4.7. Remark. You may be able to show that after “regrading”, the isomorphism
ProjR• ∼= ProjS• does arise from a map of graded rings (S2• → R•). Exercise 19.11.B
gives an example where it is not possible to patch the lack of maps of graded rings
by just regrading.

16.4.I. EXERCISE: AN EARLY LOOK AT INTERSECTION THEORY, RELATED TO BÉZOUT’S
THEOREM. A classical definition of the degree of a curve in projective space
is as follows: intersect it with a “general” hyperplane, and count the number of
points of intersection, with appropriate multiplicity. We interpret this in the case of
π : P1k → Pnk . Show that there is a hyperplaneH of Pnk not containing π(P1k). Equiv-
alently, π∗H ∈ Γ(P1,OP1(d)) (interpreted as the pullback of a section of OPn(1))
is not 0. Show that the number of zeros of π∗H is precisely d. (You will have to
define “appropriate multiplicity”. What does it mean geometrically if π is a closed
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embedding, and π∗H has a double zero? Aside: Can you make sense of this even if
π is not a closed embedding?) Thus this classical notion of degree agrees with the
notion of degree in Exercise 16.4.G. (See Exercise 8.2.E for another case of Bézout’s
Theorem. Here we intersect a degree d curve with a degree 1 hyperplane; there we
intersect a degree 1 curve with a degree d hypersurface. Exercise 18.6.K will give
a common generalization.)

16.4.8. Example: The Segre embedding revisited. The Segre embedding can also be
interpreted in this way. This is a useful excuse to define some notation. Suppose
F is a quasicoherent sheaf on a Z-scheme X, and G is a quasicoherent sheaf on
a Z-scheme Y. Let πX, πY be the projections from X ×Z Y to X and Y respectively.
Then F ⊠ G (pronounced “F box-times G ”) is defined to be π∗XF ⊗ π∗YG . In
particular, OPm×Pn(a, b) is defined to be OPm(a) ⊠ OPn(b) (over any base Z). The
Segre embedding Pm×Pn → Pmn+m+n corresponds to the complete linear series
for the invertible sheaf O(1, 1).

When we first saw the Segre embedding in §9.6, we saw (in different language)
that this complete linear series is base-point-free. We also checked by hand (§9.6.1)
that it is a closed embedding, essentially by Exercise 16.4.D.

Recall that if L and M are both base-point-free invertible sheaves on a scheme
X, then L ⊗ M is also base-point-free (Exercise 15.3.B, see also Definition 15.3.4).
We may interpret this fact using the Segre embedding (under reasonable hypothe-
ses on X). If ϕL : X → PM is a morphism corresponding to a (base-point-free)
linear series based on L , and ϕM : X → PN is a morphism corresponding to a
linear series on M , then the Segre embedding yields a morphism X → PM ×
PN → P(M+1)(N+1)−1, which corresponds to a base-point-free series of sections of
L ⊗ M .

16.4.J. FUN EXERCISE. Suppose X is a quasiprojective k-scheme, and π : Pnk →
X is any morphism (over k). Show that either the image of π has dimension n,
or π contracts Pnk to a point. In particular, there are no nonconstant maps from
projective space to a smaller-dimensional quasi-projective variety. Hint: if X ⊂ PN,
define d by π∗OPN(1) ∼= OPn

k
(d). Try to show that d = 0. To do that, show that

if m ≤ n then m nonempty hypersurfaces in Pn have nonempty intersection. For
this, use the fact that any nonempty hypersurface in Pnk has nonempty intersection
with any subscheme of dimension at least 1 (Exercise 11.3.C(a)).

16.4.K. EXERCISE. Explain how GLn acts (nontrivially!) on Pn−1 (over Z, or over
a field of your choice). (The group scheme GLn was defined in Exercise 6.6.N.
The action of a group scheme appeared earlier in Exercise 6.6.S(a).) Hint: this is
much more easily done with the language of functors, §6.6, using our functorial
description of projective space (§16.4.2), than with our old description of projective
space in terms of patches. (A generalization to the Grassmannian will be given in
Exercise 16.7.L.)

16.4.9. Remark. Over an algebraically closed field k, GLn acts transitively on
the closed points of Pn

k
, and the stabilizer of the point [1, 0, · · · , 0] consists of the

subgroup P of matrices with 0’s in the first column below the first row. (Side
Remark: the point is better written as a column vector, so the GLn-action can be
interpreted as matrix multiplication in the usual way.) This suggests that Pn−1

k
is
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the quotient GLn/P. This is largely true; but we first would have to make sense of
the notion of group quotient.

16.4.10. ⋆⋆ A proper nonprojective k-variety — and gluing schemes along closed
subschemes.

We conclude by using what we have developed to describe an example of a
scheme that is proper but not projective (promised in Remark 10.3.6). We use a
construction that looks so fundamental that you may be surprised to find that we
won’t use it in any meaningful way later.

Fix an algebraically closed field k. For i = 1, 2, let Xi ∼= P3k, Zi be a line in Xi,
and Z ′

i be a regular conic in Xi disjoint from Zi (both Zi and Z ′
i isomorphic to P1k).

The construction of §16.4.11 will allow us to glue X1 to X2 so that Z1 is identified
with Z ′

2 and Z ′
1 is identified with Z2, see Figure 16.2. (You will be able to make this

precise after reading §16.4.11.) The result, call it X, is proper, by Exercise 16.4.O.

FIGURE 16.2. Building a proper nonprojective variety

Then X is not projective. For if it were, then it would be embedded in projec-
tive space by some invertible sheaf L . If X is embedded, then X1 is too, so L must
restrict to an invertible sheaf on X1 of the form OX1

(n1), where n1 > 0. You can
check that the restriction of L to Z1 is OZ1

(n1), and the restriction of L to Z ′
1 is

OZ ′
1
(2n1). Symmetrically, the restriction of L to Z2 is OZ2

(n2) for some n2 > 0,
and the restriction of L to Z ′

2 is OZ ′
2
(2n2). But after gluing, Z1 = Z ′

2, and Z ′
1 = Z2,

so we have n1 = 2n2 and 2n1 = n2, which is impossible.

16.4.11. Gluing two schemes together along isomorphic closed subschemes.
It is straightforward to show that you can glue two schemes along isomor-

phic open subschemes. (More precisely, if X1 and X2 are schemes, with open sub-
schemes U1 and U2 respectively, and an isomorphism U1 ∼= U2, you can make
sense of gluing X1 and X2 along U1 ∼= U2. You should think this through.) You
can similarly glue two schemes along isomorphic closed subschemes. We now
make this precise. Suppose Z1 ↪→ X1 and Z2 ↪→ X2 are closed embeddings, and

ϕ : Z1
∼ // Z2 is an isomorphism. We will explain how to glue X1 to X2 along

ϕ. The result will be called X1
⨿
ϕ X2.

16.4.12. Motivating example. Our motivating example is if Xi = SpecAi and

Zi = SpecAi/Ii, and ϕ corresponds to ϕ♯ : A2/I2
∼ // A1/I1 . Then the result

will be SpecR, where R is the ring of consisting of ordered pairs (a1, a2) ∈ A1×A2
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that “agree via ϕ”. More precisely, this is a fibered product of rings:

R := A1 ×ϕ♯ : A1/I1→A2/I2 A2.

16.4.13. The general construction, as a locally ringed space. In our general situation,
we might wish to cover X1 and X2 by open charts of this form. We would then
have to worry about gluing and choices, so to avoid this, we instead first construct
X1
⨿
ϕ X2 as a locally ringed space. As a topological space, the definition is clear:

we glue the underlying sets together along the underlying sets of Z1 ∼= Z2, and
topologize it so that a subset of X1

⨿
ϕ X2 is open if and only if its restrictions to

X1 andX2 are both open. For convenience, letZ be the image ofZ1 (or equivalently
Z2) in X1

⨿
ϕ X2. We next define the stalk of the structure sheaf at any point p ∈

X1
⨿
ϕ X2. If p ∈ Xi \ Z = (X1

⨿
ϕ X2) \ X3−i (hopefully the meaning of this is

clear), we define the stalk as OXi,p. If p ∈ X1 ∩X2, we define the stalk to consist of
elements (s1, s2) ∈ OX1,p × OX2,p which agree in OZ1,p

∼= OZ2,p. The meaning of
everything in this paragraph will be clear to you if you can do the following.

16.4.L. EXERCISE. Define the structure sheaf of OX1

⨿
ϕ X2

in terms of compatible
germs. (What should it mean for germs to be compatible? Hint: for z ∈ Z, suppose
we have open subsets U1 of X1 and U2 of X2, with U1 ∩ Z = U2 ∩ Z, so U1 and
U2 glue together to give an open subset U of X1

⨿
ϕ X2. Suppose we also have

functions f1 on U1 and f2 on U2 that “agree on U ∩ Z” — what does that mean?
Then we declare that the germs of the “function on U obtained by gluing together
f1 and f2” are compatible.) Show that the resulting ringed space is a locally ringed
space.

We next want to show that the locally ringed space X1
⨿
ϕ X2 is a scheme.

Clearly it is a scheme away from Z. We first verify a special case.

16.4.M. EXERCISE. Show that in Example 16.4.12 the construction of §16.4.13
indeed yields Spec(A1 ×ϕ♯ A2).

16.4.N. EXERCISE. In the general case, suppose x ∈ Z. Show that there is an
affine open subset SpecAi ⊂ Xi such that Z ∩ SpecA1 = Z ∩ SpecA2. Then use
Exercise 16.4.L to show that X1

⨿
ϕ X2 is a scheme in an open neighborhood of x,

and thus a scheme.

16.4.14. Remarks.
(a) As the notation suggests, this is a fibered coproduct in the category of schemes,
and indeed in the category of locally ringed spaces. We won’t need this fact, but
you can prove it if you wish; it isn’t hard. Unlike the situation for products, fibered
coproducts don’t exist in general in the category of schemes. Miraculously (and
for reasons that are specific to schemes), the resulting cofibered diagram is also a
fibered diagram. This has pleasant ramifications. For example, this construction
“behaves well with respect to” (or “commutes with”) base change; this can help
with Exercise 16.4.O(a), but if you use it, you have to prove it.
(b) Here are some interesting questions to think through: Can we recover the glu-
ing locus from the “glued scheme” X1

⨿
ϕ X2 and the two closed subschemes X1

and X2? (Yes.) When is a scheme X the gluing of two closed subschemes X1 and X2
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along their scheme-theoretic intersection? (Answer: When the scheme-theoretic
union of X1 and X2 is the entire scheme X.)
(c) You might hope that if you have a single scheme X with two disjoint closed
subschemesW ′ andW ′′, and an isomorphismW ′ →W ′′, then you should be able
to glue X to itself along W ′ → W ′′. This construction doesn’t work, and indeed it
may not be possible. You can still make sense of the quotient as an algebraic space,
which we will not define here.

16.4.O. EXERCISE. We continue to use the notation Xi, ϕ, etc. Suppose we are
working in the category of A-schemes.
(a) If X1 and X2 are universally closed, show that X1

⨿
ϕ X2 is as well.

(b) If X1 and X2 are separated, show that X1
⨿
ϕ X2 is as well.

(c) If X1 and X2 are finite type over a Noetherian ring A, show that X1
⨿
ϕ X2 is

as well. (Hint: Reduce to the “affine” case of the Motivating Example 16.4.12.
Choose generators x1, . . . , xn of A1, and y1, . . . , yn, such that xi modulo I1
agrees with yi modulo I2 via ϕ. Choose generators g1, . . . , gm of I2 — here use
Noetherianness of A. Show that (xi, yi) and (0, gi) generate R ⊂ A1 × A2, as
follows. Suppose (a1, a2) ∈ R. Then there is some polynomial m such that
a1 = m(x1, . . . , xn). Hence (a1, a2) −m((x1, y1), . . . , (xn, yn)) = (0, a ′

2) for some
a ′
2 ∈ I2. Then a ′

2 can be written as
∑m
i=1 ℓi(y1, . . . , yn)gi. But then (0, a ′

2) =∑m
i=1 ℓi((x1, y1), . . . , (xn, yn))(0, gi).)

Thus if X1 and X2 are proper, so is X1
⨿
ϕ X2.

On the other hand, we have just seen (§16.4.10) that if X1 and X2 are projective,
then X1

⨿
ϕ X2 needn’t be projective.

16.5 The Curve-to-Projective Extension Theorem

We now use the main theorem of the previous section, Theorem 16.4.1, to
prove something useful and concrete.

16.5.1. The Curve-to-Projective Extension Theorem. — Suppose C is a pure dimen-
sion 1 Noetherian scheme over an affine base S = SpecA, and p ∈ C is a regular closed
point of it. Suppose Y is a projective S-scheme. Then any morphism C \ {p} → Y (of
S-schemes) extends to all of C.

In practice, we will use this theorem when S = Spec k, and C is a k-variety.
The only reason we assume S is affine is because we won’t know the meaning of
“projective S-scheme” until we know what a projective morphism is (§17.3). But
the proof below extends immediately to general S once we know the meaning of
the statement.

Note that if such an extension exists, then it is unique: the nonreduced locus
of C is a closed subset (Exercise 5.5.E). Hence by replacing C by an open neighbor-
hood of p that is reduced, we can use the Reduced-to-Separated Theorem 10.2.2
that maps from reduced schemes to separated schemes are determined by their
behavior on a dense open set. Alternatively, maps to a separated scheme can be
extended over an effective Cartier divisor in at most one way (Exercise 10.2.G).

The following exercise shows that the hypotheses are necessary.
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16.5.A. EXERCISE. In each of the following cases, prove that the morphism C \

{p}→ Y cannot be extended to a morphism C→ Y.

(a) Projectivity of Y is necessary. Suppose C = A1k, p = 0, Y = A1k, and C\{p}→
Y is given by “t 7→ 1/t”.

(b) One-dimensionality of C is necessary. Suppose C = A2k, p = (0, 0), Y = P1k,
and C \ {p}→ Y is given by (x, y) 7→ [x, y].

(c) Non-singularity ofC is necessary. SupposeC = Speck[x, y]/(y2−x3), p = 0,
Y = P1k, and C \ {p}→ Y is given by (x, y) 7→ [x, y].

We remark that by combining this (easy) theorem with the (hard) valuative
criterion for properness (Theorem 12.7.6), one obtains a proof of the properness
of projective space bypassing the (tricky but not hard) Fundamental Theorem of
Elimination Theory 7.4.7 (see Exercise 12.7.F). Fancier remark: the valuative crite-
rion of properness can be used to show that Theorem 16.5.1 remains true if Y is
only required to be proper, but it requires some thought.

16.5.2. Central idea of proof. The central idea of the proof may be summarized
as “clear denominators”, and is illustrated by the following motivating example.
Suppose you have a morphism from A1 − {0} to projective space, and you wanted
to extend it to A1. Suppose the map was given by t 7→ [t4 + t−3, t−2 + 4t]. Then
of course you would “clear the denominators”, and replace the map by t 7→ [t7 +
1, t + 4t4]. Similarly, if the map was given by t 7→ [t2 + t3, t2 + t4], you would
divide by t2, to obtain the map t 7→ [1+ t, 1+ t2].

Proof. Our plan is to maneuver ourselves into the situation where we can apply the
idea of §16.5.2. We begin with some quick reductions. The nonreduced locus of C
is closed and doesn’t contain p (Exercise 5.5.E), so by replacingC by an appropriate
open neighborhood of p, we may assume that C is reduced and affine.

We next reduce to the case where Y = PnA. Choose a closed embedding Y → PnA.
If the result holds for Pn, and we have a morphism C→ Pn with C \ {p} mapping
to Y, then C must map to Y as well. Reason: we can reduce to the case where
the source is an affine open subset, and the target is AnA ⊂ PnA (and hence affine).
Then the functions vanishing on Y ∩ AnA pull back to functions that vanish at the
generic points of the irreducible components of C and hence vanish everywhere
on C (using reducedness of C), i.e., Cmaps to Y.

Choose a uniformizer t ∈ m − m2 in the local ring of C at p. As t is a function
in some neighborhood of p, we may assume that t is a function on C (by replacing
C by this neighborhood of p). Then V(t) contains p (as t ∈ m), but V(t) does not
contain the component ofC containing p (as t /∈ m2), so by replacingC by an affine
open neighborhood of p in (C \ V(t)) ∪ {p} ((C \ V(t)) ∪ {p} ⊂ C is open because C
(almost) has the cofinite topology (§3.4), we may assume that p is the only zero of
the function t (and of course t vanishes at pwith multiplicity 1).

We have a map C \ {p} → PnA, which by Theorem 16.4.1 corresponds to a line
bundle L on C \ {p} and n+ 1 sections of it with no common zeros in C \ {p}. Let
U be a nonempty open set of C \ {p} on which L ∼= O . Then by replacing C by
U∪p, we interpret the map to Pn as n+1 rational functions f0, . . . , fn, defined away
away from p, with no common zeros away from p. Let N = mini(valp fi). Then
t−Nf0, . . . , t−Nfn are n+1 functions with no common zeros. Thus they determine
a morphism C→ PnA extending C \ {p}→ PnA as desired. □
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16.5.B. EXERCISE (USEFUL PRACTICE). SupposeX is a Noetherian k-scheme, andZ
is an irreducible codimension 1 subvariety whose generic point is a regular point
of X (so the local ring OX,Z is a discrete valuation ring). Suppose π : X 99K Y
is a rational map to a projective k-scheme. Show that the domain of definition
of the rational map includes a dense open subset of Z. In other words, rational
maps from Noetherian k-schemes to projective k-schemes can be extended over
regular codimension 1 sets. (We have already seen this principle in action — see
Exercise 6.5.I on the Cremona transformation.)

16.6 Ample and very ample line bundles

Suppose π : X → SpecA is a proper morphism, and L is an invertible sheaf
on X. (The case when A is a field is the one of most immediate interest.) We
say that L is very ample over A or π-very ample, or relatively very ample if
X ∼= ProjS• where S• is a finitely generated graded ring overA generated in degree
1 (Definition 4.5.6), and L ∼= OProjS•(1). One often just says very ample if the
structure morphism is clear from the context. Note that the existence of a very
ample line bundle implies that X is projective.

16.6.A. EASY BUT IMPORTANT EXERCISE (EQUIVALENT DEFINITION OF VERY AM-
PLE OVER A). Suppose π : X → SpecA is proper, and L is an invertible sheaf on
X. Show that L is very ample if and only if there exist a finite number of global
sections s0, . . . sn of L , with no common zeros, such that the morphism

[s0, . . . , sn] : X→ PnA

is a closed embedding.

16.6.B. EASY EXERCISE (VERY AMPLE IMPLIES BASE-POINT-FREE). Show that a
very ample invertible sheaf L on a proper A-scheme must be base-point-free.

16.6.C. EXERCISE (VERY AMPLE ⊗ BASE-POINT-FREE IS VERY AMPLE, HENCE VERY
AMPLE ⊗ VERY AMPLE IS VERY AMPLE). Suppose L and M are invertible sheaves
on a proper A-scheme X, and L is very ample over A and M is base-point-free,
then L ⊗ M is very ample. (Hint: L gives a closed embedding X ↪→ Pm, and
M gives a morphism X → Pn. Show that the product map X → Pm × Pn is a
closed embedding, using the Cancellation Theorem 10.1.19 for closed embeddings
on X → Pm × Pn → Pm. Finally, consider the composition X ↪→ Pm × Pn ↪→
Pmn+m+n, where the last closed embedding is the Segre embedding.)

16.6.D. EXERCISE (VERY AMPLE ⊠ VERY AMPLE IS VERY AMPLE, CF. EXAMPLE 16.4.8).
Suppose X and Y are proper A-schemes, and L (resp. M ) is a very ample invert-
ible sheaf on X (resp. Y). If πx : X ×A Y → X and πY : X ×A Y → Y are the usual
projections, show that π∗XL ⊗ π∗YM (also known as L ⊠ M , see §16.4.8) is very
ample on X×A Y.

16.6.1. Definition. We say an invertible sheaf L on a proper A-scheme X is ample
overA or π-ample (where π : X→ SpecA is the structure morphism), or relatively
ample if one of the following equivalent conditions holds.
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16.6.2. Theorem. — Suppose π : X→ SpecA is proper, and L is an invertible sheaf on
X. The following are equivalent.

(a) For some N > 0, L ⊗N is very ample over A.
(a’) For all n≫ 0, L ⊗n is very ample over A.
(b) For all finite type quasicoherent sheaves F , there is an n0 such that for n ≥ n0,

F ⊗ L ⊗n is globally generated.
(c) As f runs over all the global sections of L ⊗n (over all n > 0), the open subsets

Xf = {p ∈ X : f(p) ̸= 0} form a base for the topology of X.
(c’) As f runs over the global sections of L ⊗n (n > 0), those open subsets Xf which

are affine form a base for the topology of X.
(Variants of this Theorem 16.6.2 in the “absolute” and “relative” settings will

be given in Theorems 16.6.6 and 17.3.9 respectively.)
Properties (a) and (a’) relate to projective geometry, and property (b) relates to

global generation (stalks). Properties (c) and (c’) are somehow more topological,
and while they may seem odd, they will provide the connection between (a)/(a’)
and (b). Note that (b), (c) and (c’) make no reference to the structure morphism π.
We will later (Theorem 18.7.1) meet a cohomological criterion (due, unsurprisingly,
to Serre). The Kodaira Embedding Theorem (see, for example, [GH1, p. 181]) also
gives a criterion for ampleness in the complex category: if X is a compact com-
plex manifold, then an invertible sheaf L on X is ample if and only if it admits a
Hermitian metric with positive curvature everywhere.

The different flavor of these conditions gives some indication that ampleness
is better-behaved than very ampleness in a number of ways. We mention without
proof another property: if π : X → T is a finitely presented proper morphism, and
L is an invertible sheaf on X, then those points on T where L is ample on the fiber
form an open subset of T . Furthermore, on this open subset, L is relatively ample
over the base. We won’t use these facts (proved in [Gr-EGA, IV3.9.6.4]), but they
are good to know.

Before getting to the proof of Theorem 16.6.2, we give some sample applica-
tions. We begin by noting that the fact that (a) implies (b) gives Serre’s Theorem A
(Theorem 15.3.8).

16.6.E. IMPORTANT EXERCISE. Suppose L and M are invertible sheaves on a
proper A-scheme X, and L is ample. Show that L ⊗n ⊗ M is very ample for
n≫ 0. (Hint: use both (a) and (b) of Theorem 16.6.2, and Exercise 16.6.C.)

16.6.F. IMPORTANT EXERCISE. Show that every line bundle on a projective A-
scheme X is the difference of two very ample line bundles. More precisely, for any
invertible sheaf L on X, we can find two very ample invertible sheaves M and N
such that L ∼= M ⊗ N ∨. (Hint: use the previous Exercise.)

16.6.G. IMPORTANT EXERCISE (USED REPEATEDLY). Suppose π : X → Y is a finite
morphism of proper A-schemes, and L is an ample line bundle on Y. Show that
π∗L is ample on X. Hint: use the criterion of Theorem 16.6.2(b). Suppose F is
a finite type quasicoherent sheaf on X. We wish to show that F ⊗ (π∗L )⊗n is
globally generated for n ≫ 0. Note that (π∗F ) ⊗ L ⊗n is globally generated for
n≫ 0 by ampleness of L on Y, i.e., there exists a surjection

O⊕I
Y

// // (π∗F )⊗ L ⊗n ,
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where I is some index set. Show that

O⊕I
X

∼= π∗(O⊕I
Y ) // π∗(π∗F ⊗ L ⊗n)

is surjective. Pullback π∗ preserves tensor products (Theorem 16.3.7(9)), so we
have an isomorphism π∗(π∗F ⊗L ⊗n) ∼= π∗(π∗F )⊗ (π∗L )⊗n. Show (using only
affineness of π) that π∗π∗F → F is surjective. Connect these pieces together to
describe a surjection

O⊕I
X

// // F ⊗ (π∗L )⊗n .

(Remark for those who have read about ampleness in the absolute setting in §16.6.5:
the argument applies in that situation, i.e., with “proper A-schemes” changed to
“schemes”, without change. The only additional thing to note is that ampleness
of L on Y implies that Y is quasicompact from the definition, and separated from
Theorem 16.6.6(d). A relative version of this result appears in §17.3.8. It can be gen-
eralized even further, with “π finite” replaced by “π quasiaffine” — to be defined
in §17.3.11 — see [Gr-EGA, II.5.1.12].)

16.6.H. EXERCISE (AMPLE ⊗ AMPLE IS AMPLE, AMPLE ⊗ BASE-POINT-FREE IS AM-
PLE. Suppose L and M are invertible sheaves on a proper A-scheme X, and L
is ample. Show that if M is ample or base-point-free, then L ⊗ M is ample.

16.6.I. LESS IMPORTANT EXERCISE (AMPLE ⊠ AMPLE IS AMPLE). Solve Exer-
cise 16.6.D with “very ample” replaced by “ample”.

16.6.3. Proof of Theorem 16.6.2 in the case X is Noetherian. Noetherian hypotheses
are used at only one point in the proof, and we explain how to remove them, and
give a reference for the details.

Obviously, (a’) implies (a).
Clearly (c’) implies (c). We now show that (c) implies (c’). Suppose we have a

point p in an open subset U of X. We seek an affine Xf containing p and contained
in U. By shrinking U, we may assume that U is affine. From (c), U contains some
Xf containing p. But this Xf is affine, as it is the complement of the vanishing
locus of a section of a line bundle on an affine scheme (Exercise 7.3.F), so (c’) holds.
Note for future reference that the equivalence of (c) and (c’) did not require the
hypothesis of properness.

We next show that (a) implies (c). We embed X in projective space by some
power of L . Given a closed subset Z ⊂ X, and a point p of the complement X \ Z,
we seek a section of some L ⊗N that vanishes on Z and not on p. The existence of
such a section follows from the fact that V(I(Z)) = Z (Exercise 4.5.H(c)): there is
some element of I(Z) that does not vanish on p.

We next show that (b) implies (c). Suppose we have a point p in an open subset
U of X. We seek a section of L ⊗N that doesn’t vanish at p, but vanishes on X \ U.
Let I be the sheaf of ideals of functions vanishing on X \ U (the quasicoherent
sheaf of ideals cutting out X \ U, with reduced structure). As X is Noetherian, I
is finite type, so by (b), I ⊗ L ⊗N is generated by global sections for some N, so
there is some section of it not vanishing at p. (Noetherian note: This is the only part
of the argument where we use Noetherian hypotheses. They can be removed as
follows. Show that for a quasicompact quasiseparated scheme, every ideal sheaf is
generated by its finite type subideal sheaves. Indeed, any quasicoherent sheaf on a
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quasicompact quasiseparated scheme is the union of its finite type quasicoherent
subsheaves, see [Gr-EGA’, (6.9.9)] or [GW, Cor. 10.50]. One of these finite type
ideal sheaves doesn’t vanish at p; use this as I instead.)

We now have to start working harder.
We next show that (c’) implies (b). We wish to show that F ⊗ L ⊗n is globally

generated for n≫ 0.
We first show that (c’) implies that for someN > 0, L ⊗N is globally generated,

as follows. For each closed point p ∈ X, there is some f ∈ Γ(X,L ⊗N(p)) not
vanishing at p, so p ∈ Xf. (Don’t forget that quasicompact schemes have closed
points, Exercise 5.1.E!) As p varies, these Xf cover all of X. Use quasicompactness
of X to select a finite number of these Xf that cover X. To set notation, say these are

Xf1 , . . . , Xfn , where fi ∈ Γ(X,L ⊗Ni). By replacing fi with f
⊗(
∏

jNj)/Ni

i , we may
assume that they are all sections of the same power L ⊗N of L (N =

∏
jNj). Then

L ⊗N is generated by these global sections.
We next show that it suffices to show that for all finite type quasicoherent

sheaves F , F ⊗ L ⊗mN is globally generated for m≫ 0. For if we knew this, we
could apply it to F , F ⊗L , . . . , F ⊗L ⊗(N−1) (a finite number of times), and the
result would follow. For this reason, we can replace L by L ⊗N. In other words,
to show that (c’) implies (b), we may also assume the additional hypothesis that
L is globally generated.

For each closed point p, choose an affine open neighborhood of the form Xf,
using (c’). Then F |Xf

is generated by a finite number of global sections (Easy
Exercise 15.3.A — a finite type quasicoherent sheaf on SpecA corresponds to a
finitely generated A-module). By Exercise 13.3.H, each of these generators can be
expressed as a quotient of a section (over X) of F ⊗ L ⊗M(p) by fM(p). (Note: we
can take a singleM(p) for each p.) Then F ⊗L ⊗M(p) is globally generated at p by
a finite number of global sections. By Exercise 15.3.C(b), F ⊗ L ⊗M(p) is globally
generated at all points in some open neighborhood Up of p. As L is also globally
generated, this implies that F ⊗ L ⊗M ′

is globally generated at all points of Up
for M ′ ≥ M(p) (cf. Easy Exercise 15.3.B). From quasicompactness of X, a finite
number of these Up cover X, so we are done (by taking the maximum of these
M(p)).

Our penultimate step is to show that (c’) implies (a). Our goal is to assume (c’),
and to find sections of some L ⊗N that embeds X into projective space. Choose a
cover of (quasicompact) X by n affine open subsets Xa1

, . . . , Xan
, where a1, . . . , an

are all sections of powers of L . By replacing each section with a suitable power,
we may assume that they are all sections of the same power of L , say L ⊗N. Say
Xai

= SpecAi, where (using that π is finite type) Ai = SpecA[ai1, . . . , aiji ]/Ii.
By Exercise 13.3.H, each aij is of the form sij/a

mij

i , where sij ∈ Γ(X,L ⊗Nmij)

(for some mij). Let m = maxi,jmij. Then for each i, j, aij = (sija
m−mij

i )/ami .
For convenience, let bi = ami , and bij = sija

m−mij

i ; these are all global sections of
L ⊗mN. Now consider the linear series generated by the bi and bij. As theD(bi) =
Xai

cover X, this linear series is base-point-free, and hence (by Exercise 15.3.F)
gives a morphism to PQ (where Q = #bi + #bij − 1). Let x1, . . . , xn, . . . , xij, . . . be
the projective coordinates on PQ, so f∗xi = bi, and f∗xij = bij. Then the morphism
of affine schemes Xai

→ D(xi) is a closed embedding, as the associated maps of
rings is a surjection (the generator aij of Ai is the image of xij/xi).
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At this point, we note for future reference that we have shown the following.
If X→ SpecA is finite type, and L satisfies (c)=(c’), then X is an open embedding
into a projective A-scheme. (We did not use separatedness.) We conclude our
proof that (c’) implies (a) by using properness to show that the image of this open
embedding into a projective A-scheme is in fact closed, so X is a projective A-
scheme.

Finally, we note that (a) and (b) together imply (a’): if L ⊗N is very ample (from
(a)), and L ⊗n is base-point-free for n ≥ n0 (from (b)), then L ⊗n is very ample for
n ≥ n0 +N by Exercise 16.6.C. □

16.6.4. ⋆⋆ Semiample line bundles. Just as an invertible sheaf is ample if some tensor
power of it is very ample, an invertible sheaf L is said to be semiample if some
tensor power of it is base-point-free. (Translation: L is ample if some power gives
a closed embedding into projective space, and L is semiample if some power
gives just a morphism to projective space.) We won’t use this notion.

16.6.5. ⋆ Ampleness in the absolute setting. (We will not use this section in
any serious way later.) Note that global generation is already an absolute notion,
i.e., is defined for a quasicoherent sheaf on a scheme, with no reference to any
morphism. An examination of the proof of Theorem 16.6.2 shows that ampleness
may similarly be interpreted in an absolute setting. We make this precise. Suppose
L is an invertible sheaf on a quasicompact scheme X. We say that L is ample if as
f runs over the sections of L ⊗n (n > 0), the open subsets Xf = {p ∈ X : f(p) ̸= 0}

form a base for the topology of X. (We emphasize that quasicompactness in X is
part of the condition of ampleness of L .) For example, (i) if X is an affine scheme,
every invertible sheaf is ample, and (ii) if X is a projectiveA-scheme, O(1) is ample.

16.6.J. EASY EXERCISE (PROPERTIES OF ABSOLUTE AMPLENESS).
(a) Fix a positive integer n. Show that L is ample if and only if L ⊗n is ample.
(b) Show that if Z ↪→ X is a closed embedding, and L is ample on X, then L |Z is
ample on Z.

The following result will give you some sense of how ampleness behaves. We
will not use it, and hence omit the proof (which is given in [Stacks, tag 01Q3]).
However, many parts of the proof are identical to (or generalize) the correspond-
ing arguments in Theorem 16.6.2. The labeling of the statements parallels the la-
belling of the statements in Theorem 16.6.2.

16.6.6. Theorem (cf. Theorem 16.6.2). — Suppose L is an invertible sheaf on a
quasicompact scheme X. The following are equivalent.

(b) X is quasiseparated, and for every finite type quasicoherent sheaf F , there is an
n0 such that for n ≥ n0, F ⊗ L ⊗n is globally generated.

(c) As f runs over the global sections of L ⊗n (n > 0), the open subsets Xf = {p ∈
X : f(p) ̸= 0} form a base for the topology of X (i.e., L is ample).

(c’) As f runs over the global sections of L ⊗n (n > 0), those open subsets Xf which
are affine form a base for the topology of X.

(d) Let S• be the graded ring ⊕n≥0Γ(X,L ⊗n). Then the open sets Xf (with f ∈ S+
homogeneous of positive degree) cover X, and the associated map X→ ProjS• is
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an open embedding. (Warning: S• need not be finitely generated, and ProjS• is
not necessarily finite type.)

Part (d) implies that X is separated (and thus quasiseparated).

16.6.7. ⋆ Transporting global generation, base-point-freeness, and ampleness to
the relative situation.

These notions can be “relativized”. We could do this right now, but we wait
until §17.3.7, when we will have defined the notion of a projective morphism, and
thus a “relatively very ample” line bundle.

16.7 ⋆ The Grassmannian as a moduli space

We first defined projective space inelegantly in §4.4.9, and in §16.4.2 we gave
a clean (if perhaps surprising) functorial definition. Similarly, in §6.7, we gave a
preliminary description of the Grassmannian. We are now in a position to give a
better definition.

We describe the “Grassmannian functor” (which we also denoteG(k, n)), then
show that it is representable (§6.6.2). The construction works over an arbitrary
base scheme, so we work over the final object SpecZ. (You should think through
what to change if you wish to work with, for example, complex schemes.) The
functor is defined as follows. To a scheme B, we associate the set of locally free rank
k quotients of the rank n free sheaf,

(16.7.0.1) O⊕n
B

// // Q

up to isomorphism. An isomorphism of two such quotients ϕ : O⊕n
B → Q → 0 and

ϕ ′ : O⊕n
B → Q ′ → 0 is an isomorphism σ : Q → Q ′ such that the diagram

O⊕n ϕ //

ϕ ′
""E

EE
EE

EE
E Q

σ

��
Q ′

commutes. By Exercise 13.5.B(a), kerϕ is locally free of rank n − k. (Thus if you
prefer, you can extend (16.7.0.1), and instead consider the functor to take B to short
exact sequences

(16.7.0.2) 0→ S → O⊕n → Q → 0

of locally free sheaves over B, of ranks n− k, n, and k respectively.)
It may surprise you that we are considering rank k quotients of a rank n sheaf,

not rank k subobjects, given that the Grassmannian should parametrize k-dimensional
subspace of an n-dimensional space. This is done for several reasons. One is that
the kernel of a surjective map of locally free sheaves must be locally free, while
the cokernel of an injective map of locally free sheaves need not be locally free
(Exercise 13.5.B(a) and (b) respectively). Another reason: we will see in §28.3.3
that the geometric incarnation of this problem indeed translates to this. We can
already see a key example here: if k = 1, our definition yields one-dimensional
quotients O⊕n → L → 0. But this is precisely the data of n sections of L , with no
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common zeros, which by Theorem 16.4.1 (the functorial description of projective
space) corresponds precisely to maps to Pn, so the k = 1 case parametrizes what
we want.

We now show that the Grassmannian functor is representable for given n and
k.

16.7.A. EXERCISE. Show that the Grassmannian functor is a Zariski sheaf (§9.1.7).

Hence by Key Exercise 9.1.I, to show that the Grassmannian functor is repre-
sentable, we need only cover it with open subfunctors that are representable.

Throughout the rest of this section, a k-subset is a subset of {1, . . . , n} of size k.

16.7.B. EXERCISE.
(a) Suppose I is a k-subset. Make the following statement precise: there is an open
subfunctor G(k, n)I of G(k, n) where the k sections of Q corresponding to I (of
the n sections of Q coming from the surjection ϕ : O⊕n → Q) are linearly inde-
pendent. Hint: in a trivializing open neighborhood of Q, where we can choose an

isomorphism Q
∼ // O⊕k , ϕ can be interpreted as a k × n matrix M, and this

locus is where the determinant of the k × k matrix consisting of the I columns of
M is nowhere zero. Show that this locus behaves well under transitions between
trivializations.
(b) Show that these open subfunctors G(k, n)I cover the functor G(k, n) (as I runs
through the k-subsets).

Hence by Exercise 9.1.I, to show G(k, n) is representable, we need only show
that G(k, n)I is representable for arbitrary I. After renaming the summands of
O⊕n, without loss of generality we may assume I = {1, . . . , k}.

16.7.C. EXERCISE. Show that G(k, n){1...,k} is represented by Ak(n−k) as follows.
(You will have to make this precise.) Given a surjection ϕ : O⊕n → Q, let ϕi : O →
Q be the map from the ith summand of O⊕n. (Really, ϕi is just a section of Q.)
For the open subfunctor G(k, n)I, show that

ϕ1 ⊕ · · · ⊕ ϕk : O⊕k → Q

is an isomorphism. For a scheme B, the bijection G(k, n)I(B)↔ Hom(B,Ak(n−k))
is given as follows. Given an element ϕ ∈ G(k, n)I(B), for j ∈ {k + 1, . . . , n},
ϕj = a1jϕ1 + a2jϕ2 + · · · + akjϕk, where aij are functions on B. But k(n − k)

functions on B is the same as a map to Ak(n−k) (Exercise 6.6.E). Conversely, given
k(n − k) functions aij (1 ≤ i ≤ k < j ≤ n), define a surjection ϕ : O⊕n → O⊕k

as follows: (ϕ1 . . . , ϕk) is the identity, and ϕj = a1jϕ1 + a2jϕ2 + · · · + akjϕk for
j > k.

You have now shown that G(k, n) is representable, by covering it with
(
n
k

)
copies of Ak(n−k). (You might wish to relate this to the description you gave in
§6.7.) In particular, the Grassmannian over a field is smooth, and irreducible of
dimension k(n − k). (The Grassmannian over any base is smooth over that base,
because Ak(n−k)B → B is smooth, see §12.6.2.)
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16.7.1. The universal exact sequence over the Grassmannian. Note that we have a
tautological exact sequence

0→ S → O⊕n → Q → 0.

16.7.2. The Plücker embedding.
By applying ∧k to a surjection ϕ : O⊕n → Q (over an arbitrary base B), we get

a surjection

∧kϕ : O⊕(nk) → det Q

(Exercise 13.5.F). But a surjection from a rank N free sheaf to a line bundle is the
same as a map to PN−1 (Theorem 16.4.1).

16.7.D. EXERCISE. Use this to describe a map P : G(k, n)→ P(
n
k)−1. (This is just a

tautology: a natural transformation of functors induces a map of the representing
schemes. This is Yoneda’s Lemma, although if you didn’t do Exercise 1.3.Z, you
may wish to do this exercise by hand. But once you do, you may as well go back
to prove Yoneda’s Lemma and do Exercise 1.3.Z, because the argument is just the
same!)

16.7.E. EXERCISE. The projective coordinate xI on P(
n
k)−1 corresponding to the Ith

factor of O⊕(nk) may be interpreted as the determinant of the map ϕI : O⊕k → Q,
where the O⊕k consists of the summands of O⊕n corresponding to I. Make this
precise.

16.7.F. EXERCISE. Show that the standard open set UI of P(
n
k)−1 corresponding to

k-subset I (i.e., where the corresponding coordinate xI doesn’t vanish) pulls back
to the open subscheme G(k, n)I ⊂ G(k, n). Denote this map PI : G(k, n)I → UI.

16.7.G. EXERCISE. Show that PI is a closed embedding as follows. We may
deal with the case I = {1, . . . , k}. Note that G(k, n)I is affine — you described it
SpecZ[aij]1≤i≤k<j≤n in Exercise 16.7.C. Also, UI is affine, with coordinates xI ′/I,
as I ′ varies over the other k-subsets. You want to show that the map

P
♯
I : Z[xI ′/I]I ′⊂{1,...,n},|I ′|=k}/(xI/I − 1)→ Z[aij]1≤i≤k<j≤n

is a surjection. By interpreting the map ϕ : O⊕n → O⊕k as a k×nmatrixMwhose
left k columns are the identity matrix and whose remaining entries are aij (1 ≤ i ≤
k < j ≤ n), interpret P♯I as taking xI ′/I to the determinant of the k × k submatrix
corresponding to the columns in I ′. For each (i, j) (with 1 ≤ i ≤ k < j ≤ n), find
some I ′ so that xI ′/I 7→ ±aij. (Let I ′ = {1, . . . , i− 1, i+ 1, . . . , k, j}.)

Hence G(k, n) → P(
n
k)−1 is a closed embedding, so G(k, n) is projective over

Z.

16.7.H. UNIMPORTANT EXERCISE. As an entertaining geometric consequence: if
V is a vector space over a field, show that the “pure tensors in ∧kV are pure in
exactly one way”: if v1 ∧ · · ·∧ vk = w1 ∧ · · ·∧wk ̸= 0 in ∧kV , show that there is
a k× kmatrix of determinant 1 relating the vi to the wi.
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16.7.3. The Plücker equations. The equations of G(k, n) → P(
n
k)−1 are particularly

nice. There are quadratic relations among the k× kminors of a k× (n− k) matrix,
called the Plücker equations. By our construction, they are equations satisfied by
G(k, n). It turns out that these equations cut out G(k, n), and in fact generate the
homogeneous ideal of G(k, n), but this takes more work (see [MS, §14.2]). We
explore this in one example.

16.7.I. EXERCISE. Suppose v1, v2, v3, and v4 are four vectors in a two-dimensional
vector space V over some field. Show that

(v1 ∧ v2)(v3 ∧ v4) − (v1 ∧ v3)(v2 ∧ v4) + (v1 ∧ v4)(v2 ∧ v3) = 0.

The tricky part of this exercise is figuring out how to interpret multiplication (of
Plücker coordinates) here.

16.7.J. EXERCISE. Note that the Plücker embedding embeds the Grassmannian
G(2, 4) into P5.
(a) Show thatG(2, 4) is cut out by the quadratic equation x12x34−x13x24+x14x23 =
0. (Hint: Use Exercise 16.7.I to show that the quadratic vanishes on G(2, 4). But
that isn’t enough.)
(b) Show that every smooth quadric hypersurface in P5 over an algebraically closed
field k of characteristic not 2 is isomorphic to the Grassmannian (over k). (For com-
parison, every smooth quadric hypersurface in P1

k
is two points; every smooth

quadric hypersurface in P2
k

is isomorphic to P1
k

, §6.5.9; and every smooth quadric
hypersurface in P3

k
is isomorphic to P1

k
×k P1k, Example 9.6.2.)

16.7.K. EXERCISE (RULINGS ON QUADRICS IN P5). Suppose k = k. From Re-
mark 8.2.10, we expect two three-dimensional families of planes in G(2, 4) (inter-
preted as a hypersurface in P5 via the Plücker embedding, see Exercise 16.7.I).
One of them may be described as follows: for each point p ∈ P3k, we have a two-
dimensional family of lines through p; this is a plane in G(2, 4). There is a three-
dimensional family of planes corresponding to the choice of p. This is one of the
two rulings. What is the other one? Prove (as rigorously as you can manage, given
what you know) that these are both rulings.

16.7.4. Further discussion.

16.7.L. EXERCISE. Show that the group scheme GLn acts on the Grassmannian
G(k, n). (The action of a group scheme appeared earlier in Exercise 6.6.S(a).) Hint:
this is much more easily done with the language of functors, §6.6, than with the
description of the Grassmannian in terms of patches, §6.7. (Exercise 16.4.K was the
special case of projective space.)

16.7.M. ⋆⋆ EXERCISE (GRASSMANNIAN BUNDLES). Suppose F is a rank n locally
free sheaf on a scheme X. Define the Grassmannian bundle G(k,F ) over X. In-
tuitively, if F is a varying family of n-dimensional vector spaces over X, G(k,F )
should parametrize k-dimensional quotients of the fibers. You may want to define
the functor first, and then show that it is representable. Your construction will
behave well under base change.
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16.7.5. (Partial) flag varieties. The discussion here extends without change to partial
flag varieties (§6.7.1), and the interested reader should think this through.



CHAPTER 17

Relative versions of Spec and Proj, and projective
morphisms

In this chapter, we will use universal properties to define two useful construc-
tions, Spec of a sheaf of algebras A , and Proj of a sheaf of graded algebras A• on
a scheme X. These will both generalize (globalize) our constructions of Spec of
A-algebras and Proj of graded A-algebras. We will see that affine morphisms are
precisely those of the form Spec A → X, and so we will define projective morphisms
to be those of the form Proj A• → X.

In both cases, our plan is to make a notion we know well over a ring work
more generally over a scheme. The main issue is how to glue the constructions
over each affine open subset together. The slick way we will proceed is to give
a universal property, then show that the affine construction satisfies this univer-
sal property, then that the universal property behaves well with respect to open
subsets, then to use the idea that let us glue together the fibered product (or nor-
malization) together to do all the hard gluing work. The most annoying part of
this plan is finding the right universal property, especially in the Proj case.

17.1 Relative Spec of a (quasicoherent) sheaf of algebras

Given an A-algebra, B, we can take its Spec to get an affine scheme over SpecA:
SpecB→ SpecA. We will now see a universal property description of a globaliza-
tion of that notation. Consider an arbitrary scheme X, and a quasicoherent sheaf of
algebras B on it. We will define how to take Spec of this sheaf of algebras, and we
will get a scheme Spec B → X that is “affine over X”, i.e., the structure morphism
is an affine morphism. You can think of this in two ways.

17.1.1. First, and most concretely, for any affine open set SpecA ⊂ X, Γ(SpecA,B)
is some A-algebra; call it B. Then above SpecA, Spec B will be SpecB.

17.1.2. Second, it will satisfy a universal property. We could define the A-scheme
SpecB by the fact that morphisms to SpecB (from an A-scheme W, over SpecA)
correspond to maps of A-algebras B → Γ(W,OW) (this is our old friend Exer-
cise 6.3.F). The universal property for β : Spec B → X generalizes this. Given a
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morphism µ : W → X, the X-morphismsW → Spec B are in functorial (inW) bijec-
tion with morphisms α of sheaves of algebras making

(17.1.2.1) OX

~~}}
}}
}}
}}

##F
FF

FF
FF

FF

B
α // µ∗OW

commute. Here the map OX → µ∗OW is that coming from the map of ringed
spaces, and the map OX → B comes from the OX-algebra structure on B. (For
experts: it needn’t be true that µ∗OW is quasicoherent, but that doesn’t matter.
Non-experts should completely ignore this parenthetical comment.)

By universal property nonsense, these data determine β : Spec B → X up to
unique isomorphism, assuming that it exists.

Fancy translation: in the category of X-schemes, β : Spec B → X represents the
functor

(µ : W → X)
� // {(α : B → µ∗OW)}.

17.1.A. EXERCISE. Show that if X is affine, say SpecA, and B = B̃, where B
is an A-algebra, then SpecB → SpecA satisfies this universal property. (Hint:
Exercise 6.3.F.)

17.1.3. Proposition. — Suppose β : Spec B → X satisfies the universal property for
(X,B), and U ↪→ X is an open subset. Then β|U : Spec B ×X U = (Spec B)|U → U

satisfies the universal property for (U,B|U).

Proof. For convenience, let V = Spec B ×X U. A U-morphism W → V is the same
as an X-morphism W → Spec B (where by assumption µ : W → X factors through
U). By the universal property of Spec B, this is the same information as a map
B → µ∗OW , which by the universal property definition of pullback (§16.3.4) is
the same as µ∗B → OW , which is the same information as (µ|U)

∗B → OW . By
adjointness again this is the same as B|U → (µ|U)∗OW . □

Combining the above Exercise and Proposition, we have shown the existence
of Spec B in the case that X is an open subscheme of an affine scheme.

17.1.B. EXERCISE. Show the existence of Spec B in general, following the philoso-
phy of our construction of the fibered product, normalization, and so forth.

We make some quick observations. First, Spec B can be “computed affine-
locally on X”. We also have an isomorphism ϕ : B → β∗OSpec B.

17.1.C. EXERCISE. Given an X-morphism γ:

W

µ
��?

??
??

??
?

γ // Spec B

β
||yy
yy
yy
yy

X

show that the morphism α (in (17.1.2.1)) is the composition

B
ϕ // β∗OSpec B

// β∗γ∗OW = µ∗OW .
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The Spec construction gives an important way to understand affine morphisms.
Note that Spec B → X is an affine morphism. The “converse” is also true:

17.1.D. EXERCISE. Show that if µ : Z → X is an affine morphism, then we have a
natural isomorphism Z ∼= Spec µ∗OZ of X-schemes.

Hence we can recover any affine morphism using the Spec construction. More
precisely, a morphism is affine if and only if it is of the form µ : Spec B → X con-
structed above.

17.1.E. EXERCISE. Suppose µ : Spec B → X is such a morphism. Show that the
category of quasicoherent sheaves on Spec B is equivalent to the category of quasi-
coherent sheaves onXwith the structure of B-modules (quasicoherent B-modules
on X).

This is useful if X is quite simple but Spec B is complicated. We will use this
before long when X ∼= P1, and Spec B is a more complicated curve.

17.1.F. EXERCISE (Spec BEHAVES WELL WITH RESPECT TO BASE CHANGE). Sup-
pose µ : Z → X is any morphism, and B is a quasicoherent sheaf of algebras on
X. Show that there is a natural isomorphism Z ×X Spec B ∼= Spec µ∗B. (If you
think about, you will see that this generalizes the statement and possibly proof of
Proposition 17.1.3.)

17.1.4. Definition. An important example of the Spec construction is the total space
of a finite rank locally free sheaf F , which we define to be Spec(Sym• F∨).

17.1.G. EXERCISE. Suppose F is a locally free sheaf of rank n. Show that the total
space of F is a rank n vector bundle, i.e., that given any point p ∈ X, there is an
open neighborhood p ∈ U ⊂ X such that

Spec
(
Sym• F∨|U

)
∼= AnU.

Show that F is isomorphic to the sheaf of sections of the total space Spec(Sym• F∨).
(Possible hint: use transition functions.) For this reason, the total space is also
called the vector bundle associated to a locally free sheaf F . (Caution: some
authors, e.g., [Stacks, tag 01M2], call Spec(Sym• F ), the dual of this vector bundle,
the vector bundle associated to F .)

In particular, if F = O⊕n
X , then Spec(Sym• F∨) is called AnX, generalizing our

earlier notions of AnA. As the notion of free sheaf behaves well with respect to base
change, so does the notion of AnX, i.e., given X → Y, AnY ×Y X ∼= AnX. (Aside: you
may notice that the construction Spec Sym• can be applied to any coherent sheaf
F (without dualizing, i.e., Spec(Sym• F )). This is sometimes called the abelian
cone associated to F . This concept can be useful, but we won’t need it.)

17.1.H. EXERCISE (THE TAUTOLOGICAL BUNDLE ON Pn IS O(−1)). Suppose k is a
field. Define the subset X ⊂ An+1k × Pnk corresponding to “points of An+1k on the
corresponding line of Pnk”, so that the fiber of the map π : X → Pn corresponding
to a point l = [x0, · · · , xn] is the line in An+1k corresponding to l, i.e., the scalar
multiples of (x0, . . . , xn). Show that π : X → Pnk is (the line bundle corresponding
to) the invertible sheaf O(−1). (Possible hint: work first over the usual affine open
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sets of Pnk , and figure out transition functions.) For this reason, O(−1) is often
called the tautological bundle of Pnk (even over an arbitrary base, not just a field).
(Side Remark: The projection X → An+1k is the blow-up of An+1k at the “origin”,
see Exercise 9.3.F.)

17.2 Relative Proj of a sheaf of graded algebras

In parallel with the relative version Spec of Spec, we define a relative version
of Proj, denoted Proj (called “relative Proj” or “sheaf Proj”), of a quasicoherent
graded sheaf of algebras (satisfying some hypotheses) on a scheme X. We have
already done the case where the base X is affine, in §4.5.7, using the regular Proj
construction over a ring A. The elegant way to proceed would be to state the right
universal property, and then use this cleverly to glue together the constructions
over each affine, just as we did in the constructions of fibered product, normaliza-
tion, and Spec. But because graded rings and graded modules make everything
confusing, we do not do this. Instead we guiltily take a more pedestrian approach.
(But the universal property can be made to work, see [Stacks, tag 01O0].)

17.2.A. EXERCISE (Proj COMMUTES WITH AFFINE BASE CHANGE). SupposeA→ B

is map of rings, and S• is a Z≥0-graded ring over A.
(a) Give a canonical isomorphism

(17.2.0.1) α : ProjB(S• ⊗A B)
∼ // (Proj

A
S•)×SpecA SpecB

(b) (easy) Suppose X is a projective A-scheme (§4.5.9). Show that X ×SpecA SpecB
is a projective B-scheme.
(c) Suppose S• is generated in degree 1, so OProj

A
S•(1) is an invertible sheaf (§15.2).

Clearly S• ⊗A B is generated in degree 1 as a B-algebra. Describe an isomorphism

OProj
B
(S•⊗AB)(1)

∼= α∗γ∗OProj
A
S•(1),

where γ is the top morphism in the pullback diagram

(Proj
A
S•)×SpecA SpecB

γ //

��

Proj
A
S•

��
SpecB // SpecA

Possible hint: transition functions.

We now give a general means of constructing schemes over X (from [Stacks,
tag 01LH]), if we know what they should be over any affine open set, and how
these behave under open embeddings of one affine open set into another.

17.2.B. EXERCISE. Suppose we are given a scheme X, and the following data:
(i) For each affine open subsetU ⊂ X, we are given some morphism πU : ZU →
U (a “scheme over U”).

(ii) For each (open) inclusion of affine open subsets V ⊂ U ⊂ X, we are given
an open embedding ρUV : ZV ↪→ ZU.
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Assume this data satisfies:
(a) for each V ⊂ U ⊂ X, ρUV induces an isomorphism ZV → π−1U (V) of

schemes over V , and
(b) whenever W ⊂ V ⊂ U ⊂ X are three nested affine open subsets, ρUW =

ρUV ◦ ρVW .
Show that there exists an X-scheme π : Z → X, and isomorphisms iU : π−1(U) →
ZU for each affine open set U, such that for nested affine open sets V ⊂ U, ρUV
agrees with the composition

ZV
i−1
V // π−1(V) �

� // π−1(U)
iU // ZU

Hint (cf. Exercise 4.4.A): construct Z first as a set, then as a topological space, then
as a scheme. (Your construction will be independent of choices. Your solution
will work in more general situations, for example when the category of schemes is
replaced by ringed spaces, and when the affine open subsets are replaced by any
base of the topology.)

17.2.C. IMPORTANT EXERCISE AND DEFINITION (relative Proj ). Suppose S• =

⊕n≥0Sn is a quasicoherent sheaf of Z≥0-graded algebras on a scheme X. Over
each affine open subset SpecA ∼= U ⊂ X, we have an U-scheme Proj

A
S•(U) →

U. Show that these can be glued together to form an X-scheme, which we call
Proj

X
S•; we have a “structure morphism” β : Proj

X
S• → X. (The structure mor-

phism β is part of the definition.)

By the construction of Exercise 17.2.B, the preimage over any affine open set
can be computed using the original Proj construction. (You may enjoy going back
and giving constructions of Xred, the normalization of X, and Spec of a quasicoher-
ent sheaf of O-algebras using this idea. But there is a moral price to be paid by
giving up the universal property.)

17.2.1. Ongoing (reasonable) hypotheses on S•: “finite generation in degree 1”.
The Proj construction is most useful when applied to an A-algebra S• satisfying
some reasonable hypotheses (§4.5.6), notably when S• is a finitely generated Z≥0-
graded A-algebra, and ideally if it is generated in degree 1. For this reason, in the
rest of the book, we will enforce these assumptions on S•, once we make sense
of them for quasicoherent sheaves of algebras. (If you later need to relax these
hypotheses — for example, to keep the finite generation hypothesis but remove
the “generation in degree 1” hypothesis — it will not be too difficult.) Precisely,
we now always require that (i) S• is “generated in degree 1”, and (ii) S1 is
finite type. The cleanest way to make condition (i) precise is to require the natural
map

Sym•
OX

S1 → S•

to be surjective. Because the Sym• construction may be computed affine-locally
(§13.5.3), we can check generation in degree 1 on any affine cover. The motivation
for these hypotheses is the following construction.

17.2.D. IMPORTANT EXERCISE: O(1) ON Proj S• . If S• is finitely generated in
degree 1 (Hypotheses 17.2.1), construct an invertible sheaf OProj

S•
(1) on Proj

S•

that “restricts to OProj
A

S•(SpecA)(1) over each affine open subset SpecA ⊂ X”.



452 The Rising Sea: Foundations of Algebraic Geometry

17.2.E. EXERCISE (“Proj COMMUTES WITH BASE CHANGE”). Suppose S• is a
quasicoherent sheaf of Z≥0-graded algebras on X. Let ρ : Z→ X be any morphism.
Give a natural isomorphism

(Proj ρ∗S•,OProj ρ∗S•(1))
∼= (Z×X Proj S•, ψ

∗OProj S•(1))

where ψ is the “top” morphism in the base change diagram

Z×X Proj S•
ψ //

��

Proj S•

β

��
Z

ρ // X.

17.2.2. Definition: π-very ample. Suppose π : X → Y is proper. If L is an invertible
sheaf on X, then we say that L is very ample (with respect to π), relatively very
ample, or (awkwardly) π-very ample if we can write X = Proj

Y
S• with L ∼= O(1),

where S• is a quasicoherent sheaf of algebras on Y satisfying Hypotheses 17.2.1
(“finite generation in degree 1”). (The notion of very ampleness can be extended to
more general situations, see for example [Stacks, tag 01VM]. But this is of interest
only to people with esoteric tastes.)

17.2.F. EXERCISE. Suppose S• is finitely generated in degree 1 (Hypotheses 17.2.1).
Describe a map of graded quasicoherent sheaves ϕ : S• → ⊕nβ∗O(n) (β is the
structure morphism, see Exercise 17.2.C). Hint: Exercise 15.4.C.

17.2.G. EXERCISE. Suppose L is an invertible sheaf on X, and S• is a quasico-
herent sheaf of graded algebras on X generated in degree 1 (Hypotheses 17.2.1).
Define S ′

• = ⊕n=0 (Sn ⊗ L ⊗n). Then S ′
• has a natural algebra structure inher-

ited from S•; describe it. Give a natural isomorphism of “X-schemes with line
bundles”

(Proj S ′
• ,OProj S ′

•
(1)) ∼= (Proj S•,OProj S•(1)⊗ β∗L ),

where β : Proj S• → X is the structure morphism. In other words, informally
speaking, the Proj is the same, but the O(1) is twisted by L .

17.2.3. Definition. If F is a finite type quasicoherent sheaf on X, then Proj (Sym• F )
is called its projectivization, and is denoted PF . You can check that this construc-
tion behaves well with respect to base change. Define PnX := P(O⊕(n+1)

X ). (Then
PnSpecA agrees with our earlier definition of PnA, cf. Exercise 4.5.N, and PnX agrees
with our earlier usage, see for example the proof of Theorem 10.3.5.) More gener-
ally, if F is locally free of rank n+1, then PF is a projective bundle or Pn-bundle
over X. By Exercise 17.2.G, if F is a finite rank locally free sheaf on X, there is a
canonical isomorphism PF ∼= P(L ⊗ F ).

17.2.4. Example: ruled surfaces. If C is a regular curve and F is locally free of
rank 2, then PF is called a ruled surface over C. If C is further isomorphic to
P1, PF is called a Hirzebruch surface. All vector bundles on P1 split as a direct
sum of line bundles (see §18.5.5 for a proof), so each Hirzebruch surface is of the
form P(O(n1) ⊕ O(n2)). By Exercise 17.2.G, this depends only on n2 − n1. The
Hirzebruch surface P(O ⊕ O(n)) (n ≥ 0) is often denoted Fn. We will discuss the
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Hirzebruch surfaces in greater length in §20.2.9. We will see that the Fn are all
distinct in Exercise 20.2.Q.

17.2.H. EXERCISE. If S• is finitely generated in degree 1 (Hypotheses 17.2.1),
describe a canonical closed embedding

Proj S•

β
""F

FF
FF

FF
FF
� � i // PS1

}}||
||
||
||

X

and an isomorphism OProj S•(1)
∼= i∗OPS1

(1) arising from the surjection Sym• S1 →
S•.

17.2.I. EXERCISE. Suppose F is a locally free sheaf of rank n + 1 on X. Exhibit
a bijection between the set of sections s : X → PF of PF → X and the set of
surjective homomorphisms F → L → 0 of F onto invertible sheaves on X.

17.2.5. Remark (the relative version of the projective and affine cone). There is a natural
morphism from Spec S• minus the zero-section to Proj S• (cf. Exercise 8.2.P). Just
as ProjS•[T ] contains a closed subscheme identified with ProjS• whose comple-
ment can be identified with SpecS• (Exercise 8.2.Q), Proj S•[T ] contains a closed
subscheme identified with Proj S• whose complement can be identified with Spec S•.
You are welcome to think this through.

17.2.6. Remark. If you wish, you can describe (with proof) a universal property
of Proj S•. (You may want to describe a universal property of Proj first.) I recom-
mend against it — a universal property should make your life easier, not harder.
One possible universal property is given in [Stacks, tag 01NS].

17.3 Projective morphisms

In §17.1, we reinterpreted affine morphisms: X → Y is an affine morphism if
there is an isomorphism X ∼= Spec B of Y-schemes for some quasicoherent sheaf of
algebras B on Y. We will define the notion of a projective morphism similarly.

You might think that because projectivity is such a classical notion, there should
be some obvious definition, that is reasonably behaved. But this is not the case,
and there are many possible variant definitions of projective (see [Stacks, tag
01W8]). All are imperfect, including the accepted definition we give here. Al-
though projective morphisms are preserved by base change, we will manage to
show that they are preserved by composition only when the target is quasicom-
pact (Exercise 17.3.B), and we will only show that the notion is local on the base
when we add the data of a line bundle, and even then only under locally Noether-
ian hypotheses (§17.3.4).
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17.3.1. Definition. A morphism π : X→ Y is projective if there is an isomorphism

X
∼ //

π
��=

==
==

==
= Proj S•

||xx
xx
xx
xx
x

Y

for a quasicoherent sheaf of algebras S• on Y (satisfying “finite generation in de-
gree 1”, Hypotheses 17.2.1). We say X is a projective Y-scheme, or X is projective
over Y. Using Exercise 6.4.D, this generalizes the notion of a projective A-scheme.

17.3.2. Warnings. First, notice that O(1), an important part of the concept of Proj ,
is not mentioned in the definition. (I would prefer that it be part of the definition,
but this isn’t accepted practice.) As a result, the notion of affine morphism is affine-
local on the target, but the notion of projectivity of a morphism is not clearly affine-
local on the target. (In Noetherian circumstances, with the additional data of the
invertible sheaf O(1), it is, as we will see in §17.3.4. We will also later see an
example showing that the property of being projective is not local, §24.7.7.)

Second, [Ha1, p. 103] gives a different definition of projective morphism; we
follow the more general definition of Grothendieck. These definitions turn out to
be the same in nice circumstances. (But finite morphisms are not always projective
in the sense of [Ha1], while they are projective in our sense.)

17.3.A. EXERCISE.
(a) (a useful characterization of projective morphisms) Suppose π : X → Y is a mor-
phism. Show that π is projective if and only if there exist a finite type quasicoher-
ent sheaf S1 on Y, and a closed embedding i : X ↪→ PS1 (over Y, i.e., commuting
with the maps to Y). Hint: Exercise 17.2.H.
(b) (a useful characterization of projective morphisms, with line bundle) Suppose L is
an invertible sheaf on X, and π : X → Y is a morphism. Show that π is projective,
with O(1) ∼= L , if and only if there exist a finite type quasicoherent sheaf S1 on
Y, a closed embedding i : X ↪→ PS1 (over Y, i.e., commuting with the maps to Y),
and an isomorphism i∗OPS1

(1) ∼= L .
(c) If furthermore Y admits an ample line bundle M , show that π is projective if
and only if there exists a closed embedding i : X ↪→ PnY (over Y) for some n. (If you
wish, assume Y is proper over SpecA, so you can avoid the starred section §16.6.5.)
Hint: the harder direction is the forward implication. Use the finite type quasico-
herent sheaf S1 from (a). Tensor S1 with a high enough power of M so that
it is finitely globally generated (Theorem 16.6.6, or Theorem 16.6.2 in the proper
setting), to obtain a surjection

O
⊕(n+1)
Y

// // S1 ⊗ M⊗N .

Then use Exercise 17.2.G.

17.3.3. Definition: Quasiprojective morphisms. In analogy with projective and
quasiprojective A-schemes (§4.5.9), one may define quasiprojective morphisms. If
Y is quasicompact, we say that π : X → Y is quasiprojective if π can be expressed
as a quasicompact open embedding into a scheme projective over Y. This is not a
great notion, and we will not use it. (The general definition of quasiprojective is
slightly delicate — see [Gr-EGA, II.5.3] — but we won’t need it.)
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17.3.4. Properties of projective morphisms.
We start to establish a number of properties of projective morphisms. First,

the property of a morphism being projective is clearly preserved by base change,
as the Proj construction behaves well with respect to base change (Exercise 17.2.E).
Also, projective morphisms are proper: properness is local on the target (Theo-
rem 10.3.4(b)), and we saw earlier that projective A-schemes are proper over A
(Theorem 10.3.5). In particular (by definition of properness), projective morphisms
are separated, finite type, and universally closed.

Exercise 17.3.G (in a future optional section) implies that if π : X → Y is a
proper morphism of locally Noetherian schemes, and L is an invertible sheaf on
X, the question of whether π is a projective morphism with L as O(1) is local on
Y.

17.3.B. IMPORTANT CHALLENGING EXERCISE (THE COMPOSITION OF PROJECTIVE
MORPHISMS IS PROJECTIVE, IF THE FINAL TARGET IS QUASICOMPACT). Suppose
π : X → Y and ρ : Y → Z are projective morphisms, and Z is quasicompact. Show
that π◦ρ is projective. Hint: the criterion for projectivity given in Exercise 17.3.A(b)
will be useful. (i) Deal first with the case where Z is affine. Build the following
commutative diagram, thereby finding a closed embedding X ↪→ PF⊕n over Z.
In this diagram, all inclusions are closed embeddings, and all script fonts refer to
finite type quasicoherent sheaves.

X

π

))RRR
RRRR

RRRR
RRRR

RRRR
R�
� // PE

%%J
JJ

JJ
JJ

JJ
JJ

� � (†) // Pn−1Z ×Z Y

��

� � // Pn−1Z ×Z PF

��

� � Segre

cf. Ex. 9.6.C, 9.6.D
// P (F⊕n)

ss

Y

ρ

��

� � // PF

vvmmm
mmm

mmm
mmm

mmm

Z

Construct the closed embedding (†) as follows. Suppose M is the very ample line
bundle on Y over Z. Then M is ample, and so by Theorem 16.6.2, for m≫ 0, E ⊗
M⊗m is generated by a finite number of global sections. Suppose O⊕n

Y
// // E ⊗ M⊗m

is the corresponding surjection. This induces a closed embedding P(E ⊗M⊗m) ↪→
Pn−1Y . But P(E ⊗ M⊗m) ∼= PE (Exercise 17.2.G), and Pn−1Y = Pn−1Z ×Z Y. (ii) Un-
wind this diagram to show that (for Z affine) if L is π-very ample and M is ρ-very
ample, then for m ≫ 0, L ⊗ π∗M⊗m is (ρ ◦ π)-very ample. Then deal with the
general case by covering Zwith a finite number of affines.

17.3.5. Finite morphisms are projective.

17.3.C. IMPORTANT EXERCISE: FINITE MORPHISMS ARE PROJECTIVE (CF. EXER-
CISE 7.3.J). Show that finite morphisms are projective as follows. Suppose Z→ X

is finite, so that Z ∼= Spec B where B is a finite type quasicoherent sheaf on X.
Describe a sheaf of graded algebras S• where S0 ∼= OX and Sn ∼= B for n > 0.
Describe an X-isomorphism Z ∼= Proj S•.
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In particular, closed embeddings are projective. We have the sequence of im-
plications for morphisms

closed embedding =⇒ finite =⇒ projective =⇒ proper.

We know that finite morphisms are projective (Exercise 17.3.C), and have finite
fibers (Exercise 7.3.K). We will show the converse in Theorem 18.1.8, and state the
extension to proper morphisms immediately after.

17.3.6. Caution: Consequences of projectivity not being “reasonable” in the sense of
§7.1.1. Because the property of being projective is preserved by base change
(§17.3.4), and composition to quasicompact targets (Exercise 17.3.B), the property of
being projective is “usually” preserved by products (Exercise 9.4.F): if π : X → Y

and π ′ : X ′ → Y ′ are projective, then so is π × π ′ : X × X ′ → Y × Y ′, so long as
Y × Y ′ is quasicompact. Also, if you follow through the proof of the Cancellation
Theorem 10.1.19 for properties of morphisms, you will see that if π : X → Y is a
morphism, ρ : Y → Z is a separated morphism (so the diagonal δρ is a closed em-
bedding and hence projective), and ρ ◦π is projective, and Y is quasicompact, then π
is projective.

17.3.D. EXERCISE. Show that a morphism (over Speck) from a projective k-
scheme to a quasicompact separated k-scheme is always projective. (Hint: the
Cancellation Theorem 10.1.19 for projective morphisms; see also Caution 17.3.6.)

17.3.7. ⋆⋆ Global generation and (very) ampleness in the relative setting.
We extend the discussion of §15.3 to the relative setting, in order to give our-

selves the language of relatively base-point-freeness. We won’t use this discussion,
so on a first reading you should jump directly to §17.4. But these ideas come up
repeatedly in the research literature.

Suppose π : X → Y is a quasicompact quasiseparated morphism. If F is
a quasicoherent sheaf on X, we say that F is relatively globally generated or
globally generated with respect to π if the natural map of quasicoherent sheaves
π∗π∗F → F is surjective. (Quasicompactness and quasiseparatedness are needed
ensure that π∗F is a quasicoherent sheaf, Exercise 13.3.F.) But these hypotheses
are not very restrictive. Global generation is most useful only in the quasicom-
pact setting, and most people won’t be bothered by quasiseparated hypotheses.
Unimportant aside: these hypotheses can be relaxed considerably. If π : X → Y

is a morphism of locally ringed spaces — not necessarily schemes — with no other
hypotheses, and F is a quasicoherent sheaf on X, then we say that F is relatively
globally generated or globally generated with respect to π if the natural map
π∗π∗F → F of OX-modules is surjective.)

Thanks to our hypotheses, as the natural map π∗π∗F → F is a morphism
of quasicoherent sheaves, the condition of being relatively globally generated is
affine-local on Y.

Suppose now that L is a locally free sheaf on X, and π : X→ Y is a morphism.
We say that L is relatively base-point-free or base-point-free with respect to π if
it is relatively globally generated.

17.3.E. EXERCISE. Suppose L is a finite rank locally free sheaf on X, π : X → Y

is a quasicompact separated morphism, and π∗L is finite type on Y. (We will
later show in Grothendieck’s Coherence Theorem 18.9.1 that this latter statement
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is true if π is proper and Y is Noetherian. This is much easier if π is projective,
see Theorem 18.8.1. We could work hard and prove it now, but it isn’t worth
the trouble.) Describe a canonical morphism ψ : X → Pπ∗L . (Possible hint: this
generalizes the fact that base-point-free line bundles give maps to projective space,
so generalize that argument, see §15.3.5.)

We say that L is relatively ample or π-ample or relatively ample with re-
spect to π if for every affine open subset SpecB of Y, L |π−1(SpecB) is ample on
π−1(SpecB) over B, or equivalently (by §16.6.5), L |π−1(SpecB) is (absolutely) am-
ple on π−1(SpecB). By the discussion in §16.6.5, if L is ample then π is necessarily
quasicompact, and (by Theorem 16.6.6) separated; if π is affine, then all invertible
sheaves are ample; and if π is projective, then the corresponding O(1) is ample.
By Exercise 16.6.J, L is π-ample if and only if L ⊗n is π-ample, and if Z ↪→ X is a
closed embedding, then L |Z is ample over Y.

From Theorem 16.6.6(d), we have a natural open embeddingX→ Proj
Y
⊕π∗L ⊗d.

(Do you see what this map is? Also, be careful: ⊕π∗L ⊗d need not be a finitely gen-
erated graded sheaf of algebras, so we are using the Proj construction where one
of the usual hypotheses doesn’t hold.)

The notions of relative global generation and relative ampleness are most use-
ful in the proper setting, because of Theorem 16.6.2.

17.3.8. Many statements of §15.3 carry over without change. For example, we have
the following. Suppose π : X → Y is proper, F and G are quasicoherent sheaves
on X, and L and M are invertible sheaves on X. If π is affine, then F is rela-
tively globally generated (from Easy Exercise 15.3.A). If F and G are relatively
globally generated, so is F ⊗ G (Easy Exercise 15.3.B). If L is π-very ample (Def-
inition 17.2.2), then it is π-base-point-free (Easy Exercise 16.6.B). If L is π-very
ample, and M is π-base-point-free (if for example it is π-very ample), then L ⊗M
is π-very ample (Exercise 16.6.C). Exercise 16.6.G extends immediately to show
that if

X
π //

τ
��>

>>
>>

>>
> Y

ρ
����
��
��
��

S

is a finite morphism of S-schemes, and if L is a ρ-ample invertible sheaf on Y, then
π∗L is τ-ample.

By the nature of the statements, some of the statements of §15.3 require quasi-
compactness hypotheses on Y, or other patches. For example:

17.3.9. Theorem. — Suppose π : X → Y is proper, L is an invertible sheaf on X, and Y
is quasicompact. The following are equivalent.

(a) For some N > 0, L ⊗N is π-very ample.
(a’) For all n≫ 0, L ⊗n is π-very ample.
(b) For all finite type quasicoherent sheaves F , there is an n0 such that for n ≥ n0,

F ⊗ L ⊗n is relatively globally generated.
(c) The invertible sheaf L is π-ample.
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17.3.F. EXERCISE. Prove Theorem 17.3.9 using Theorem 16.6.2. (Unimportant
remark: The proof given of Theorem 16.6.2 used Noetherian hypotheses, but as
stated there, they can be removed.)

After doing the above Exercise, it will be clear how to adjust the statement of
Theorem 17.3.9 if you need to remove the quasicompactness assumption on Y.

17.3.G. EXERCISE (A USEFUL EQUIVALENT DEFINITION OF VERY AMPLENESS UN-
DER NOETHERIAN HYPOTHESES). Suppose π : X → Y is a proper morphism, Y
is locally Noetherian (hence X is too, as π is finite type), and L is an invertible
sheaf on X. Suppose that you know that in this situation π∗L is finite type. (We
will later show this, as described in Exercise 17.3.E.) Show that L is very ample
if and only if (i) L is relatively base-point-free, and (ii) the canonical Y-morphism
i : X → P(π∗L ) of Exercise 17.3.E is a closed embedding. Conclude that the no-
tion of relative very ampleness is affine-local on Y (it may be checked on any affine
cover Y), if Y is locally Noetherian and π is proper.

As a consequence, Theorem 17.3.9 implies the notion of relative ampleness is
affine-local on Y (if π is proper and Y is locally Noetherian).

17.3.10. ⋆⋆ Ample vector bundles. The notion of an ample vector bundle is useful
in some parts of the literature, so we define it, although we won’t use the notion.
A locally free sheaf E on a proper A-scheme X is ample if OPE/X(1) is an ample in-
vertible sheaf. In particular, using Exercise 17.2.G, you can verify that an invertible
sheaf is ample as a locally free sheaf (this definition) if and only if it is ample as an
invertible sheaf (Definition 16.6.1), preventing a notational crisis. (The proper hy-
potheses can be relaxed; it is included only because Definition 16.6.1 of ampleness
is only for proper schemes.)

17.3.11. ⋆⋆ Quasiaffine morphisms.
Because we have introduced quasiprojective morphisms (Definition 17.3.3),

we briefly introduce quasiaffine morphisms (and quasiaffine schemes), as some
readers may have cause to use them. Many of these ideas could have been intro-
duced long before, but because we will never use them, we deal with them all at
once.

A scheme X is quasiaffine if it admits a quasicompact open embedding into an
affine scheme. This implies that X is quasicompact and separated. Note that if X
is Noetherian (the most relevant case for most people), then any open embedding
is of course automatically quasicompact.

17.3.H. EXERCISE. Show that X is quasiaffine if and only if the canonical map
X → Spec Γ(X,OX) (defined in Exercise 6.3.F and the paragraph following it) is a
quasicompact open embedding. Thus a quasiaffine scheme comes with a canonical
quasicompact open embedding into an affine scheme. Hint: Let A = Γ(X,OX) for
convenience. Suppose X ↪→ SpecR is a quasicompact open embedding. We wish
to show that X ↪→ SpecA is a quasicompact open embedding. Factor X ↪→ SpecR
through X→ SpecA→ SpecR. Show that X→ SpecA is an open embedding in an
open neighborhood of any chosen point p ∈ X, as follows. Choose r ∈ R such that
p ∈ D(r) ⊂ X. Notice that if Xr = {q ∈ X : r(q) ̸= 0}, then Γ(Xr,OX) = Γ(X,OX)r
by Exercise 13.3.H, using the fact that X is quasicompact and quasiseparated. Use
this to show that the map Xr → SpecAr is an isomorphism.
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It is not hard to show that X is quasiaffine if and only if OX is ample, but we
won’t use this fact.

A morphism π : X→ Y is quasiaffine if the inverse image of every affine open
subset of Y is a quasiaffine scheme. By Exercise 17.3.H, this is equivalent to π
being quasicompact and separated, and the natural map X → Spec π∗OX being a
quasicompact open embedding. This implies that the notion of quasiaffineness is
local on the target (may be checked on an open cover), and also affine-local on
a target (one may choose an affine cover, and check that the preimages of these
open sets are quasiaffine). Quasiaffine morphisms are preserved by base change:
if a morphism X ↪→ Z over Y is a quasicompact open embedding into an affine
Y-scheme, then for any W → Y, X ×Y W ↪→ Z ×Y W is a quasicompact open
embedding into an affineW-scheme. (Interestingly, Exercise 17.3.H is not the right
tool to use to show this base change property.)

One may readily check that quasiaffine morphisms are preserved by composi-
tion, [Stacks, tag 01SN]. Thus quasicompact locally closed embeddings are quasi-
affine. If X is affine, then X → Y is quasiaffine if and only if it is quasicompact (as
the preimage of any affine open subset of Y is an open subset of an affine scheme,
namely X). In particular, from the Cancellation Theorem 10.1.19 for quasicompact
morphisms, any morphism from an affine scheme to a quasiseparated scheme is
quasiaffine.

17.4 Applications to curves

We now apply what we have learned to curves.

17.4.1. Theorem (every integral curve has a birational model that is regular and
projective). — If C is an integral curve of finite type over a field k, then there exists a
regular projective k-curve C ′ birational to C.

C ′

P1

FIGURE 17.1. Constructing a projective regular model of a curve
C over k via a finite cover of P1

Proof. We can assume C is affine. By the Noether Normalization Lemma 11.2.4 (or
using transcendence theory, see Exercise 11.2.A), we can find some x ∈ K(C) \ k
with K(C)/k(x) a finite extension of fields. By identifying a standard open of P1k
with Speck[x], and taking the normalization of P1 in the function field K(C) (Defi-
nition 9.7.I), we obtain a finite morphism C ′ → P1, where C ′ is a curve (finiteness
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by Exercise 9.7.M, dimC ′ = dimP1 by Exercise 11.1.F), and regular (it is reduced
hence regular at the generic point, and regular at the closed points by the main
theorem on discrete valuation rings in §12.5). Also, C ′ is birational to C as they
have isomorphic function fields (Exercise 6.5.D).

Finally, C ′ → P1k is finite hence projective (Exercise 17.3.C), and P1k → Speck
is projective, so as composition of projective morphisms (to a quasicompact target)
are projective (Exercise 17.3.B), C ′ → Spec k is projective. □

17.4.2. Theorem. — If C is an irreducible separated regular curve, finite type over a field
k, then there is an open embedding C ↪→ C ′ into some projective regular curve C ′ (over
k).

Proof. We first prove the result in the case where C is affine. Then we have a
closed embedding C ↪→ An, and we consider An as a standard open subset of
Pn. Taking the scheme-theoretic closure of C in Pn, we obtain a projective integral

curve C, containing C as an open subset. The normalization C̃ of C is a finite

morphism (finiteness of integral closure, Theorem 9.7.3(b)), so C̃ is Noetherian,
and regular (as normal Noetherian dimension 1 local rings are discrete valuation
rings, §12.5). Moreover, by the universal property of normalization, normalization

of C doesn’t affect the normal open set C, so we have an open embedding C ↪→ C̃.

Finally, C̃ → C is finite hence projective, and C → Speck is projective, so (by

Exercise 17.3.B) C̃ is projective.
We next consider the case of general C. Let C1 by any nonempty affine open

subset of C. By the discussion in the previous paragraph, we have a regular pro-

jective compactification C̃1. The Curve-to-Projective Extension Theorem 16.5.1 (ap-
plied successively to the finite number of points C\C1) implies that the morphism

C1 ↪→ C̃1 extends to a birational morphism C → C̃1. Because points of a regular
curve are determined by their valuation (Exercise 12.7.B), this is an inclusion of
sets. Because the topology on curves is stupid (cofinite), it expresses C as an open

subset of C̃1. But why is it an open embedding of schemes?
We show it is an open embedding near a point p ∈ C as follows. Let C2 be an

affine open neighborhood of p in C. We repeat the construction we used on C1, to
obtain the following diagram, with open embeddings marked.

C1_�

��

� p

  A
AA

AA
AA

A C2N n

~~}}
}}
}}
}}

� _

��

C

��?
??

??
??

?

����
��
��
��

C̃1 C̃2

By the Curve-to-Projective Extension Theorem 16.5.1, the map C1 → C̃2 extends

to π12 : C̃1 → C̃2, and we similarly have a morphism π21 : C̃2 → C̃1, extending

C2 → C̃1. The composition π21 ◦ π12 is the identity morphism (as it is the identity
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rational map, see Theorem 10.2.2). The same is true for π12 ◦ π21, so π12 and π21
are isomorphisms. The enhanced diagram

C1_�

��

� p

  A
AA

AA
AA

A C2N n

~~}}
}}
}}
}}

� _

��

C

��?
??

??
??

?

����
��
��
��

C̃1 oo // C̃2

commutes (by Theorem 10.2.2 again, implying that morphisms of reduced sepa-

rated schemes are determined by their behavior on dense open sets). But C2 → C̃1

is an open embedding (in particular, at p), so C→ C̃1 is an open embedding there
as well. □

17.4.A. EXERCISE. Show that all regular proper curves over k are projective.

17.4.3. Theorem (various categories of curves are the same). — The following
categories are equivalent.

(i) irreducible regular projective curves over k, and surjective k-morphisms.
(ii) irreducible regular projective curves over k, and dominant k-morphisms.

(iii) irreducible regular projective curves over k, and dominant rational maps over k.
(iv) integral curves of finite type over k, and dominant rational maps over k.
(v) the opposite category of finitely generated fields of transcendence degree 1 over

k, and k-homomorphisms.

All morphisms and maps in the following discussion are assumed to be de-
fined over k.

(Aside: The interested reader can tweak the proof below to show the following
variation of the theorem: in (i)–(iv), consider only geometrically irreducible curves,
and in (v), consider only fields K such that K ∩ ks = k in K. This variation allows
us to exclude “weird” curves we may not want to consider. For example, if k = R,
then we are allowing curves such as P1C which are not geometrically irreducible,
as P1C ×R SpecC ∼= P1C

⨿
P1C.)

Proof. Every surjective morphism is a dominant morphism, and every dominant
morphism is a dominant rational map, and each integral regular projective curve is
a quasiprojective curve, so we have shown (informally speaking) how to get from
(i) to (ii) to (iii) to (iv). To get from (iv) to (i), suppose we have a dominant rational
map C1 99K C2 of integral curves. Replace C1 by a dense open set so the rational
map is a morphism C1 → C2. This induces a map of normalizations C̃1 → C̃2

of regular irreducible curves. Let C̃i be a regular projective compactification of

C̃i (for i = 1, 2), as in Theorem 17.4.2. Then the morphism C̃1 → C̃2 extends to

a morphism C̃1 → C̃2 by the Curve-to-Projective Extension Theorem 16.5.1. This
morphism is surjective (do you see why?), so we have produced a morphism in
category (i).
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17.4.B. EXERCISE. Put the above pieces together to describe equivalences of cate-
gories (i) through (iv).

It remains to connect (v). This is essentially the content of Exercise 6.5.D; de-
tails are left to the reader. □

Theorem 17.4.3 has a number of implications. For example, each quasiprojec-
tive reduced curve is birational to precisely one projective regular curve. Here is
another interesting consequence, promised in Side Remark 3.1.3.

17.4.4. Degree of a projective morphism from a curve to a regular curve.
You might already have a reasonable sense that a map of compact Riemann

surfaces has a well-behaved degree, that the number of preimages of a point of
C ′ is constant, so long as the preimages are counted with appropriate multiplicity.
For example, if f locally looks like z 7→ zm = y, then near y = 0 and z = 0 (but
not at z = 0), each point has precisely m preimages, but as y goes to 0, the m
preimages coalesce. Enlightening Example 9.3.3 showed this phenomenon in a
more complicated context.

We now show the algebraic version of this fact. Suppose π : C → C ′ is a sur-
jective (or equivalently, dominant) map of regular projective curves. We will show
that π has a well-behaved degree, in a sense that we will now make precise.

First we show that π is finite. Theorem 18.1.8 (finite = projective + finite fibers)
implies this, but we haven’t proved it yet. So instead we show the finiteness of
π as follows. Let C ′′ be the normalization of C ′ in the function field of C. Then
we have an isomorphism K(C) ∼= K(C ′′) (really, equality) which leads to birational
maps C oo //___ C ′′ which extend to morphisms as both C and C ′′ are regular and
projective (by the Curve-to-Projective Extension Theorem 16.5.1). Thus this yields
an isomorphism of C and C ′′. But C ′′ → C ′ is a finite morphism by the finiteness
of integral closure (Theorem 9.7.3).

17.4.5. Proposition. — Suppose that π : C→ C ′ is a finite morphism, whereC is a (pure
dimension 1) curve with no embedded points (the most important case: C is reduced), and
C ′ is a regular curve. Then π∗OC is locally free of finite rank.

The “no embedded points” hypothesis is the same as requiring that every as-
sociated point of Cmaps to a generic point of (some component of) C ′. Notice that
if C is reduced, then there are no restrictions on how bad the singularities of C can
be!

We will prove Proposition 17.4.5 in §17.4.10, after showing how useful it is.
The regularity hypothesis on C ′ is necessary: the normalization of a nodal curve
(Figure 7.4) is an example where most points have one preimage, and one point
(the “node”) has two. (We will later see, in Remark 24.4.8 and §24.4.12, that what
matters in the hypotheses of Proposition 17.4.5 is that the morphism is finite and
flat.)

17.4.6. Definition. If C ′ is irreducible, the rank of this locally free sheaf is the
degree of π.
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17.4.C. EXERCISE. Recall that the degree of a rational map from one integral
curve to another is defined as the degree of the function field extension (Defini-
tion 11.2.2). Show that (with the notation of Proposition 17.4.5) if C and C ′ are
integral, the degree of π as a rational map is the same as the rank of π∗OC.

17.4.7. Remark for those with complex-analytic background (algebraic degree = analytic
degree). If C → C ′ is a finite map of regular complex algebraic curves, Proposi-
tion 17.4.5 establishes that algebraic degree as defined above is the same as analytic
degree (counting preimages, with multiplicity).

17.4.D. EXERCISE. We continue the notation and hypotheses of Proposition 17.4.5.
Suppose p is a closed point of C ′. The scheme-theoretic preimage π∗(p) of p is a
dimension 0 scheme over k.
(a) Suppose C ′ is finite type over a field k, and n is the dimension of the k-vector
space of global sections of the structure sheaf of π∗(p). Show thatn = (degπ)(degp).
(The degree of a point was defined in §5.3.8.)
(b) Suppose that C is regular, and π−1(p) = {p1, . . . , pm}. Suppose t is a uni-
formizer of the discrete valuation ring OC ′,p. Show that

degπ =

m∑
i=1

(valpi
π∗t)deg(κ(pi)/κ(p)),

where deg(κ(pi)/κ(p)) denotes the degree of the field extension of the residue
fields. (Can you extend (a) to remove the hypotheses of working over a field? If
you are a number theorist, can you recognize (b) in terms of splitting prime ideals
in extensions of rings of integers in number fields?)

17.4.E. EXERCISE. Suppose that C is an irreducible regular projective curve over
k, and s is a nonzero rational function on C. Show that the number of zeros of s
(counted with appropriate multiplicity) equals the number of poles. Hint: recog-
nize this as the degree of a morphism s : C→ P1k. (In the complex category, this is
an important consequence of the Residue Theorem.)

17.4.8. Remark. In Exercise 18.4.D, we will see that the number of zeros (and poles)
in the previous exercise is the degree of the line bundle giving the map to P1 (via
Important Theorem 16.4.1).

17.4.F. EXERCISE. Suppose s1 and s2 are two sections of a degree d line bundle
L on an irreducible regular curve C, with no common zeros. Then s1 and s2
determine a morphism π : C → P1k. Show that the degree of π is d. (Translation:
a two-dimensional base-point-free degree d linear system on C defines a degree d
cover of P1.)

17.4.9. Revisiting Example 9.3.3. Proposition 17.4.5 and Exercise 17.4.D make
precise what general behavior we observed in Example 9.3.3. Suppose C ′ is ir-
reducible, and that d is the rank of this allegedly locally free sheaf. Then the fiber
over any point of C with residue field K is the Spec of an algebra of dimension d
over K. This means that the number of points in the fiber, counted with appropri-
ate multiplicity, is always d.
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As a motivating example, we revisit Example 9.3.3, the map Q[y]→ Q[x] given
by x 7→ y2, the projection of the parabola x = y2 to the x-axis. We observed the
following.

(i) The fiber over x = 1 is Q[y]/(y2 − 1), so we get 2 points.
(ii) The fiber over x = 0 is Q[y]/(y2) — we get one point, with multiplicity 2,

arising because of the nonreducedness.
(iii) The fiber over x = −1 is Q[y]/(y2 + 1) ∼= Q(i) — we get one point, with

multiplicity 2, arising because of the field extension.
(iv) Finally, the fiber over the generic point SpecQ(x) is SpecQ(y), which is

one point, with multiplicity 2, arising again because of the field extension
(as Q(y)/Q(x) is a degree 2 extension).

We thus see three sorts of behaviors ((iii) and (iv) are really the same). Note that
even if you only work with algebraically closed fields, you will still be forced to
deal with this third type of behavior, because residue fields at generic points are
usually not algebraically closed (witness case (iv) above).

17.4.10. Proof of Proposition 17.4.5. The key idea, useful in other circumstances, is
to reduce to a fact about discrete valuation rings.

The question is local on the target, so we may assume that C ′ is affine. By
Exercise 5.4.B, we may also assume C ′ is integral.

By Important Exercise 13.7.K, if the rank of the finite type quasicoherent sheaf
π∗OC is constant, then (as C ′ is reduced) π∗OC is locally free. We will show this by
showing the rank at any closed point p of C ′ is the same as the rank at the generic
point.

Suppose C ′ = SpecA ′, where A ′ is an integral domain, and p = [m]. As π is
an affine morphism, C is an affine scheme as well; say C = SpecA.

We wish to show that (i) dimA ′/m(A/m) (the rank of π∗OC at p) equals (ii)
dimK(A ′)(A

′×)−1A (the rank of π∗OC at the generic point). In other words, we
take A (considered as an A ′-module), and (i) quotient by m, and (ii) invert all
nonzero elements of A ′, and in each case compute the result’s dimension over the
appropriate field.

Both (i) and (ii) factor through localizing at m, so it suffices to show that Am is
a finite rank free A ′

m-module, of rank d, say, as the answers to both (i) and (ii) will
then be d.

Now A ′
m is a discrete valuation ring; let t be its uniformizer. We can assume

that t ∈ A ′ (as otherwise, we replace A ′ by a suitable localization, at the “de-
nominators” of t). Then Am is a finitely generated A ′

m-module, and hence by Re-
mark 12.5.14 is a finite sum of principal modules, of the form A ′

m or A ′
m/(t

n) (for
various n). We wish to show that there are no summands of the latter type. But
if there were, then t (interpreted as an element of Am) would be a zerodivisor of
Am, and thus (interpreted as an element of A) a zerodivisor of A. But then by §5.5
(C), there is an associated point of C in π−1(p), contradicting the hypotheses that
C has no embedded points. □



CHAPTER 18

Čech cohomology of quasicoherent sheaves

This topic is surprisingly simple and elegant. You may think cohomology
must be complicated, and that this is why it appears so late in the book. But you
will see that we need very little background. After defining schemes, we could
have immediately defined quasicoherent sheaves, and then defined cohomology,
and verified that it had many useful properties.

18.1 (Desired) properties of cohomology

Rather than immediately defining cohomology of quasicoherent sheaves, we
first discuss why we care, and what properties it should have.

As Γ(X, ·) is a left-exact functor, if 0 → F → G → H → 0 is a short exact
sequence of quasicoherent sheaves on a scheme X, then

0→ F (X)→ G (X)→H (X)

is exact. We dream that this sequence continues to the right, giving a long exact
sequence. More explicitly, there should be some covariant functorsHi (i ≥ 0) from
quasicoherent sheaves on X to groups such that H0 is the global section functor Γ ,
and so that there is a “long exact sequence in cohomology”.

(18.1.0.1) 0 // H0(X,F ) // H0(X,G ) // H0(X,H )

// H1(X,F ) // H1(X,G ) // H1(X,H ) // · · ·

(In general, whenever we see a left-exact or right-exact functor, we should hope
for this, and in good cases our dreams will come true. The machinery behind this
usually involves derived functors, which we will discuss in Chapter 23.)

Before defining cohomology groups of quasicoherent sheaves explicitly, we
first describe their important properties, which are in some ways more important
than the formal definition. The boxed properties will be the important ones.

Suppose X is a separated and quasicompact A-scheme. For each quasicoherent
sheaf F on X, we will defineA-modulesHi(X,F ). In particular, ifA = k, they are
k-vector spaces. In this case, we define hi(X,F ) = dimkH

i(X,F ) (where k is left
implicit on the left side).

(i) Each Hi is a covariant functor QCohX →ModA .

465
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(ii) The functor H0 is identified with functor Γ : H0(X,F ) = Γ(X,F ), and
the covariance of (i) for i = 0 is just the usual covariance for Γ (F → G induces
Γ(X,F )→ Γ(X,G )).

(iii) If 0 → F → G → H → 0 is a short exact sequence of quasicoherent
sheaves onX, then we have a long exact sequence (18.1.0.1). The mapsHi(X,F )→
Hi(X,G ) come from covariance, and similarly for Hi(X,G ) → Hi(X,H ). The con-
necting homomorphisms Hi(X,H )→ Hi+1(X,F ) will have to be defined.

(iv) If π : X → Y is any morphism of quasicompact separated A-schemes, and

F is a quasicoherent sheaf onX, then there is a natural morphism Hi(Y, π∗F )→ Hi(X,F )

extending Γ(Y, π∗F ) → Γ(X,F ). (Note that π is quasicompact and separated
by the Cancellation Theorem 10.1.19 for quasicompact and separated morphisms,
taking Z = SpecA in the statement of the Cancellation Theorem, so π∗F is in-
deed a quasicoherent sheaf by Exercise 13.3.F.) We will later see this as part of a
larger story, the Leray spectral sequence (Theorem 23.4.5). If G is a quasicoherent
sheaf on Y, then setting F := π∗G and using the adjunction map G → π∗π

∗G
and covariance of (ii) gives a natural pullback map Hi(Y,G ) → Hi(X, π∗G ) (via
Hi(Y,G ) → Hi(Y, π∗π

∗G ) → Hi(X, π∗G )) extending Γ(Y,G ) → Γ(X, π∗G ). In this
way, Hi is a “contravariant functor in the space”.

(v) If π : X → Y is an affine morphism, and F is a quasicoherent sheaf on X,

the natural map of (iv) is an isomorphism: Hi(Y, π∗F )
∼ // Hi(X,F ) . When

π is a closed embedding and Y = PNA , this isomorphism translates calculations on
arbitrary projective A-schemes to calculations on PNA .

(vi) (affine cover cohomology vanishing) If X can be covered by n affine open sets,

then Hi(X,F ) = 0 for i ≥ n for all F . In particular, on affine schemes, all higher

(i > 0) quasicoherent cohomology groups vanish. The vanishing ofH1 in this case,
along with the long exact sequence (iii) implies that Γ is an exact functor for quasi-
coherent sheaves on affine schemes, something we already knew (Exercise 13.4.A).
It is also true that if dimX = n, then Hi(X,F ) = 0 for all i > n and for all F (di-
mensional cohomology vanishing). We will prove this for projective A-schemes
(Theorem 18.2.6) and even quasiprojectiveA-schemes (Exercise 22.4.T). See §18.2.7
for discussion of the general case.

18.1.1. Side Remark: the cohomological criterion for affineness. The converse to “affine
cover cohomology vanishing” (vi) in the case when n = 1 is Serre’s cohomological
criterion for affineness, [GW, Thm. 12.35]: any quasicompact quasiseparated scheme
X, such that Hi(X,F ) = 0 for all i > 0 and all quasicoherent F , must be affine. (In
fact, it suffices that H1 of every quasicoherent sheaf of ideals vanishes.) We will
not use this, and thus will not prove it.

18.1.2. Let’s get back to our list.
(vii) The functor Hi behaves well under direct sums, and more generally un-

der filtered colimits: Hi(X, lim−→Fj) = lim−→Hi(X,Fj).

(viii) We will also identify the cohomology of all O(m) on PnA:

18.1.3. Theorem. —
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• H0(PnA,OPn
A
(m)) is a free A-module of rank

(
n+m
m

)
ifm ≥ 0.

• Hn(PnA,OPn
A
(m)) is a free A-module of rank

(
−m−1

−n−m−1

)
ifm ≤ −n− 1.

• Hi(PnA,OPn
A
(m)) = 0 otherwise.

We have already shown the first statement in Essential Exercise 14.1.C.
Theorem 18.1.3 has a number of features that will be the first appearances of

facts that we will prove later.

• The cohomology of these bundles vanish in degree above n ((vi) above,
“affine cover cohomology vanishing”)

• These cohomology groups are always finitely generated A-modules. This
will be true for all coherent sheaves on projectiveA-schemes (Theorem 18.1.4(i)),
and indeed (with more work) on proper A-schemes (Grothendieck’s Co-
herence Theorem 18.9.1).

• The top cohomology group vanishes for m > −n − 1. (We will later see
this as an example of Kodaira vanishing, see §21.5.7.)

• The top cohomology group is one-dimensional for m = −n − 1 if A = k.
This is the first appearance of the dualizing sheaf.

• There is a natural duality

Hi(Pn,O(m))×Hn−i(Pn,O(−n− 1−m))→ Hn(Pn,O(−n− 1))

This is the first appearance of Serre duality. (For the case n = 1, see Exam-
ple 18.5.4.)

• The alternating sum
∑

(−1)ihi(Pn,O(m)) is a polynomial inm. This is a
first example of a Hilbert polynomial.

Before proving these facts, let’s first use them to prove interesting things, as
motivation.

By Theorem 15.3.1, for any coherent sheaf F on PnA we can find a surjection
O(m)⊕j → F , which yields the exact sequence

(18.1.3.1) 0→ G → O(m)⊕j → F → 0

for some coherent sheaf G . We can use this to prove the following.

18.1.4. Theorem. — (i) For any coherent sheaf F on a projective A-scheme X where A
is Noetherian, Hi(X,F ) is a coherent (finitely generated) A-module.
(ii) (Serre vanishing) Furthermore, for m ≫ 0, Hi(X,F (m)) = 0 for all i > 0 (even
without Noetherian hypotheses).

(A slightly fancier version of Serre vanishing will be given in Theorem 18.8.G.)

Proof. Because cohomology of a closed scheme can be computed on the ambient
space ((v) above), we may immediately reduce to the case X = PnA.
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(i) Consider the long exact sequence:

0 // H0(PnA,G ) // H0(PnA,O(m)⊕j) // H0(PnA,F ) //

H1(PnA,G ) // H1(PnA,O(m)⊕j) // H1(PnA,F ) // · · ·

· · · // Hn−1(PnA,G ) // Hn−1(PnA,O(m)⊕j) // Hn−1(PnA,F ) //

Hn(PnA,G ) // Hn(PnA,O(m)⊕j) // Hn(PnA,F ) // 0

The exact sequence ends here because PnA is covered by n+ 1 affine open sets ((vi)
above, “affine cover cohomology vanishing”). Then Hn(PnA,O(m)⊕j) is finitely
generated by Theorem 18.1.3, hence Hn(PnA,F ) is finitely generated for all coher-
ent sheaves F . Hence in particular,Hn(PnA,G ) is finitely generated. AsHn−1(PnA,O(m)⊕j)
is finitely generated, and Hn(PnA,G ) is too, we have that Hn−1(PnA,F ) is finitely
generated for all coherent sheaves F . We continue inductively downwards.

(ii) Twist (18.1.3.1) by O(N) for N≫ 0. Then

Hn(PnA,O(m+N)⊕j) = ⊕jHn(PnA,O(m+N)) = 0

(by (vii) above), so Hn(PnA,F (N)) = 0. Translation: for any coherent sheaf, its top
cohomology vanishes once you twist by O(N) for N sufficiently large. Hence this
is true for G as well. Hence from the long exact sequence, Hn−1(PnA,F (N)) = 0

for N ≫ 0. As in (i), we induct downwards, until we get that H1(PnA,F (N)) = 0.
(The induction stops here, as it is not true that H0(PnA,O(m +N)⊕j) = 0 for large
N— quite the opposite.) □

In particular, we have proved the following, that we would have cared about
even before we knew about cohomology.

18.1.5. Corollary. — Any projective k-scheme has a finite-dimensional space of global
sections. More generally, if A is Noetherian and F is a coherent sheaf on a projective
A-scheme, then H0(X,F ) is a coherent A-module.

(We will generalize this in Theorem 18.8.1.) I want to emphasize how remark-
able this proof is. It is a question about global sections, i.e., H0, which we think
of as the most down to earth cohomology group, yet the proof is by downward
induction for Hn, starting with n large.

Corollary 18.1.5 is true more generally for proper k-schemes, not just projec-
tive k-schemes (Grothendieck’s Coherence Theorem 18.9.1).

Here are some important consequences. They can also be shown directly, with-
out the use of cohomology, but with much more elbow grease.

18.1.6. As a partial converse, if h0(X,OX) = 1, then X is connected (why?), but
need not be reduced: witness the subscheme in P2 cut out by x2 = 0. (For experts:
the geometrically connected hypothesis is necessary, as X = SpecC is a projective
integral R-scheme, with h0(X,OX) = 2. Similarly, a nontrivial purely inseparable
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field extension can be used to show that the geometrically reduced hypothesis is
also necessary.)

18.1.A. CRUCIAL EXERCISE (PUSHFORWARDS OF COHERENT SHEAVES BY PROJEC-
TIVE MORPHISMS ARE COHERENT). Suppose π : X → Y is a projective morphism
of locally Noetherian schemes. Show that the pushforward of a coherent sheaf
on X is a coherent sheaf on Y. (See Grothendieck’s Coherence Theorems 18.8.1
and 18.9.1 for generalizations.)

Finite morphisms are affine (from the definition) and projective (17.3.C). We
can now show that this is a characterization of finiteness.

18.1.7. Corollary. — Suppose Y is locally Noetherian. Then a morphism π : X → Y is
projective and affine if and only if π is finite.

We will see in Exercise 18.9.A that the projective hypotheses can be relaxed to
proper.

Proof. We already know that finite morphisms are affine (by definition) and projec-
tive (Exercise 17.3.C), so we show the converse. Suppose π is projective and affine.
By Exercise 18.1.A, π∗OX is coherent and hence finite type. □

The following result was promised in §17.3.5, and has a number of useful con-
sequences.

18.1.8. Theorem (projective + finite fibers = finite). — Suppose π : X → Y with Y
Noetherian. Then π is projective and has finite fibers if and only if it is finite. Equivalently,
π is projective and quasifinite if and only if it is finite.

(Recall that quasifinite = finite fibers + finite type. But projective includes finite
type.) It is true more generally that (with Noetherian hypotheses) proper + finite
fibers = finite, see Theorem 29.6.2.

Proof. We show π is finite near a point q ∈ Y. Fix an affine open neighborhood
SpecA of q in Y. Pick a hypersurface H in PnA missing the preimage of q, so H ∩ X
is closed. Let H ′ = π(H ∩ X), which is closed in SpecA, and doesn’t contain q. Let
U = SpecA−H ′, which is an open set containing q. Then above U, π is projective
and affine, so we are done by Corollary 18.1.7. □

A similar trick was used in the proof of the Rigidity Lemma 10.3.12.

18.1.B. EXERCISE (UPPER SEMICONTINUITY OF FIBER DIMENSION ON THE TARGET,
FOR PROJECTIVE MORPHISMS). Use a similar argument as in Theorem 18.1.8
to prove upper semicontinuity of fiber dimension of projective morphisms: suppose
π : X → Y is a projective morphism where Y is locally Noetherian (or more gen-
erally OY is coherent over itself). Show that {q ∈ Y : dimπ−1(q) > k} is a Zariski-
closed subset of Y. In other words, the dimension of the fiber “jumps over Zariski-
closed subsets” of the target. (You can interpret the case k = −1 as the fact that
projective morphisms are closed, which is basically the Fundamental Theorem of
Elimination Theory 7.4.7, cf. §17.3.4.) This exercise is rather important for having a
sense of how projective morphisms behave. (The case of varieties was done earlier,
in Theorem 11.4.2(b). This approach is much simpler.)
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The final exercise of the section is on a different theme.

18.1.C. EXERCISE. Suppose 0 → F → G → H → 0 is an exact sequence of
quasicoherent sheaves on X, projective over A, with F coherent. Show that for
n≫ 0,

0→ H0(X,F (n))→ H0(X,G (n))→ H0(X,H (n))→ 0

is also exact. (Hint: for n≫ 0, H1(X,F (n)) = 0.)

18.2 Definitions and proofs of key properties

This section could be read much later; the facts we will use are all stated in
the previous section. However, the arguments are not complicated, so you want
to read this right away. As you read this, you should go back and check off all the
facts in the previous section, to assure yourself that you understand everything
promised.

18.2.1. Čech cohomology. Čech cohomology in general settings is defined using
a limit over finer and finer covers of a space. In our algebro-geometric setting, the
situation is much cleaner, and we can use a single cover.

Suppose X is quasicompact and separated, which is true for example if X is
quasiprojective over A. In particular, X may be covered by a finite number of
affine open sets, and the intersection of any two affine open sets is also an affine
open set (by separatedness, Proposition 10.1.8). We will use quasicompactness and
separatedness only in order to ensure these two nice properties.

Suppose F is a quasicoherent sheaf, and U = {Ui}
n
i=1 is a finite collection of

affine open sets covering X. For I ⊂ {1, . . . , n} define UI = ∩i∈IUi, which is affine
by the separated hypothesis. (Here is a strong analogy for those who have seen
cohomology in other contexts: cover a topological space X with a finite number
of open sets Ui, such that all intersections ∩i∈IUi are contractible.) Consider the
Čech complex

(18.2.1.1) 0→ ∏
|I| = 1

I ⊂ {1, . . . , n}

F (UI)→ · · ·→
∏
|I| = i

I ⊂ {1, . . . , n}

F (UI)→ ∏
|I| = i + 1

I ⊂ {1, . . . , n}

F (UI)→ · · · .

The maps are defined as follows. The map from F (UI)→ F (UJ) is 0 unless I ⊂ J,
i.e., J = I ∪ {j}. If j is the kth element of J, then the map is (−1)k−1 times the
restriction map resUI,UJ

.

18.2.A. EASY EXERCISE (FOR THOSE WHO HAVEN’T SEEN ANYTHING LIKE THE

ČECH COMPLEX BEFORE). Show that the Čech complex is indeed a complex, i.e.,
that the composition of two consecutive arrows is 0.

Define HiU (X,F ) to be the ith cohomology group of the complex (18.2.1.1).
(The indexing starts with i = 0.) Note that if X is an A-scheme, then HiU (X,F ) is
an A-module. We have almost succeeded in defining the Čech cohomology group
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Hi, except our definition a priori depends on a choice of a cover U . Note that
HiU (X, ·) is clearly a covariant functor QCohX →ModA.

18.2.B. EASY EXERCISE. Identify H0U (X,F ) with Γ(X,F ). (Hint: use the sheaf
axioms for F .)

18.2.C. EXERCISE. Suppose

(18.2.1.2) 0→ F → G →H → 0

is a short exact sequence of sheaves of abelian groups on a topological space, and
U is a finite open cover such that on any intersection UI of open subsets in U , the
map Γ(UI,G ) → Γ(UI,H ) is surjective. Show that we get a “long exact sequence
of cohomology for HiU ” (where we take the same definition of HiU ). In our situa-
tion, where X is a quasicompact separatedA-scheme, and (18.2.1.2) is a short exact
sequence of quasicoherent sheaves on X, show that we get a long exact sequence
for the A-modules HiU .

In the proof of Theorems 18.2.4 and 18.8.1, we will make use of the fact that
your construction of the connecting homomorphism will “commute with localiza-
tion of A”. More precisely, we will need the following.

18.2.D. EXERCISE. Suppose we are given a short exact sequence (18.2.1.2) of quasi-
coherent sheaves on a quasicompact separated A-scheme π : X → SpecA, a cover
U of X by affine open sets, and some f ∈ A. The restriction of the sets of U
to Xf yields an affine open cover U ′ of Xf = π−1(D(f)). Identify the long exact
sequence associated to (18.2.1.2) using HiU , localized at f, with the long exact se-
quence associated to the restriction of (18.2.1.2) to Xf, using the affine open cover
U ′. (First check that the maps such as HiU (F ) → HiU (G ) given by covariance
“commute with localization”, and then check that the connecting homomorphisms
do as well.)

18.2.2. Theorem/Definition. — Our standing assumption is that X is quasicompact
and separated. HiU (X,F ) is independent of the choice of (finite) cover {Ui}. More pre-
cisely, for any two covers {Ui} ⊂ {Vi}, the maps Hi{Vi}

(X,F ) → Hi{Ui}
(X,F ) induced

by the natural map of Čech complexes (18.2.1.1) are isomorphisms. Define the Čech co-
homology group Hi(X,F ) to be this group.

If you are unsure of what the “natural map of Čech complexes” is, by (18.2.3.1)
it should become clear.

18.2.3. For experts: maps of complexes inducing isomorphisms on cohomology
groups are called quasiisomorphisms. We are actually getting a finer invariant
than cohomology out of this construction; we are getting an element of the derived
category of A-modules.

Proof. We need only prove the result when |{Vi}| = |{Ui}| + 1. We will show that
if {Ui}1≤i≤n is a cover of X, and U0 is any other affine open set, then the map
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Hi{Ui}0≤i≤n
(X,F ) → Hi{Ui}1≤i≤n

(X,F ) is an isomorphism. Consider the exact se-
quence of complexes
(18.2.3.1)

0

��

0

��

0

��
· · · //∏

|I| = i − 1
0 ∈ I

F (UI) //

��

∏
|I| = i
0 ∈ I

F (UI) //

��

∏
|I| = i + 1
0 ∈ I

F (UI) //

��

· · ·

· · · //∏
|I| = i − 1 F (UI) //

��

∏
|I| = i F (UI) //

��

∏
|I| = i + 1 F (UI) //

��

· · ·

· · · //∏
|I| = i − 1
0 /∈ I

F (UI) //

��

∏
|I| = i
0 /∈ I

F (UI) //

��

∏
|I| = i + 1
0 /∈ I

F (UI) //

��

· · ·

0 0 0

Throughout, I ⊂ {0, . . . , n}. The bottom two rows are Čech complexes with respect
to two covers, and the map between them induces the desired map on cohomology.
We get a long exact sequence of cohomology from this short exact sequence of
complexes (Exercise 1.6.C). Thus we wish to show that the top row is exact and
thus has vanishing cohomology. (Note that U0 ∩Uj is affine by our separatedness
hypothesis, Proposition 10.1.8.) But the ith cohomology of the top row is precisely
Hi−1

{Uj∩U0}j>0
(U0,F ) except at step 0, where we get 0 (because the complex starts

off 0 → F (U0) → ∏n
j=1F (U0 ∩ Uj)). So it suffices to show that higher Čech

groups of affine schemes are 0. Hence we are done by the following result. □

18.2.4. Theorem. — The higher Čech cohomology HiU (X,F ) of an affine A-scheme X
vanishes (for any affine cover U , i > 0, and quasicoherent F ).

This is another “partition of unity” argument, in the spirit of the proof of The-
orem 4.1.2.

Proof. (The following argument can be made shorter using spectral sequences,
but we avoid them for the sake of clarity.) We want to show that the “extended”
complex

(18.2.4.1) 0→ F (X)→ ∏
|I|=1

F (UI)→ ∏
|I|=2

F (UI)→ · · ·

(where the global sections F (X) have been appended to the start) has no cohomol-
ogy, i.e., is exact. We do this with a trick.
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Suppose first that some Ui, say U0, is X. Then the complex is the middle row
of the following short exact sequence of complexes.
(18.2.4.2)

0 // 0 //

��

∏
|I|=1,0∈IF (UI) //

��

∏
|I|=2,0∈IF (UI) //

��

· · ·

0 // F (X) //

��

∏
|I|=1F (UI) //

��

∏
|I|=2F (UI) //

��

· · ·

0 // F (X) //∏
|I|=1,0/∈IF (UI) //∏

|I|=2,0/∈IF (UI) // · · ·

The top row is the same as the bottom row, slid over by 1. The corresponding long
exact sequence of cohomology shows that the central row has vanishing cohomol-
ogy. (You should show that the “connecting homomorphism” on cohomology is
indeed an isomorphism.) This might remind you of the mapping cone construction
(Exercise 1.7.E).

We next prove the general case by sleight of hand. Say X = SpecR. We wish
to show that the complex of A-modules (18.2.4.1) is exact. It is also a complex of R-
modules, so we wish to show that the complex of R-modules (18.2.4.1) is exact. To
show that it is exact, it suffices to show that for a cover of SpecR by distinguished
open sets D(fi) (1 ≤ i ≤ r) (i.e., (f1, . . . , fr) = 1 in R) the complex is exact. (Trans-
lation: exactness of a sequence of sheaves may be checked locally.) We choose a
cover so that eachD(fi) is contained in some Uj = SpecAj. Consider the complex
localized at fi. As

Γ(SpecA,F )fi = Γ(Spec(Aj)fi ,F )

(by quasicoherence of F , Exercise 13.3.D), as Uj ∩ D(fi) = D(fi), we are in the
situation where one of the Ui’s is X, so we are done. □

We have now proved properties (i)–(iii) of the previous section. The “affine
cover cohomology vanishing” property (vi) is also straightforward: if X is covered
by n affine open sets, use these as the cover U , and notice that the Čech complex
ends by the nth step.

18.2.E. EXERCISE (PROPERTY (v)). Suppose π : X → Y is an affine morphism,
and Y is a quasicompact and separated A-scheme (and hence X is too, as affine
morphisms are both quasicompact and separated). If F is a quasicoherent sheaf
on X, describe a natural isomorphism Hi(Y, π∗F ) ∼= Hi(X,F ). (Hint: if U is an
affine cover of Y, “π−1(U )” is an affine cover of X. Use these covers to compute
the cohomology of F .)

18.2.F. EXERCISE (PROPERTY (iv)). Suppose π : X → Y is any quasicompact sepa-
rated morphism, F is a quasicoherent sheaf on X, and Y is a quasicompact sepa-
ratedA-scheme. The hypotheses on π ensure that π∗F is a quasicoherent sheaf on
Y. Describe a natural morphism Hi(Y, π∗F )→ Hi(X,F ) extending Γ(Y, π∗F ) →
Γ(X,F ). (Aside: this morphism is an isomorphism for i = 0, but need not be an
isomorphism for higher i: consider i = 1, X = P1k, F = O(−2), and let Y be a point
Spec k.)
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18.2.G. EXERCISE. Prove Property (vii) of the previous section. (This can be done
by hand. Hint: in the category of modules over a ring, taking the colimit over a
filtered sets is an exact functor, §1.6.12.)

We have now proved all of the properties of the previous section, except for
(viii), which we will get to in §18.3.

18.2.5. Useful facts about cohomology for k-schemes.

18.2.H. EXERCISE (COHOMOLOGY AND CHANGE OF BASE FIELD). Suppose X is a
quasicompact separated k-scheme, and F is a quasicoherent sheaf on X. Give an
isomorphism

Hi(X,F )⊗k K ∼= Hi(X×Speck SpecK,F ⊗k K)

for all i, where K/k is any field extension. Here F ⊗k K means the pullback of F
to X ×Speck SpecK. Hence hi(X,F ) = hi(X ×Speck SpecK,F ⊗k K). If i = 0 (tak-
ing H0 = Γ ), show the result without the quasicompact and separated hypotheses.
(This is useful for relating facts about k-schemes to facts about schemes over alge-
braically closed fields. Your proof might use vector spaces — i.e., linear algebra
— in a fundamental way. If it doesn’t, you may prove something more general, if
k→ K is replaced by a flat ring map B→ A. Recall that B→ A is flat if ⊗BA is an
exact functor ModB → ModA. A hint for this harder exercise: the FHHF Theorem,
Exercise 1.6.H. See Exercise 18.8.B(b) for the next generalization of this.)

18.2.I. EXERCISE (BASE-POINT-FREENESS IS INDEPENDENT OF EXTENSION OF BASE
FIELD). Suppose X is a scheme over a field k, L is an invertible sheaf on X, and
K/k is a field extension. Show that L is base-point-free if and only if its pullback
to X×Speck SpecK is base-point-free. (Hint: Exercise 18.2.H with i = 0 implies that
a basis of sections of L over k becomes, after tensoring with K, a basis of sections
of L ⊗k K.)

18.2.6. Theorem (dimensional cohomology vanishing for quasicoherent sheaves
on projective k-schemes). — Suppose X is a projective k-scheme, and F is a quasico-
herent sheaf on X. Then Hi(X,F ) = 0 for i > dimX.

In other words, cohomology vanishes above the dimension of X.

Proof. Suppose X ↪→ PN, and let n = dimX. We show that X may be covered by
n + 1 affine open sets. Exercise 11.3.C shows that there are n + 1 effective Cartier
divisors on PN such that their complementsU0, . . . ,Un cover X. ThenUi is affine,
so Ui ∩ X is affine, and thus we have covered Xwith n+ 1 affine open sets. □

(It turns out that n + 1 affine open sets are always necessary. One way of
proving this is by showing that the complement of a dense affine open subset is
always pure codimension 1, see for example [RV, Lem. 2.3].)

18.2.7. ⋆ Dimensional cohomology vanishing more generally. Using the the-
ory of blowing up, Theorem 18.2.6 can be extended to quasiprojective k-schemes,
see §22.4.15. Dimensional cohomology vanishing is even true in much greater
generality. To state it, we need to define cohomology with the more general ma-
chinery of derived functors (Chapter 23). If X is a Noetherian topological space
(§3.6.14) and F is any sheaf of abelian groups on X, we have Hi(X,F ) = 0 for all



November 18, 2017 draft 475

i > dimX. (Grothendieck sketches his elegant proof in [GrS, p. 29-30]; see [Ha1,
Theorem III.2.7] for a more detailed explanation.) In particular, if X is a k-variety of
dimension n, we always have dimensional cohomology vanishing, even for crazy
varieties that can’t be covered with n+ 1 affine open subsets (see §22.4.15).

18.2.8. The Künneth formula.
Suppose X and Y are quasicompact separated k-schemes, and F and G are

quasicoherent sheaves on X and Y respectively. Let πx : X×k Y → X and πY : X×k
Y → Y be the two projections. Recall the definition F ⊠G := π∗XF ⊗π∗YG (§16.4.8).
Then we have an isomorphism

Hm(X×k Y,F ⊠ G ) ∼= ⊕p+q=mHp(X,F )⊗k Hq(Y,G ).

To show this, choose affine covers of X and Y, and produce the Čech complexes
for F and G . Show that the tensor product of these two complexes (the total
complex associated to the double complex) is the Čech complex for F ⊠ G (with
respect to the products of the affine covers of X and Y). Finally, show that the
cohomology of the tensor product of two complexes over k is the tensor products
of the cohomologies, a result known as the Eilenberg-Zilber Theorem.

18.2.9. The cup product. The cup product in Čech cohomology can be defined in
a simple way; see [Liu, Exer. 2.17] for a particularly elegant description. We will
not need this construction.

18.3 Cohomology of line bundles on projective space

We now finally prove the last promised basic fact about cohomology, property
(viii) of §18.1, Theorem 18.1.3, on the cohomology of line bundles on projective
space. More correctly, we will do one case and you will do the rest.

We begin with a warm-up that will let you (implicitly) see some of the struc-
ture that will arise in the proof. It also gives good practice in computing cohomol-
ogy groups.

18.3.A. EXERCISE. Compute the cohomology groups Hi(A2k \ {(0, 0)},O). (Hint:
the case i = 0was done in Example 4.4.1. The case i > 1 is clear from “affine cover
cohomology vanishing”, property (vi) above.) In particular, show that H1(A2k \

{(0, 0)},O) ̸= 0, and thus give another proof (see §4.4.3) of the fact that A2k \ {(0, 0)}
is not affine. (Cf. Serre’s cohomological criterion for affineness, Remark 18.1.1.)

18.3.1. Remark. Essential Exercise 14.1.C and the ensuing discussion showed that
H0(PnA,OPn

A
(m)) should be interpreted as the homogeneous degree m polynomi-

als in x0, . . . , xn (with A-coefficients). Similarly, Hn(PnA,OPn
A
(m)) should be inter-

preted as the homogeneous degreem Laurent polynomials in x0, . . . , xn, where in
each monomial, each xi appears with degree at most −1.

18.3.2. Proof of Theorem 18.1.3. We take the standard cover U0 = D(x0), . . . ,
Un = D(xn) of PnA.

18.3.B. EXERCISE (ESSENTIAL FOR THE PROOF OF THEOREM 18.1.3; CF. REMARK 18.3.1
ABOVE). If I ⊂ {0, . . . , n}, then give an isomorphism (ofA-modules) of Γ(UI,O(m))
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with the homogeneous degree m Laurent monomials (in x0, . . . , xn, with coef-
ficients in A) where each xi for i /∈ I appears with non-negative degree. Your
construction should be such that the restriction map Γ(UI,O(m)) → Γ(UJ,O(m))
(I ⊂ J) corresponds to the natural inclusion: a Laurent polynomial in Γ(UI,O(m))
maps to the same Laurent polynomial in Γ(UJ,O(m)).

The Čech complex for O(m) is the degreem part of
(18.3.2.1)

0 // A[x0, x1, x2, x
−1
0 ]×A[x0, x1, x2, x−11 ]×A[x0, x1, x2, x−12 ] //

A[x0, x1, x2, x
−1
0 , x

−1
1 ]×A[x0, x1, x2, x−11 , x

−1
2 ]×A[x0, x1, x2, x−10 , x

−1
2 ]

// A[x0, x1, x2, x
−1
0 , x

−1
1 , x

−1
2 ] // 0.

Rather than consider O(m) for each m independently, it is notationally simpler
to consider them all at once, by considering F = ⊕m∈ZO(m): the Čech complex
for F is (18.3.2.1). It is useful to write which UI corresponds to which factor (see
(18.3.2.2) below). The maps (from one factor of one term to one factor of the next)
are all natural inclusions, or negative of natural inclusions, and in particular pre-
serve degree.

We extend (18.3.2.1) by replacing the 0→ on the left by 0→ A[x0, x1, x2]→:
(18.3.2.2)

H0 U0 U1 U2 U012

0 // A[x0, x1, x2] // · · · // · · · // A[x0, x1, x2, x
−1
0
, x−1

1
x−1
2

] // 0.

18.3.C. EXERCISE. Show that if (18.3.2.2) is exact, except that at U012 the cohomol-
ogy/cokernel is

x−10 x
−1
1 x

−1
2 A[x

−1
0 , x

−1
1 , x

−1
2 ],

then Theorem 18.1.3 holds for n = 2. (Hint: Remark 18.3.1.)

Because the maps in (18.3.2.2) preserve multidegree (degrees of each xi inde-
pendently), we can study exactness of (18.3.2.2) monomial by monomial.

The “3 negative exponents” case. Consider first the monomial xa0

0 x
a1

1 x
a2

2 , where
the exponents ai are all negative. Then (18.3.2.2) in this multidegree is:

0 // 0H0
// 00 × 01 × 02 // 001 × 012 × 002 // A012 // 0.

Here the subscripts serve only to remind us which “Čech” terms the factors cor-
respond to. (For example, A012 corresponds to the coefficient of xa0

0 x
a1

1 x
a2

2 in
A[x0, x1, x2, x

−1
0 , x

−1
1 , x

−1
2 ].) Clearly this complex only has (co)homology at the

U012 spot, as desired.

The “2 negative exponents” case. Consider next the case where two of the expo-
nents, say a0 and a1, are negative. Then the complex in this multidegree is

0 // 0H0
// 00 × 01 × 02 // A01 × 012 × 002 // A012 // 0,

which is clearly exact.
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The “1 negative exponent” case. We next consider the case where one of the
exponents, say a0, is negative. Then the complex in this multidegree is

0 // 0H0
// A0 × 01 × 02 // A01 × 012 ×A02 // A012 // 0

With a little thought (paying attention to the signs on the arrows A → A), you
will see that it is exact. (The subscripts, by reminding us of the subscripts in the
original Čech complex, remind us what signs to take in the maps.)

The “0 negative exponent” case. Finally, consider the case where none of the
exponents are negative. Then the complex in this multidegree is

0 // AH0
//// A0 ×A1 ×A2 // A01 ×A12 ×A02 // A012 // 0

We wish to show that this is exact. We write this complex as the middle of a short
exact sequence of complexes:
(18.3.2.3)
0 //

��

0 //

��

A2

��

// A02 ×A12 //

��

A012

��

// 0

��
0 //

��

AH0
//

��

A0 ×A1 ×A2 //

��

A01 ×A12 ×A02 //

��

A012 //

��

0

��
0 // AH0

// A0 ×A1 // A01 // 0 // 0

Thus we get a long exact sequence in cohomology (Theorem 1.6.6). But the top
and bottom rows are exact (basically from the “1-negative” case), i.e., cohomology-
free, so the middle row must be exact too.

18.3.D. EXERCISE. Prove Theorem 18.1.3 for general n. (I could of course just
have given you the proof for general n, but seeing the argument in action may be
enlightening. In particular, your argument may be much shorter. For example, the
“2-negative” case could be done in the same way as the “1-negative” case, so you
will not need n+ 1 separate cases if you set things up carefully.)

□

18.3.3. Remarks. (i) In fact we don’t really need the exactness of the top and bottom
rows of (18.3.2.3); we just need that they are the same, just as with (18.2.4.2).

(ii) This argument is basically the proof that the reduced homology of the
boundary of a simplex S (known in some circles as a “sphere”) is 0, unless S is the
empty set, in which case it is one-dimensional. The “empty set” case corresponds
to the “3-negative” case.

Show that Hi(Pmk ×k Pnk ,O(a, b)) =
∑i
j=0H

j(Pmk ,O(a)) ⊗k Hi−j(Pnk ,O(b)).
(Can you generalize this Künneth-type formula further?)

18.4 Riemann-Roch, degrees of coherent sheaves, and arithmetic
genus
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We have seen some powerful uses of Čech cohomology, to prove things about
spaces of global sections, and to prove Serre vanishing. We will now see some
classical constructions come out very quickly and cheaply.

In this section, we will work over a field k. Suppose F is a coherent sheaf on
a projective k-scheme X. Recall the notation (§18.1) hi(X,F ) := dimkH

i(X,F ).
By Theorem 18.1.4, hi(X,F ) is finite. (The arguments in this section will extend
without change to proper X once we have this finiteness for proper morphisms, by
Grothendieck’s Coherence Theorem 18.9.1.) Define the Euler characteristic of F
by

χ(X,F ) :=

dimX∑
i=0

(−1)ihi(X,F ).

We will see repeatedly here and later that Euler characteristics behave better than
individual cohomology groups. As one sign, notice that for fixed n, andm ≥ 0,

h0(Pnk ,O(m)) =

(
n+m

m

)
=

(m+ 1)(m+ 2) · · · (m+ n)

n!
.

Notice that the expression on the right is a polynomial inm of degree n. (For later
reference, notice also that the leading term ismn/n!.) But it is not true that

h0(Pnk ,O(m)) =
(m+ 1)(m+ 2) · · · (m+ n)

n!

for all m — it breaks down for m ≤ −n − 1. Still, you can check (using Theo-
rem 18.1.3) that

χ(Pnk ,O(m)) =
(m+ 1)(m+ 2) · · · (m+ n)

n!
.

So one lesson is this: if one cohomology group (usually the top or bottom) behaves
well in a certain range, and then messes up, likely it is because (i) it is actually
the Euler characteristic which behaves well always, and (ii) the other cohomology
groups vanish in that certain range.

In fact, we will see that it is often hard to calculate cohomology groups (even
h0), but it can be easier calculating Euler characteristics. So one important way of
getting a hold of cohomology groups is by computing the Euler characteristic, and
then showing that all the other cohomology groups vanish. Hence the ubiquity
and importance of vanishing theorems. (A vanishing theorem usually states that a
certain cohomology group vanishes under certain conditions.) We will see this in
action when discussing curves. (One of the first applications will be (19.2.5.1).)

The following exercise shows another way in which Euler characteristic be-
haves well: it is additive in exact sequences.

18.4.A. EXERCISE. Show that if 0 → F → G → H → 0 is an exact sequence of
coherent sheaves on a projective k-scheme X, then χ(X,G ) = χ(X,F ) + χ(X,H ).
(Hint: consider the long exact sequence in cohomology.) More generally, if

0→ F1 → · · ·→ Fn → 0

is an exact sequence of coherent sheaves, show that
n∑
i=1

(−1)iχ(X,Fi) = 0.
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(This exercise both generalizes the “exact” case of Exercise 1.6.B — consider the
case where X = Speck— and uses it in the proof.)

18.4.1. The Riemann-Roch Theorem for line bundles on a regular projective
curve. SupposeD :=

∑
p∈C ap[p] is a divisor on a regular projective curve C over

a field k (where ap ∈ Z, and all but finitely many ap are 0). Define the degree of
D by

degD =
∑

ap degp.

(The degree of a point p was defined in §5.3.8, as the degree of the field extension
of the residue field over k.)

18.4.B. ESSENTIAL EXERCISE: THE RIEMANN-ROCH THEOREM FOR LINE BUN-
DLES ON A REGULAR PROJECTIVE CURVE. Show that

χ(C,OC(D)) = degD+ χ(C,OC)

by induction on
∑

|ap| (whereD =
∑
ap[p] as above). Hint: to show that χ(C,OC(D)) =

degp+ χ(C,OC(D− p)), tensor the closed subscheme exact sequence

0→ OC(−p)→ OC → O |p → 0

(where O |p is the structure sheaf of the scheme p, not the stalk OC,p) by OC(D),
and use additivity of Euler characteristics in exact sequences (Exercise 18.4.A).

As every invertible sheaf L is of the form OC(D) for some D (see §14.2), this
exercise is very powerful.

18.4.C. IMPORTANT EASY EXERCISE (AND DEFINITION). Suppose L is an invert-
ible sheaf on a regular projective curve C over k. Define the degree of L (denoted
deg L or deg

C
L ) as χ(C,L )−χ(C,OC). Let s be a nonzero rational section of L

on C. Let D be the divisor of zeros and poles of s:

D :=
∑
p∈C

vp(s)[p].

Show that deg L = degD. In particular, the degree can be computed by counting
zeros and poles of any section not vanishing on a component of C.

18.4.D. EXERCISE. Give a new solution to Exercise 17.4.E (a nonzero rational
function on a projective curve has the same number of zeros and poles, counted
appropriately) using the ideas above.

18.4.E. EXERCISE. If L and M are two line bundles on a regular projective curve
C, show that deg L ⊗ M = deg L + deg M . (Hint: choose nonzero rational
sections of L and M .)

18.4.F. EXERCISE. Suppose π : C → C ′ is a degree d morphism of integral projec-
tive regular curves, and L is an invertible sheaf on C ′. Show that deg

C
π∗L =

ddeg
C ′ L . Hint: compute deg

C ′ L using any nonzero rational section s of L ,
and compute deg

C
π∗L using the rational section π∗s of π∗L . Note that zeros pull

back to zeros, and poles pull back to poles. Reduce to the case where L = O(p)
for a single point p. Use Exercise 17.4.D.
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18.4.G. ⋆⋆ EXERCISE (COMPLEX-ANALYTIC INTERPRETATION OF DEGREE; ONLY
FOR THOSE WITH SUFFICIENT ANALYTIC BACKGROUND). Suppose X is a con-
nected regular projective complex curve. Show that the degree map is the compo-
sition of group homomorphisms

PicX // PicXan
c1 // H2(Xan,Z)

∩[Xan]// H0(Xan,Z) ∼= Z.

Hint: show it for a generator O(p) of the group PicX, using explicit transition
functions. (The first map was discussed in Exercise 13.1.L. The second map takes
a line bundle to its first Chern class, and can be interpreted as follows. The tran-
sition functions for a line bundle yield a Čech 1-cycle for O∗

Xan
; this yields a

map PicXan → H1(Xan,O∗
Xan

). Combining this with the map H1(Xan,O∗
Xan

) →
H2(Xan,Z) from the long exact sequence in cohomology corresponding to the ex-
ponential exact sequence (2.4.10.1) yields the first Chern class map.)

18.4.2. Arithmetic genus.
Motivated by geometry (Miracle 18.4.3 below), we define the arithmetic genus

of a scheme X as 1 − χ(X,OX). This is sometimes denoted pa(X). For integral
projective curves over an algebraically closed field, h0(X,OX) = 1 (§10.3.7), so
pa(X) = h

1(X,OX). (In higher dimension, this is a less natural notion.)
We can restate the Riemann-Roch formula for curves (Exercise 18.4.B) as:

(18.4.2.1) h0(C,L ) − h1(C,L ) = deg L − pa(C) + 1.

This is the most common formulation of the Riemann-Roch formula.

18.4.3. Miracle. IfC is a regular irreducible projective complex curve, then the cor-
responding complex-analytic object, a compact Riemann surface, has a notion called
the genus g, which is (informally speaking) the number of holes (see Figure 18.1).
Miraculously, g = pa in this case (see Exercise 21.7.I), and for this reason, we
will often write g for pa when discussing regular (projective irreducible) curves,
over any field. We will discuss genus further in §18.6.6, when we will be able to
compute it in many interesting cases. (Warning: the arithmetic genus of P1C as an
R-variety is −1!)

FIGURE 18.1. A genus 3 Riemann surface

18.4.4. Degree and rank of a coherent sheaf.
Suppose C is an irreducible reduced curve (possibly singular), over a field k.

If F is a coherent sheaf on C, recall (from §13.7.4) that the rank of F , denoted
rank F , is its rank at the generic point of C.

18.4.H. EASY EXERCISE. Show that the rank is additive in exact sequences: if

0→ F → G →H → 0
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is an exact sequence of coherent sheaves, show that

rank F − rank G + rank H = 0.

Hint: localization is exact. (Caution: your argument will use the fact that the rank
is at the generic point; the example

0 // k̃[t]
×t // k̃[t] // k̃[t]/(t) // 0

on A1k shows that rank at a closed point is not additive in exact sequences.)

If C is projective, define the degree of F by

(18.4.4.1) deg F = χ(C,F ) − (rank F ) · χ(C,OC).

If F is an invertible sheaf (or if more generally the rank is the same on each ir-
reducible component), we can drop the irreducibility hypothesis. Thus this gen-
eralizes the notion of the degree of a line bundle on a regular curve (Important
Exercise 18.4.C). We now study the behavior of this notion. (In Exercise 21.7.B,
you will show that if F is supported at a finite number of points, the degree of F
splits up into a contribution from each point.)

18.4.I. EASY EXERCISE. Show that degree (as a function of coherent sheaves on a
fixed curve C) is additive in exact sequences.

18.4.J. EXERCISE. Show that the degree of a vector bundle is the degree of its
determinant bundle. Hint: Exercise 13.5.H.

The statement (18.4.4.1) is often called Riemann-Roch for coherent sheaves (or
vector bundles) on a projective curve.

18.4.K. EXERCISE. If C is a projective curve, and L is an ample line bundle on C,
show that deg L > 0. (Hint: show it if L is very ample.)

18.4.L. EXERCISE. Suppose L is a base-point-free invertible sheaf on a proper
variety X, and hence induces some morphism ϕ : X→ Pn. Then L is ample if and
only if ϕ is finite. (Hint: if ϕ is finite, use Exercise 16.6.G. If ϕ is not finite, show
that there is a curve C contracted by ϕ, using Theorem 18.1.8. Show that L has
degree 0 on C.)

18.4.5. Extended example: the universal plane conic has no rational sections.
We use the theory of the degree to get an interesting consequence. We work

over a fixed field k. We consider the following diagram.

C � �cl. emb. //

##G
GG

GG
GG

GG
P2 × P5

��

// P2

P5

If the P2 has projective coordinates x0, x1, x2, then P5 has coordinates a00, a01,
a11, a02, a12, a22, and C is cut out by the single equation

a00x
2
0 + a01x0x1 + · · ·+ a22x22 = 0.
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We interpret P5 as the parameter space of conics (in P2), and C as the universal
conic over P5 (parametrizing a conic C along with a point p ∈ C), which comes
with a canonical projection C → P2.

18.4.M. EXERCISE. By interpreting C as a P4-bundle over P2, show that C is a
smooth sixfold, and that Pic C ∼= Z× Z.

18.4.N. EXERCISE. Fix a line ℓ ⊂ P2 and a k-valued point q ∈ P2. Let Dℓ be the
divisor on C corresponding to (C, p) with p lying on ℓ. LetDq be the divisor on C
corresponding to (C, p) with q ∈ C. Using your description of C as a P4-bundle
over P2, show that Dℓ and Dq generate Pic C .

18.4.O. EXERCISE. Suppose K is a fiber of C → P5 over a point r ∈ P5 — i.e., a
conic in P2 over the field κ(r). Suppose further that neither q nor ℓ are contained
in K. (This hypothesis is unnecessary, but simplifies the problem.) Show that
Dq ·K = 0 andDℓ ·K = 2. Hence show that if L is any invertible sheaf on C , then
L · K is even.

18.4.P. EXERCISE. Show that there is no rational section to the projection π : C →
P5. Hint: if there were a regular section over an open subset U of P5, it would be a
divisor on π−1(U); letD be its closure in C . Show thatDmeets any fiber of π over
U in multiplicity 1. Use Exercise 18.4.O to obtain a contradiction.

We can restate Exercise 18.4.P in the following dramatic way: there is no way
to write down three rational functions X0, X1, X2 in a00, . . . , a22 such that

a00X
2
0 + a01X0X1 + · · ·+ a22X22 = 0

without X0 = X1 = X2 = 0.
The question of a rational point on a conic is one of arithmetic. (Think: x2 +

y2 = z2.) Our solution was topological. The unification of topology and arithmetic
in this example is the beginning of a long and fruitful story in algebraic geometry.

18.4.6. Length, and Riemann-Roch for nonreduced curves.
In order to state Riemann-Roch for nonreduced curves (Exercise 18.4.S), we

need the notion of the length of a module. This is more fundamental than might be
suggested by our small discussion here, which is why this section is not starred,
while the less important Riemann Roch for nonreduced curves (Exercise 18.4.S) is.
Length is a measure of a module’s size, generalizing the notion of dimension of
a vector space over a field. Modules of finite length share many properties with
finite-dimensional vector spaces. (They play an important but implicit role in the
proof of Krull’s Principal Ideal Theorem given in §11.5.)

18.4.7. Definition. The length of an A-module M, denoted ℓ(M), is the length of
the longest strictly increasing chain of submodules of M, where the indexing (as
usual) starts with 0. For example, the length of the 0-module is 0. And if A = Z
and n ̸= 0, then the length of Z/(n) is the number of prime factors of n.

18.4.8. A maximal strictly increasing chain of submodules of M is called a compo-
sition series forM. Clearly the subquotients of a composition series are all simple
modules (i.e., they contain no nontrivial submodules, and are thus isomorphic to
A/m for some maximal ideal m).



November 18, 2017 draft 483

18.4.Q. EXERCISE. Suppose M has a finite composition series, of length n. Show
that every composition series of M has length n, and in particular ℓ(M) = n. Pos-
sible hint: this parallels other composition series results you have seen in other
contexts, such as for finite groups. (If absolutely necessary, see [E, Thm. 2.13] for
an argument.)

18.4.R. EXERCISE. Suppose (A,m, k) is a Noetherian local ring, andM is a finitely
generated A-module. Show that M has finite length if and only if mnM = 0 for
some n. Thus by §18.4.8, if M has finite length, then the quotients in any compo-
sition series are all isomorphic (as A-modules) to k = A/m. (Informal translation:
“An A-moduleM has finite length if and only if it can be built out of finitely many
copies of k.”) Hint: show that mnM = mn+1M if and only if mnM = 0.

You can use Exercise 18.4.R to show that M has finite length if and only if it
is Artinian (i.e., satisfies the descending chain condition, §11.5). (More generally,
an arbitrary moduleM over an arbitrary ring A has finite length if and only if it is
Artinian and Noetherian, [E, Thm. 2.13].)

18.4.S. ⋆ EXERCISE (RIEMANN-ROCH FOR NONREDUCED CURVES). Suppose C
is a projective curve over a field k, and F is a coherent sheaf on C. Show that
χ(L ⊗ F ) − χ(F ) is the sum over the irreducible components Ci of C of the
degree of L on Credi times the length of F at the generic point ηi of Ci (the length
of Fηi

as an Oηi
-module). Hints: (1) First reduce to the case where F is scheme-

theoretically supported onCred, by showing that both sides of the alleged equality
are additive in short exact sequences, and using the filtration

0 = I rF ⊂ I r−1F ⊂ · · · ⊂ I F ⊂ F

of F , where I is the ideal sheaf cutting outCred inC. Thus we need only consider
the case where C is reduced. (2) As L is projective, we can write L ∼= O(

∑
njpj)

where the pj are regular points distinct from the associated points of F . Use this
avatar of L , and perhaps induction on the number of pj.

In fact, all proper curves over k are projective (Remark 18.7.2), so “projective”
can be replaced by “proper” in Exercise 18.4.S. In this guise, we will use Exer-
cise 18.4.S when discussing intersection theory in Chapter 20.

18.4.9. ⋆ Numerical equivalence, the Néron-Severi group, nef line bundles, and
the nef and ample cones.

The notion of a degree on a line bundle leads to important and useful notions.
Suppose X is a proper k-variety, and L is an invertible sheaf on X. If i : C ↪→ X is
a one-dimensional closed reduced subscheme of X, define the degree of L on C
by deg

C
L := deg

C
i∗L . If deg

C
L = 0 for all C, we say that L is numerically

trivial.

18.4.T. EXERCISE.
(a) Show that L is numerically trivial if and only if deg

C
L = 0 for all integral

curves C in X.
(b) Show that if π : X → Y is a proper morphism, and L is a numerically trivial
invertible sheaf on Y, then π∗L is numerically trivial on X.
(c) Show that L is numerically trivial if and only if L is numerically trivial on
each of the irreducible components of X.
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(d) Show that if L and L ′ are numerically trivial, then L ⊗L ′ and L ∨ are both
numerically trivial.

18.4.10. Numerical equivalence. By part (d), the numerically trivial invertible
sheaves form a subgroup of PicX, denoted Picτ X. The resulting equivalence on
line bundles is called numerical equivalence. Two lines bundles equivalent mod-
ulo the subgroup of numerically trivial line bundles are called numerically equiv-
alent. A property of invertible sheaves stable under numerical equivalence is said
to be a numerical property. We will see that “nefness” and ampleness are numerical
properties (Definition 18.4.11 and Remark 20.4.2 respectively).

We will later define the Néron-Severi group NS(X) of X as PicX modulo alge-
braic equivalence (Exercise 24.7.5). (We will define algebraic equivalence once we
have discussed flatness.) The highly nontrivial Néron-Severi Theorem (or The-
orem of the Base) states that NS(X) is a finitely generated group. (The proof is
quite difficult; see [Kl1, p. 334, Prop. 3]. For a simpler proof over C, see [GH1, p.
462].) The group PicX/Picτ X is denoted N1(X). We will see (in §24.7.5) that it is
a quotient of NS(X), so it is also finitely generated. As the group N1(X) is clearly
abelian and torsion-free, it is finite free Z-module (by the classification of finitely
generated modules over a principal ideal domain, see §0.3). The rank of N1(X)
is called the Picard number, and is denoted ρ(X) (although we won’t have need
of this notion, except in our discussion of the Hodge Index Theorem in §20.2.10).
For example, ρ(Pn) = 1 and ρ((P1)n) = n. We define N1Q(X) := N1(X) ⊗Z Q (so
ρ(X) = dimQN

1
Q(X)), and call the elements of this group Q-line bundles, for lack

of any common term in the literature.

18.4.U. ⋆⋆ EXERCISE (FINITENESS OF PICARD NUMBER IN THE COMPLEX CASE,
ONLY FOR THOSE WITH SUFFICIENT BACKGROUND). Show (without the Néron-
Severi Theorem) that if X is a complex proper variety, then ρ(X) is finite, by inter-
preting it as a subquotient of H2(X,Z). Hint: show that the image of (L , C) under
the map H2(X,Z)×H2(X,Z)→ H0(X,Z)→ Z is deg

C
L . Hint: figure out how to

reduce to the case where C is a smooth projective curve, then use Exercise 18.4.G.

18.4.11. Definition. We say that an invertible sheaf L is numerically effective, or
nef if for all such C, deg

C
L ≥ 0. Clearly nefness is a numerical property.

18.4.V. EASY EXERCISE (CF. EXERCISE 18.4.T).
(a) Show that L is nef if and only if deg

C
L ≥ 0 for all integral curves C in X.

(b) Show that if π : X→ Y is a proper morphism, and L is a nef invertible sheaf on
Y, then π∗L is nef on X. (Hint: Exercise 18.4.F will be needed.)
(c) Show that L is nef if and only if L is nef on each of the irreducible components
of X.
(d) Show that if L and L ′ are nef, then L ⊗ L ′ is nef. Thus the nef elements of
PicX form a semigroup.
(e) Show that ample invertible sheaves are nef.
(f) Suppose n ∈ Z>0. Show that L is nef if and only if L ⊗n is nef.

18.4.W. EXERCISE. Define what it means for a Q-line bundle to be nef. Show that
the nef Q-line bundles form a closed cone in N1Q(X). This is called the nef cone.
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18.4.X. EXERCISE. Describe the nef cones of P2k and P1k ×k P1k. (Notice in the latter
case that the two boundaries of the cone correspond to linear series contracting one
of the P1’s. This is true in general: informally speaking, linear series corresponding
to the boundaries of the cone give interesting contractions. Another example will
be given in Exercise 20.2.F.)

It is a surprising fact that whether an invertible sheaf L onX is ample depends
only on its class inN1Q(X), i.e., on how it intersects the curves in X. Because of this
(as for any n ∈ Z≥0, L is ample if and only if L ⊗n is ample, see Theorem 16.6.2), it
makes sense to define when a Q-line bundle is ample. Then by Exercise 16.6.H, the
ample divisors form a cone in N1Q(X), necessarily contained in the nef cone by Ex-
ercise 18.4.V(e). It turns out that if X is projective, the ample divisors are precisely
the interior of the nef cone. The new facts in this paragraph are a consequence of
Kleiman’s numerical criterion for ampleness, Theorem 20.4.6.

18.5 A first glimpse of Serre duality

A common version of Riemann-Roch involves Serre duality, which unlike
Riemann-Roch is hard.

18.5.1. Theorem (Serre duality for smooth projective varieties). — Suppose X is
a geometrically irreducible smooth projective k-variety, of dimension n. Then there is an
invertible sheafωX (or simplyω) on X such that

hi(X,F ) = hn−i(X,ωX ⊗ F∨)

for all i ∈ Z and all finite rank locally free sheaves F .

The invertible sheaf ωX is an example of a dualizing sheaf, which will be for-
mally defined in §30.1.4. We will see in Chapter 30 that Theorem 18.5.1 is a conse-
quence of a perfect pairing

(18.5.1.1) Hi(X,F )×Hn−i(X,ωX ⊗ F∨)→ Hn(X,ωX) ∼= k,

and that smoothness can be relaxed somewhat.

18.5.2. Further miracle: the sheaf of algebraic volume forms is Serre-dualizing. The in-
vertible sheafωX turns out to be the canonical sheaf (or canonical bundle) KX, which
is defined as the determinant of the cotangent bundle ΩX/k of X (see §21.5.3); we
will define the cotangent bundle in Chapter 21. We connect the dualizing sheaf to
the canonical bundle in §30.4; see Desideratum 30.1.1.

18.5.3. Back to Riemann-Roch. For the purposes of restating Riemann-Roch for a
curve C, it suffices to note that h1(C,L ) = h0(C,ωC ⊗ L ∨). Then the Riemann-
Roch formula can be rewritten as

h0(C,L ) − h0(C,ωC ⊗ L ∨) = deg L − pa(C) + 1.

18.5.A. EXERCISE (ASSUMING SERRE DUALITY). Suppose C is a geometrically
integral smooth projective curve over k.
(a) Show that h0(C,ωC) is the genus g of C. (The genus g, in the guise of the
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arithmetic genus pa, was defined in §18.4.2–18.4.3.)
(b) Show that degωC = 2g− 2. (Hint: Riemann-Roch for L = ωC.)

18.5.4. Example. If C = P1k, Exercise 18.5.A implies that ωC ∼= O(−2). Moreover,
we also have a natural perfect pairing (cf. (18.5.1.1))

H0(P1,O(n))×H1(P1,O(−2− n))→ k ∼= H1(P1,O(−2)).

We can interpret this pairing as follows. If n < 0, both factors on the left are 0,
so we assume n > 0. Then H0(P1,O(n)) corresponds to homogeneous degree
n polynomials in x and y, and H1(P1,O(−2 − n)) corresponds to homogeneous
degree −2 − n Laurent polynomials in x and y so that the degrees of x and y are
both at most −1 (see Remark 18.3.1). You can quickly check that the dimension
of both vector spaces are n + 1. The pairing is given as follows: multiply the
polynomial by the Laurent polynomial, to obtain a Laurent polynomial of degree
−2. Read off the coefficient of x−1y−1. (This works more generally for PnA; see the
discussion after the statement of Theorem 18.1.3.)

18.5.B. EXERCISE (ASSUMING SERRE DUALITY): AMPLE DIVISORS ON A CONNECTED
SMOOTH PROJECTIVE VARIETY ARE CONNECTED. Suppose X is a connected
smooth projective k-variety of dimension at least 2, and D is an effective ample
divisor. Show that D is connected. (Hint: Suppose D = V(s), where s is a sec-
tion of an ample invertible sheaf. Then V(sn) = V(s) for all n > 0, so we may
replace L with a high power of our choosing. Use the long exact sequence for
0→ OX(−nD)→ OX → OV(sn) → 0 to show that for n≫ 0, h0(X,OV(sn)) = 1.)

Once we know that Serre duality holds for Cohen-Macaulay projective schemes
(§30.3), this result will automatically extend to these schemes. (A related result is
Exercise 18.6.T, which doesn’t use Serre duality.) On the other hand, the result is
false if X is the union of two 2-planes in P4 meeting at a point (why?), so this will
imply that this X is not Cohen-Macaulay. (We will show this in another way in
Counterexample 26.2.2.)

18.5.5. ⋆ Classification of vector bundles on P1k.
As promised in Example 17.2.4, we classify the vector bundles on P1k. We

discuss this in §18.5 because you might use Serre duality at one step (although
you might not).

18.5.6. Theorem. — If E is a rank r vector bundle on P1k, then E ∼= O(a1)⊕· · ·⊕O(ar),
for a unique nondecreasing sequence of integers a1, . . . , ar.

This result was proved independently many times (see for example Dedekind
and Weber’s article [DW, §22]), and is a special case of a theorem of Grothendieck,
[Gr2]. It is sometimes called Grothendieck’s Theorem, because Grothendieck doesn’t
have enough theorems named after him.

18.5.7. For Pnk more generally, the case r = 1 was shown in §14.2.9, but the state-
ment is false for r > 1 and n > 1. A counterexample is given in Exercise 21.4.G.
One true generalization is a theorem of Horrocks, which states that a finite rank
locally free sheaf E on Pnk splits precisely when “all the middle cohomology of all
of its twists is zero” — when Hi(Pnk ,E (m)) = 0 for 0 < i < n and all m ∈ Z. This
has the surprising consequence that if n ≥ 2, then a finite rank locally free sheaf on
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Pnk splits if and only if its restriction to some previously chosen 2-plane (P2k) splits
— all of the additional complication turns up already in dimension 2. See [OSS,
§2.3] for more.

Proof. Note that the classification makes no reference to cohomology, but the proof
uses cohomology in an essential way. It is possible to prove Theorem 18.5.6 with
no cohomological machinery (see for example [HM] or [GW, p. 314-5]), or with
more cohomological machinery (see for example [Ha1, Ex. V.2.6]).

18.5.C. EXERCISE. Suppose that E ∼= O(a1) ⊕ · · · ⊕ O(ar), with a1 ≤ · · · ≤ ar.
Show that the ai can be determined from the numbers dimkHom(O(m),E ), asm
ranges over the integers. Use this to show the uniqueness part of Theorem 18.5.6.

We now begin the proof, by induction on r. Fix a rank r locally free sheaf E .
The case r = 1was established in §14.2.9, so we assume r > 1.

18.5.D. EXERCISE. Show that for m ≪ 0, Hom(O(m),E ) ̸= 0, and that for
m ≫ 0, Hom(O(m),E ) = 0. Hint: show that Hom(O(m),E ) = E (−m) using
Exercise 13.1.F. Use Serre vanishing (Theorem 18.1.4(ii)) for the first part. Feel free
to use Serre duality and Serre vanishing for the second part. But you may prefer
to come up with an argument without Serre duality, to avoid invoking something
we have not yet proved.

Thus there is some ar for which dim Hom(O(ar),E ) > 0, but for which Hom(O(m),E ) =
0 for allm > ar. Choose a nonzero map ϕ : O(ar)→ E .

18.5.E. EXERCISE. Show that ϕ is an injection. (Hint: O(ar) is torsion-free, and
thus the kernel is torsion-free.)

18.5.F. EXERCISE. Let F be the cokernel of ϕ. Show that F is locally free. Hint:
Exercise 13.7.G(c) gives an exact sequence 0→ Ftors → F → Flf → 0, where Flf is
locally free. Let L be the kernel of the surjection E → Flf. Show that L is locally
free, and thus is isomorphic to O(N) for some N. Show that there is a nonzero
map ϕ ′ : O(ar)→ O(N). Show (using the same idea as the previous exercise) that
this nonzero map ϕ ′ must be an injection, so ar ≤ N. Show that N ≤ ar because
there is a nonzero map O(N)→ E (recall how ar was chosen). Show that ϕ ′ is an
isomorphism, and thus that F = Flf.

By our inductive hypothesis, we have F = O(a1) ⊕ · · · ⊕ O(ar−1), where
a1 ≤ · · · ≤ ar−1, so we have a short exact sequence

(18.5.7.1) 0 // O(ar) // E // O(a1)⊕ · · · ⊕ O(ar−1) // 0.

We next show that ar ≥ ai for i < r. We are motivated by the fact that for a
quasicoherent sheaf G on P1,

HomP1(O(ar + 1),G ) = HomP1(O,G (−ar − 1)) (Exercise 13.7.B)

= H0(P1,G (−ar − 1)).

Tensor (18.5.7.1) with O(−ar − 1) (preserving exactness, by Exercise 13.1.E), and
take the long exact sequence in cohomology. Part of the long exact sequence is

H0(P1,E (−ar − 1)) // H0(P1,F (−ar − 1)) // H1(P1,O(−1)).
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Notice that H0(P1,E (−ar − 1)) = 0 (as Hom(O(ar + 1),E ) = 0, by the definition
of ar), and H1(P1,O(−1)) = 0 (Theorem 18.1.3). Thus

0 = H0(P1,F (−ar − 1))

= H0(P1,⊕iO(ai − ar − 1))

= ⊕iH0(P1,O(ai − ar − 1)).

Hence ai − ar − 1 < 0 (by Exercise 14.1.A), so ar ≥ ai as desired.
Finally, we wish to show that exact sequence (18.5.7.1) expresses E as a direct

sum (of the subsheaf and quotient sheaf). For simplicity, we focus on the case
r = 2, and return to the general case in Exercise 18.5.I.

18.5.G. EXERCISE. Show that the transition functions for the vector bundle, in
appropriate coordinates, are given by(

t−a2 α(t)
0 t−a1

)
,

where α(t) is a Laurent polynomial in t. Hint/reminder: Recall that all vector
bundles on A1k are trivial, Exercise 13.2.C. Transition matrices for extensions of
one vector bundle (with known transition matrices) by another were discussed in
Exercise 13.5.A.

18.5.H. EXERCISE. Implicit in the above 2×2matrix is a choice of a basis of a rank 2
free moduleM over the ring k[t] corresponding to one of the standard affine open
subsets Speck[t], and a rank 2 free module M ′ over the ring k[1/t] over the other
standard open subset. Show that by an appropriate “upper-triangular” change
of basis of M, you can arrange for α(t) to have no monomials of degree ≥ −a2.
Show that by an appropriate “upper-triangular” change of basis of M ′, you can
arrange for α(t) to have no monomials of degree ≤ −a1. Thus by choosing bases
of M and M ′ appropriately, we can take α(t) = 0. Show that this implies that
E = O(a1)⊕ O(a2).

18.5.I. EXERCISE. Finish the proof of Theorem 18.5.6 for arbitrary r. Hint: there
are no new ideas beyond the case r = 2.

□

18.6 Hilbert functions, Hilbert polynomials, and genus

If F is a coherent sheaf on a projective k-scheme X ⊂ Pn, define the Hilbert
function of F by

hF (m) := h0(X,F (m)).

The Hilbert function of X is the Hilbert function of the structure sheaf. The an-
cients were aware that the Hilbert function is “eventually polynomial”, i.e., for
large enoughm, it agrees with some polynomial. This polynomial contains lots of
interesting geometric information, as we will soon see. In modern language, we
expect that this “eventual polynomiality” arises because the Euler characteristic
should be a polynomial, and that for m ≫ 0, the higher cohomology vanishes.
This is indeed the case, as we now verify.
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18.6.1. Theorem. — If F is a coherent sheaf on a projective k-scheme X ↪→ Pnk ,
χ(X,F (m)) is a polynomial of degree equal to dim Supp F . Hence by Serre vanish-
ing (Theorem 18.1.4 (ii)), for m ≫ 0, h0(X,F (m)) is a polynomial pF (m) of degree
dim Supp F . In particular, for m ≫ 0, h0(X,OX(m)) is polynomial with degree equal
to dimX.

18.6.2. Definition. The polynomial pF (m) defined in Theorem 18.6.1 is called the
Hilbert polynomial. If X ⊂ Pn is a projective k-scheme, define pX(m) := pOX

(m).

In Theorem 18.6.1, OX(m) is the restriction or pullback of OPn
k
(m). Both the

degree of the 0 polynomial and the dimension of the empty set are defined to be
−1. In particular, the only coherent sheaf with Hilbert polynomial 0 is the zero-
sheaf.

This argument uses the notion of associated points of a coherent sheaf on a lo-
cally Noetherian scheme, §13.6.5. (The resolution given by the Hilbert Syzygy The-
orem, §15.3.2, can give a shorter proof; but we haven’t proved the Hilbert Syzygy
Theorem.)

Proof. Define pF (m) = χ(X,F (m)). We will show that pF (m) is a polynomial of
the desired degree.

We first use Exercise 18.2.H to reduce to the case where k is algebraically
closed, and in particular infinite. (This is one of those cases where even if you
are concerned with potentially arithmetic questions over some non-algebraically
closed field like Fp, you are forced to consider the “geometric” situation where the
base field is algebraically closed.)

The coherent sheaf F has a finite number of associated points. We show a
useful fact that we will use again.

18.6.A. EXERCISE. Suppose X is a projective k-scheme with k infinite, and F is
a coherent sheaf on X. Show that if L is a very ample invertible sheaf on X, then
there is an effective Cartier divisorD on Xwith L ∼= O(D), and whereD does not
meet the associated points of F . (Hint: show that given any finite set of points of
Pnk , there is a hyperplane not containing any of them. This is a variant of the key
step in Exercise 11.3.C(c).)

Thus there is a hyperplane x = 0 (x ∈ Γ(X,O(1))) missing this finite number
of points. (This is where we use the infinitude of k.)

Then the map F (−1)
×x // F is injective (on any affine open subset, F cor-

responds to a module, and x is not a zerodivisor on that module, as it doesn’t
vanish at any associated point of that module, see Theorem 5.5.10(c)). Thus we
have a short exact sequence

(18.6.2.1) 0 // F (−1) // F // G // 0

where G is a coherent sheaf.

18.6.B. EXERCISE. Show that Supp G = (Supp F ) ∩ V(x). (Hint: show that
F (−1) → F is an isomorphism away from V(x), and hence G = 0 on this locus.
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If p ∈ V(x), show that the F (−1)|p → F |p is the 0 map, and hence F |p → G |p is
an isomorphism.)

HenceV(x) meets all positive-dimensional components of Supp F (Exercise 11.3.C(a)),
so dim Supp G = dim Supp F − 1 by Krull’s Principal Ideal Theorem 11.3.3 unless
F = 0 (in which case we already know the result, so assume this is not the case).

Twisting (18.6.2.1) by O(m) yields

0 // F (m− 1) // F (m) // G (m) // 0

Euler characteristics are additive in exact sequences (Exercise 18.4.A), from which
pF (m)−pF (m−1) = pG (m).Now pG (m) is a polynomial of degree dim Supp F−
1.

The result is then a consequence from the following elementary fact about
polynomials in one variable.

18.6.C. EXERCISE. Suppose f and g are functions on the integers, f(m + 1) −
f(m) = g(m) for all m, and g(m) is a polynomial of degree d ≥ 0. Show that f is a
polynomial of degree d+ 1.

□
Example 1. The Hilbert polynomial of projective space is pPn(m) =

(
n+m
m

)
,

where we interpret this as the polynomial (m+ 1) · · · (m+ n)/n!.

Example 2. Suppose H is a degree d hypersurface in Pn, with i : H ↪→ Pn the
closed embedding. Then from the closed subscheme exact sequence

0 // OPn(−d) // OPn // i∗OH // 0,

we have

(18.6.2.2) pH(m) = pPn(m) − pPn(m− d) =

(
n+m

n

)
−

(
m+ n− d

n

)
.

(Implicit in this argument is the fact that (i∗OH) ⊗ OPn(m) ∼= i∗(OH ⊗ i∗OPn(m)).
This follows from the projection formula, Exercise 16.3.H(b). You can also show
this directly with transition functions.)

18.6.D. EXERCISE. Show that the twisted cubic (P1 embedded in P3 by the com-
plete linear series |OP1(3)|) has Hilbert polynomial 3m+ 1. (The twisted cubic was
defined in Exercise 8.2.A.)

18.6.E. EXERCISE. More generally, find the Hilbert polynomial for the dth Veronese
embedding of Pn (i.e., the closed embedding of Pn in a bigger projective space by
way of the line bundle O(d), §8.2.6).

18.6.F. EXERCISE (TO BE USED SEVERAL TIMES IN CHAPTER 19). Suppose

X
� � i // Y �

� // Pnk
is a sequence of closed embeddings.
(a) Show that pX(m) ≤ pY(m) for m≫ 0. Hint: let IX/Y be the ideal sheaf of X in
Y. Consider the exact sequence

0 // IX/Y(m) // OY(m) // i∗OX(m) // 0.



November 18, 2017 draft 491

(b) If pX(m) = pY(m) for m ≫ 0, show that X = Y. Hint: Show that if the Hilbert
polynomial of a coherent sheaf F is 0, then F = 0. (Handy trick: For m ≫ 0,
F (m) is generated by global sections.) Apply this to F = IX/Y .

From the Hilbert polynomial, we can extract many invariants, of which two
are particularly important. The first is the degree, and the second is the arithmetic
genus (§18.6.6). The degree of a projective k-scheme of dimension n is defined to
be leading coefficient of the Hilbert polynomial (the coefficient ofmn) times n!.

Using the examples above, we see that the degree of Pn in itself is 1. The
degree of the twisted cubic is 3.

18.6.G. EXERCISE. Show that the degree is always an integer. Hint: by induction,
show that any polynomial in m of degree k taking on only integer values must
have coefficient of mk an integral multiple of 1/k!. Hint for this: if f(x) takes on
only integral values and is of degree k, then f(x + 1) − f(x) takes on only integral
values and is of degree k− 1.

18.6.H. EXERCISE. Show that the degree of a degree d hypersurface (Defini-
tion 8.2.2) is d (preventing a notational crisis).

18.6.I. EXERCISE. Suppose a curve C is embedded in projective space via an
invertible sheaf of degree d (as defined in §18.4.4). In other words, this line bundle
determines a closed embedding. Show that the degree of C under this embedding
is d, preventing another notational crisis. Hint: Riemann-Roch, Exercise 18.4.B. (A
similar notational crisis was averted in Exercise 17.4.F.)

18.6.J. EXERCISE. Show that the degree of the dth Veronese embedding of Pn is
dn.

18.6.K. EXERCISE (BÉZOUT’S THEOREM, GENERALIZING EXERCISES 8.2.E AND 16.4.I).
Suppose X is a projective scheme of dimension at least 1, and H is a hypersurface
not containing any associated points of X. (For example, if X is reduced and thus
has no embedded points, we are just requiring H not to contain any irreducible
components of X.) Show that deg(H ∩ X) = (degH)(degX). (As an example,
we have Bézout’s Theorem for plane curves: if C and D are plane curves of degrees
m and n respectively, with no common components, then C and D meet at mn
points, counted with appropriate multiplicity.)

18.6.3. This is a very handy result! For example: if two projective plane curves
of degree m and degree n share no irreducible components, then they intersect in
mn points, counted with appropriate multiplicity. (To apply Exercise 18.6.K, you
need to know that plane curves have no embedded points. You can either do this
using Exercise 5.5.I, or save time by assuming that one of the curves is reduced.)
The notion of multiplicity of intersection is just the degree of the intersection as a
k-scheme.

18.6.L. EXERCISE. Suppose C is a degree 1 curve in P3k (or more precisely, a degree
1 pure-one-dimensional closed subscheme of P3k). Show that C is a line. Hint:
reduce to the case k = k. Suppose p and q are distinct closed points on C. Use
Bézout’s Theorem (Exercise 18.6.K) to show that any hyperplane containing p and
qmust contain C, and thus that C ⊂ pq.
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18.6.M. FUN EXERCISE. Let k be a field, which we assume to be algebraically
closed for convenience (although you are free to remove this hypothesis if you
wish). Suppose C is a degree d integral curve in PNk with N ≥ d. Show that C is
contained in a linear Pdk ⊂ PNk . (Exercise 18.6.L is not quite a special case of this
problem, but the hint may still be helpful.)

18.6.N. EXERCISE (A FORM OF BÉZOUT’S THEOREM). Classically, the degree of
a complex projective variety of dimension n was defined as follows. We slice the
variety with n generally chosen hyperplanes. Then the intersection will be a finite
number of reduced points, by Exercise 12.4.C (a consequence of Bertini’s Theo-
rem 12.4.2). The degree is this number of points. Use Bézout’s Theorem to make
sense of this in a way that agrees with our definition of degree. You will need to
assume that k is infinite.

Thus the classical definition of the degree, which involved making a choice
and then showing that the result is independent of choice, has been replaced by
making a cohomological definition involving Euler characteristics. This should
remind you of how we got around to “correctly” understanding the degree of a
line bundle. It was traditionally defined as the degree of a divisor of any nonzero
rational section (Important Exercise 18.4.C), and we found a better definition in
terms of Euler characteristics (§18.4.4).

18.6.4. ⋆⋆ Aside: Connection to the topological definition of degree (for those with suf-
ficient background). Another definition of degree of a dimension d complex pro-
jective variety X ⊂ PnC is as the number d such that [X] is d times the “positive”
generator of H2d(PnC ,Z). over C. You can show this by induction on d as follows.
Suppose X is a complex projective variety of dimension d. For a generally chosen
hyperplane, H ∩ X is a complex projective variety of (complex) dimension d − 1.
(Do you see why?) Show that [H∩X] = c1(O(1))∪ [X] inH2(d−1)(X,Z), by suitably
generalizing the solution to Exercise 18.4.G. (A further generalization is given in
§20.1.7.) For this reason, c1(O(1)) is often called the “hyperplane class”.

18.6.5. Revisiting an earlier example. We revisit the enlightening example of Exam-
ple 9.3.3 and §17.4.9: let k = Q, and consider the parabola x = y2. We intersect it
with the four lines, x = 1, x = 0, x = −1, and x = 2, and see that we get 2 each time
(counted with the same convention as with the last time we saw this example).

If we intersect it with y = 2, we only get one point — but that’s because this
isn’t a projective curve, and we really should be doing this intersection on P2k, and
in this case, the conic meets the line in two points, one of which is “at∞”.

18.6.O. EXERCISE. Show that the degree of the d-fold Veronese embedding of
Pn is dn in a different way from Exercise 18.6.J as follows. Let vd : Pn → PN be
the Veronese embedding. To find the degree of the image, we intersect it with
n hyperplanes in PN (scheme-theoretically), and find the number of intersection
points (counted with multiplicity). But the pullback of a hyperplane in PN to Pn is
a degree d hypersurface. Perform this intersection in Pn, and use Bézout’s theorem
(Exercise 18.6.K).
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18.6.P. EXERCISE (DEGREE IS ADDITIVE FOR UNIONS). Suppose X and Y are two
d-dimensional closed subschemes of Pnk , with no d-dimensional irreducible com-
ponents in common. Show that degX ∪ Y = degX+ deg Y.

18.6.6. Arithmetic genus, again.
There is another central piece of information residing in the Hilbert polyno-

mial. Notice that 1 − pX(0) = 1 − χ(X,OX) is the arithmetic genus (§18.4.2), an
intrinsic invariant of the scheme X, independent of the projective embedding.

Imagine how amazing this must have seemed to the ancients: they defined
the Hilbert function by counting how many “functions of various degrees” there
are; then they noticed that when the degree gets large, it agrees with a polynomial;
and then when they plugged 0 into the polynomial — extrapolating backwards, to
where the Hilbert function and Hilbert polynomials didn’t agree — they found a
magic invariant! Furthermore, in the case when X is a complex curve, this invari-
ant was basically the topological genus!

We can now see a large family of curves over an algebraically closed field that
is provably not P1! Note that the Hilbert polynomial of P1 is (m + 1)/1 = m + 1,
so χ(OP1) = 1. Suppose C is a degree d curve in P2. Then the Hilbert polynomial
of C is

pP2(m) − pP2(m− d) = (m+ 1)(m+ 2)/2− (m− d+ 1)(m− d+ 2)/2.

Plugging inm = 0 gives us −(d2 − 3d)/2. Thus when d > 2, we have a curve that
cannot be isomorphic to P1! (And it is not hard to show that there exists a regular
degree d curve, Exercise 12.3.E.)

Now from 0 → OP2(−d) → OP2 → OC → 0, using h1(OP2(−d)) = 0, we have
that h0(C,OC) = 1. As h0 − h1 = χ, we have

(18.6.6.1) h1(C,OC) = (d− 1)(d− 2)/2.

We now revisit an interesting question we first saw in §6.5.10. If k is an alge-
braically closed field, is every finitely generated transcendence degree 1 extension
of k isomorphic to k(x)? In that section, we found ad hoc (but admittedly beauti-
ful) examples showing that the answer is “no”. But we now have a better answer.
The question initially looks like an algebraic question, but we now recognize it as a
fundamentally geometric one. There is an integer-valued cohomological invariant
of such field extensions that is has good geometric meaning: the genus.

Equation (18.6.6.1) yields examples of curves of genus 0, 1, 3, 6, 10, . . . (corresponding
to degree 1 or 2, 3, 4, 5, . . . ). This begs some questions, such as: are there curves of
other genera? (We will see soon, in §19.5.5, that the answer is yes.) Are there other
genus 0 curves? (Not if k is algebraically closed, but sometimes yes otherwise —
consider x2+y2+z2 = 0 in P2R, which has no R-points and hence is not isomorphic
to P1R — we will discuss this more in §19.3.) Do we have all the curves of genus 3?
(Almost all, but not quite. We will see more in §19.7.) Do we have all the curves of
genus 6? (We are missing “most of them”, as will be suggested by §19.8.3.)

Caution: The Euler characteristic of the structure sheaf is an incomplete in-
variant. It doesn’t always distinguish between isomorphism classes of irreducible
smooth projective varieties. For example, P2 and P1×P1 both have structure sheaf
Euler characteristic 1 (see Theorem 18.1.3 and Exercise 18.3.3), but are not isomor-
phic — PicP2 ∼= Z (§14.2.7) while Pic(P1 × P1) ∼= Z⊕ Z (Exercise 14.2.O).
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18.6.7. Complete intersections.

18.6.Q. EXERCISE. Find the genus of the complete intersection of 2 quadric sur-
faces in P3k.

18.6.R. EXERCISE. More generally, find the genus of the complete intersection of
a degreem surface with a degree n surface in P3k. (Ifm = 2 and n = 3, you should
get genus 4. We will see in §19.8 that in some sense most genus 4 curves arise in
this way. Note that Bertini’s Theorem 12.4.2 ensures that there are regular curves
of this form.)

18.6.S. EXERCISE. Show that the rational normal curve of degree d in Pd is not a
complete intersection if d > 2. (Hint: If it were the complete intersection of d − 1
hypersurfaces, what would the degree of the hypersurfaces be? Why could none
of the degrees be 1?)

18.6.T. EXERCISE (POSITIVE-DIMENSIONAL COMPLETE INTERSECTIONS ARE CON-
NECTED). Show that complete intersections of positive dimension are connected.
(Hint: show that h0(X,OX) = 1.) For experts: this argument will even show that
they are geometrically connected (§9.5), as h0 is preserved by field extension (Ex-
ercise 18.2.H).

18.6.U. EXERCISE. Show that the union of two planes in P4 meeting at a point is
not a complete intersection. Hint: it is connected, but you can slice with another
hyperplane and get something not connected (see Exercise 18.6.T).

18.7 ⋆ Serre’s cohomological characterization of ampleness

Theorem 16.6.2 gave a number of characterizations of ampleness, in terms of
projective geometry, global generation, and the Zariski topology. Here is another
characterization, this time cohomological, under Noetherian hypotheses. Because
(somewhat surprisingly) we won’t use this result, this section is starred.

18.7.1. Theorem (Serre’s cohomological criterion for ampleness). — Suppose A
is a Noetherian ring, X is a proper A-scheme, and L is an invertible sheaf on X. Then the
following are equivalent.

(a-c) The invertible sheaf L is ample on X (over A).
(e) For all coherent sheaves F on X, there is an n0 such that for n ≥ n0,Hi(X,F⊗

L ⊗n) = 0 for all i > 0.

The label (a-c) is intended to reflect the statement of Theorem 16.6.2. We
avoid the label (d) because it appeared in Theorem 16.6.6. (Aside: the “proper-
ness” assumption cannot be removed, as can be shown by the example of Exer-
cise 18.8.F.) Before getting to the proof, we motivate this result by giving some
applications. (As a warm-up, you can give a second solution to Exercise 16.6.G in
the Noetherian case, using the affineness of π to show thatHi(X,F ⊗(π∗L )⊗m) =
Hi(Y, (π∗F )⊗ L ⊗m).)
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18.7.A. EXERCISE. Suppose X is a proper A-scheme, and L is an invertible sheaf
on X. Show that L is ample on X if and only if L |Xred is ample on Xred. Hint: for
the “only if” direction, use Exercise 16.6.G. For the “if” direction, let I be the ideal
sheaf cutting out the closed subscheme Xred in X. Filter F by powers of I :

0 = I rF ⊂ I r−1F ⊂ · · · ⊂ I F ⊂ F .

(Essentially the same filtration appeared in Exercise 18.4.S, for similar reasons.)
Show that each quotient I nF/I n−1F , twisted by a high enough power of L ,
has no higher cohomology. Use descending induction on n to show each part
I nF of the filtration (and hence in particular F ) has this property as well.

18.7.B. EXERCISE. Suppose X is a proper A-scheme, and L is an invertible sheaf
on X. Show that L is ample on X if and only if L is ample on each component.
Hint: follow the outline of the solution to the previous exercise, taking instead
I as the ideal sheaf of one component. Perhaps first reduce to the case where
X = Xred.

18.7.C. EXERCISE. (In Exercise 19.2.E, we will show that on a smooth projective
integral curve, an invertible sheaf is ample if and only if it has positive degree.
Use that fact in this exercise. There will be no logical circularity.) Show that a line
bundle on a projective curve is ample if and only if it has positive degree on each
component.

18.7.2. Remark: Proper curves are projective. Serre’s criterion for ampleness is the
key ingredient for showing that every proper curve over a field is projective. The
steps are as follows. (i) Recall that every regular integral proper curve is projective,
Exercise 17.4.A. (ii) The hardest step is showing that every reduced integral proper
curve C is projective. This is done by choosing a regular point on each irreducible
component of C, and letting L be the corresponding invertible sheaf. Because of
Exercise 18.7.C, we hope that L will be ample. Show that a line bundle on C is
ample if its pullback to the normalization of C is ample (a partial converse to Exer-
cise 16.6.G, see for example [Ha1, Ex. III.5.7(d)]). Thus our L is ample. (iii) Show
that every reduced proper curve is projective using Exercise 18.7.B. (iv) Show that
every proper curve C is projective, using Exercise 18.7.A, after first finding an in-
vertible sheaf on C that will be shown to be ample.

18.7.3. Very ample versus ample. The previous exercises don’t work with “ample”
replaced by “very ample”, which shows again how the notion of ampleness is
better-behaved than very ampleness.

18.7.4. Proof of Theorem 18.7.1. For the fact that (a-c) implies (e), use the fact that
L ⊗N is very ample for some N (Theorem 16.6.2(a)), and apply Serre vanishing
(Theorem 18.1.4(ii)) to F , F ⊗ L , . . . , and F ⊗ L ⊗(N−1).

So we now assume (e), and show that L is ample by criterion (b) of Theo-
rem 16.6.2: we will show that for any coherent sheaf F on X, F ⊗L ⊗n is globally
generated for n≫ 0.

We begin with a special case: we will show that L ⊗n is globally generated (i.e.,
base-point-free) for n ≫ 0. To do this, it suffices to show that every closed point
p has an open neighborhood U so that there exists some Np so that n ≥ Np, L ⊗n

is globally generated for all points of Up. (Reason: by quasicompactness, every
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closed subset of X contains a closed point, by Exercise 5.1.E. So as p varies over the
closed points of X, these Up cover X. By quasicompactness again, we can cover X
by a finite number of these Up. Let N be the maximum of the corresponding Np.
Then for n ≥ N, L ⊗n is globally generated in each of these Up, and hence on all
of X.)

Let p be a closed point ofX. For alln, mp⊗L ⊗n is coherent (by our Noetherian
hypotheses). By (e), there exists some n0 so that for n ≥ n0,H1(X,mp⊗L ⊗n) = 0.
By the long exact sequence arising from the closed subscheme exact sequence

0→ mp ⊗ L ⊗n → L ⊗n → L ⊗n|p → 0,

we have that L ⊗n is globally generated at p for n ≥ n0. By Exercise 15.3.C(b),
there is an open neighborhood V0 of p such that L ⊗n0 is globally generated at all
points of V0. Thus L ⊗kn0 is globally generated at all points of V0 for all positive
integers k (using Easy Exercise 15.3.B). For each i ∈ {1, . . . , n0−1}, there is an open
neighborhood Vi of p such that L ⊗(n0+i) is globally generated at all points of Vi
(again by Exercise 15.3.C(b)). We may take each Vi to be contained in V0. By Easy
Exercise 15.3.B, L ⊗(kn0+n0+i) is globally generated at every point of Vi (as this is
the case for L ⊗kn0 and L ⊗(n0+i)). Thus in the open neighborhoodUp := ∩n−1i=0 Vi,
L ⊗n is globally generated for n ≥ Np := 2n0.

We have now shown that there exists some N such that for n ≥ N, L ⊗n is
globally generated. Now suppose F is a coherent sheaf. To conclude the proof,
we will show that F ⊗L ⊗n is globally generated for n≫ 0. This argument has a
similar flavor to what we have done so far, so we give it as an exercise.

18.7.D. EXERCISE. Suppose p is a closed point of X.
(a) Show that for n≫ 0, F ⊗ L ⊗n is globally generated at p.
(b) Show that there exists an open neighborhood Up of p such that for n ≫ 0,
F ⊗L ⊗n is globally generated at every point of Up. Caution: while it is true that
by Exercise 15.3.C(b), for each n ≫ 0, there is some open neighborhood Vn of p
such that F ⊗ L ⊗n is globally generated there, it need not be true that

(18.7.4.1) ∩n≫0 Vn

is an open set. You may need to use the fact that L ⊗n is globally generated for
n ≥ N to replace (18.7.4.1) by a finite intersection.

18.7.E. EXERCISE. Conclude the proof of Theorem 18.7.1 by showing that F ⊗
L ⊗n is globally generated for n≫ 0. □

18.7.5. Aside: Serre’s cohomological characterization of affineness. Serre gave a charac-
terization of affineness (Remark 18.1.1) similar in flavor to Theorem 18.7.1.

18.7.6. Theorem (Serre’s cohomological characterization of affineness). — Sup-
pose X is a Noetherian separated scheme. Then the following are equivalent.

(a) The scheme X is affine.
(b) For any quasicoherent sheaf F on X, Hi(X,F ) = 0 for all i > 0.
(c) For any coherent sheaf of ideals I on X, H1(X,I ) = 0.
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Because we won’t use it, we omit the proof. (One is given in [Ha1, Thm. III.3.7].)
Clearly (a) implies (b) implies (c) (the former from “affine cover cohomology van-
ishing”, Property (vi) of §18.1) without any Noetherian assumptions, so the real
substance is in the implication from (c) to (a).

Serre proved an analogous result in complex analytic geometry: Stein spaces
are also characterized by the vanishing of cohomology of coherent sheaves.

18.8 Higher pushforward (or direct image) sheaves

Cohomology groups were defined for X → SpecA where the structure mor-
phism is quasicompact and separated; for any quasicoherent F on X, we defined
Hi(X,F ). We will now define a “relative” version of this notion, for quasicom-
pact and separated morphisms π : X → Y: for any quasicoherent F on X, we will
define Riπ∗F , a quasicoherent sheaf on Y. (Now would be a good time to do
Exercise 1.6.H, the FHHF Theorem, if you haven’t done it before.)

We have many motivations for doing this. In no particular order:

(1) It “globalizes” what we did before with cohomology.
(2) If 0 → F → G → H → 0 is a short exact sequence of quasicoherent

sheaves on X, then we know that 0→ π∗F → π∗G → π∗H is exact, and
higher pushforwards will extend this to a long exact sequence.

(3) We will later see that this will show how cohomology groups vary in fam-
ilies, especially in “nice” situations. Intuitively, if we have a nice family
of varieties, and a family of sheaves on them, we could hope that the co-
homology varies nicely in families, and in fact in “nice” situations, this
is true. (As always, “nice” usually means “flat”, whatever that means.
We will see that Euler characteristics are locally constant in proper flat
families in §24.7, and the Cohomology and Base Change Theorem 28.1.6
will show that in particularly good situations, dimensions of cohomology
groups are constant.)

All of the important properties of cohomology described in §18.1 will carry over
to this more general situation. Best of all, there will be no extra work required.

In the notation Riπ∗F for higher pushforward sheaves, the “R” stands for
“right derived functor”, and corresponds to the fact that we get a long exact se-
quence in cohomology extending to the right (from the 0th terms). In Chapter 23,
we will see that in good circumstances, if we have a left-exact functor, there is a
long exact sequence going off to the right, in terms of right derived functors. Sim-
ilarly, if we have a right-exact functor (e.g., if M is an A-module, then ⊗AM is a
right-exact functor from the category of A-modules to itself), there may be a long
exact sequence going off to the left, in terms of left derived functors.

Suppose π : X→ Y, and F is a quasicoherent sheaf on X. For each SpecA ⊂ Y,
we have A-modules Hi(π−1(SpecA),F ). We now show that these patch together
to form a quasicoherent sheaf, in the sense of §13.3.3. We need check only one
fact: that this behaves well with respect to taking distinguished open sets. In other
words, we must check that for each f ∈ A, the natural map

Hi(π−1(SpecA),F )→ Hi(π−1(SpecAf),F )
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(induced by the map of spaces in the opposite direction — Hi is contravariant in
the space) is precisely the localization ⊗AAf. But this can be verified easily: let
{Ui} be an affine open cover of π−1(SpecA). We can compute Hi(π−1(SpecA),F )

using the Čech complex (18.2.1.1). But this induces a cover of π−1(SpecAf) in a
natural way: if Ui = SpecAi is an affine open subset of π−1(SpecA), we define
U ′
i := Spec(Ai)π♯f. The resulting Čech complex for SpecAf is the localization of

the Čech complex for SpecA. As taking cohomology of a complex commutes with
localization (as discussed in the FHHF Theorem, Exercise 1.6.H), we have defined
a quasicoherent sheaf on Y by the characterization of quasicoherent sheaves in
§13.3.3.

Define the ith higher pushforward sheaf or the ith higher direct image sheaf
Riπ∗F to be this quasicoherent sheaf.

18.8.1. Theorem. — Suppose π : X → Y is a quasicompact separated morphism of
schemes. Then:

(a) Riπ∗ is a covariant functor QCohX → QCohY .
(b) We can identify R0π∗ with π∗F .
(c) (the long exact sequence of higher pushforward sheaves) A short exact

sequence 0 → F → G → H → 0 of sheaves on X induces a long exact
sequence

(18.8.1.1) 0 // R0π∗F // R0π∗G // R0π∗H //

R1π∗F // R1π∗G // R1π∗H // · · ·

of sheaves on Y.
(d) (projective pushforwards of coherent are coherent: Grothendieck’s Coherence The-

orem for projective morphisms) If π is a projective morphism and OY is coherent
on Y (this hypothesis is automatic for Y locally Noetherian), and F is a coherent
sheaf on X, then for all i, Riπ∗F is a coherent sheaf on Y.

18.8.2. Unimportant Remark. If X and Y are Noetherian, the hypotheses “quasicom-
pact and separated” on π can be removed; see Unimportant Remark 23.5.8 for the
“separated” hypothesis.

18.8.3. Proof of Theorem 18.8.1. We first show covariance: if F → G is a morphism
of quasicoherent sheaves on X, we define a map Riπ∗F → Riπ∗G . (It will be
clear we will have shown that Riπ∗ is a functor.) It suffices to define this map on
the “distinguished affine base” of Y (Definition 13.3.1). Thus it suffices to show the
following: if X ′ is a quasicompact separatedA-scheme, and F → G is a morphism
of quasicoherent sheaves on X, then the map Hi(X ′,F ) → Hi(X ′,G ) constructed
in §18.2 (property (i) of §18.1) “commutes with localization at f ∈ A”. But this was
shown in Exercise 18.2.D.

In a similar way, we construct the connecting homomorphism Riπ∗H →
Ri+1π∗F in the long exact sequence (18.8.1.1), by showing that the construction
in the case where Y = SpecA “commutes with localization at f ∈ A”. Again, this
was shown in Exercise 18.2.D.
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It suffices to check all other parts of this statement on affine open subsets of Y,
so they all follow from the analogous statements in Čech cohomology (§18.1). □

The following result is handy, and essentially immediate from our definition.

18.8.A. EASY EXERCISE. Show that if π is affine, then for i > 0, Riπ∗F = 0.

18.8.4. How higher pushforwards behave with respect to base change.

18.8.B. EXERCISE (HIGHER PUSHFORWARDS AND BASE CHANGE).
(a) (easy) Suppose ψ : Z→ Y is any morphism, and π : X→ Y is quasicompact and
separated. Suppose F is a quasicoherent sheaf on X. Let

(18.8.4.1) W
ψ ′

//

π ′

��

X

π

��
Z

ψ // Y

be a Cartesian diagram. Describe a natural morphism ψ∗(Riπ∗F )→ Riπ ′
∗(ψ

′)∗F
of sheaves on Z. (Hint: the FHHF Theorem, Exercise 1.6.H. You may want to com-
pare the i = 0 case to the push-pull formula of Exercise 16.3.G.)
(b) (cohomology commutes with affine flat base change) If ψ : Z → Y is an affine mor-
phism, and for a cover SpecAi of Y, where ψ−1(SpecAi) = SpecBi, Bi is a flat
Ai-algebra (§1.6.11: ⊗Ai

Bi is exact), and the diagram in (a) is a Cartesian dia-
gram, show that the natural morphism of (a) is an isomorphism. (Exercise 18.2.H
was a special case of this exercise. You can likely generalize this to non-affine
morphisms — and thus show that cohomology commutes with flat base change
(Theorem 24.2.8) — but we wait until Chapter 24 to discuss flatness at length.)

18.8.C. EXERCISE (CF. EXERCISE 16.3.G). Prove Exercise 18.8.B(a) without the hy-
pothesis that (18.8.4.1) is a Cartesian diagram, but adding the requirement that
π ′ is quasicompact and separated (just so our definition of Riπ ′

∗ applies). In the
course of the proof, you will see a map arising in the Leray spectral sequence (The-
orem 23.4.5). (Hint: use Exercise 18.8.B(a).)

A useful special case of Exercise 18.8.B(a) is the following.

18.8.D. EXERCISE. If q ∈ Y, describe a natural morphism (Riπ∗F ) ⊗ κ(q) →
Hi(π−1(q),F |π−1(q)). (Be sure you understand the meaning of the left side!) Hint:
the FHHF Theorem, Exercise 1.6.H.

Thus the fiber of the pushforward may not be the cohomology of the fiber, but
at least it always maps to it. We will later see that in good situations this map is an
isomorphism, and thus the higher pushforward sheaf indeed “patches together”
the cohomology on fibers (the Cohomology and Base Change Theorem 28.1.6).

18.8.E. EXERCISE (PROJECTION FORMULA, GENERALIZING EXERCISE 16.3.H). Sup-
pose π : X → Y is quasicompact and separated, and F and G are quasicoherent
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sheaves on X and Y respectively.

F

CC
CC

CC
CC

C π∗G

{{
{{
{{
{{

π∗F

CC
CC

CC
CC

X

��

G

{{
{{
{{
{{
{

Y

(a) Describe a natural morphism

(Riπ∗F )⊗ G → Riπ∗(F ⊗ π∗G ).

(Hint: the FHHF Theorem, Exercise 1.6.H.)
(b) If G is locally free, show that this natural morphism is an isomorphism.

The following fact uses the same trick as Theorem 18.1.8 and Exercise 18.1.B.

18.8.5. Theorem (relative dimensional cohomology vanishing). — If π : X→ Y is
a projective morphism and Y is locally Noetherian (or more generally OY is coherent over
itself), then the higher pushforwards vanish in degree higher than the maximum dimension
of the fibers.

This is false without the projective hypothesis (see Exercise 18.8.F below). In
particular, you might hope that just as dimensional cohomology vanishing general-
ized from projective varieties to quasiprojective varieties or more general settings
(§18.2.7) that relative dimensional cohomology vanishing would generalize from
projective morphisms to quasiprojective morphisms, but this is not the case.

18.8.F. EXERCISE. Consider the open embedding π : An − {0} → An. By direct
calculation, show that Rn−1π∗OAn−{0} ̸= 0. (This calculation will remind you of
the proof of the Hn part of Theorem 18.1.3; see also Remark 18.3.1.)

Proof of Theorem 18.8.5. Letm be the maximum dimension of all the fibers.
The question is local on Y, so we will show that the result holds near a point p

of Y. We may assume that Y is affine, and hence that X ↪→ PnY .
Let k be the residue field at p. Then π−1(p) is a projective k-scheme of dimen-

sion at mostm. By Exercise 11.3.C we can find affine open setsD(f1), . . . ,D(fm+1)
that cover π−1(p). In other words, the intersection of the V(fi) does not intersect
π−1(p).

If Y = SpecA and p = [p] (so k = Ap/pAp), then arbitrarily lift each fi from
an element of k[x0, . . . , xn] to an element f ′i of Ap[x0, . . . , xn]. Let F be the prod-
uct of the denominators of the f ′i; note that F /∈ p, i.e., p = [p] ∈ D(F). Then
f ′i ∈ AF[x0, . . . , xn]. The intersection of their zero loci ∩V(f ′i) ⊂ PnAF

is a closed
subscheme of PnAF

. Intersect it with X to get another closed subscheme of PnAF
.

Take its image under π; as projective morphisms are closed, we get a closed subset
of D(F) = SpecAF. But this closed subset does not include p; hence we can find
an affine open neighborhood SpecB of p in Y missing the image. But if f ′′i are the
restrictions of f ′i to B[x0, . . . , xn], then D(f ′′i ) cover π−1(SpecB); in other words,
π−1(SpecB) is covered by m + 1 affine open sets, so by affine cover cohomology
vanishing (Property (vi) of §18.1), its cohomology vanishes in degree at leastm+1.
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But the higher direct image sheaf is computed using these cohomology groups,
hence the higher pushforward sheaf Riπ∗F vanishes on SpecB too. □

18.8.G. EXERCISE (RELATIVE SERRE VANISHING, CF. THEOREM 18.1.4(II)). Sup-
pose π : X → Y is a proper morphism of Noetherian schemes, and L is a π-ample
invertible sheaf on X. Show that for any coherent sheaf F on X, for m ≫ 0,
Ri(π∗F ⊗ L ⊗m) = 0 for all i > 0.

18.9 ⋆ From projective to proper hypotheses: Chow’s Lemma and
Grothendieck’s Coherence Theorem

The main proofs in this section are double-starred because the results aren’t
absolutely necessary in the rest of our discussions, and may not be worth reading
right now. But just knowing the statement of Grothendieck’s Coherence Theo-
rem 18.9.1, (generalizing Theorem 18.8.1(d)) will allow you to immediately trans-
late many of our arguments about projective schemes and morphisms to proper
schemes and morphisms, and Chow’s Lemma is a multi-purpose tool to extend
results from the projective situation to the proper situation in general.

18.9.1. Grothendieck’s Coherence Theorem. — Suppose π : X → Y is a proper
morphism of locally Noetherian schemes. Then for any coherent sheaf F on X, Riπ∗F is
coherent on Y.

The case i = 0 has already been mentioned a number of times.

18.9.A. EXERCISE. Recall that finite morphisms are affine (by definition) and
proper. Use Theorem 18.9.1 to show that if π : X → Y is proper and affine and Y
is Noetherian, then π is finite. (Hint: mimic the proof of the weaker result where
proper is replaced by projective, Corollary 18.1.7.)

The proof of Theorem 18.9.1 requires two sophisticated facts. The first is the
Leray spectral sequence (Theorem 23.4.5, which applies in this situation because
of Exercise 23.5.F). Suppose π : X → Y and ρ : Y → Z are quasicompact separated
morphisms. Then for any quasicoherent sheaf F on X, there is a spectral sequence
with E2 term given by Rpρ∗(Rqπ∗F ) converging to Rp+q(ρ ◦ π)∗F . Because this
would be a reasonable (but hard) exercise in the case we need it (where Z is affine),
we will feel comfortable using it. But because we will later prove it, we won’t
prove it now.

We will also need Chow’s Lemma.

18.9.2. Chow’s Lemma. — Suppose π : X → SpecA is a proper morphism, and A
is Noetherian. Then there exists µ : X ′ → X which is surjective and projective, such that
π ◦ µ is also projective, and such that µ is an isomorphism on a dense open subset of X:

X ′

π◦µ
##G

GG
GG

GG
GG

µ // X

π
{{xx
xx
xx
xx
x

SpecA.
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In particular, if X is a proper k-variety, it admits a projective birational mor-
phism from a projective k-variety.

Many generalizations of results from projective to proper situations go through
Chow’s Lemma. We will prove this version, and state other versions of Chow’s
Lemma, in §18.9.4. Assuming these two facts, we now prove Grothendieck’s Co-
herence Theorem 18.9.1 in a series of exercises.

18.9.3. ⋆⋆ Proof of Grothendieck’s Coherence Theorem 18.9.1. The question is local
on Y, so we may assume Y is affine, say Y = SpecA. We work by induction on
dim Supp F , with the base case when dim Supp F = −1 (i.e., Supp F = ∅, i.e.,
F = 0), which is obvious. So fix F , and assume the result is known for all coherent
sheaves with support of smaller dimension.

18.9.B. EXERCISE. Show that we may assume that Supp F = X. (Hint: the idea is
to replace X by the scheme-theoretic support of F , the smallest closed subscheme
of X on which Supp F “lives”. More precisely, it is the smallest closed subscheme
i : W ↪→ X such that there is a coherent sheaf F ′ onW, with F ∼= i∗F ′. Show that
this notion makes sense, using the ideas of §8.3, by defining it on each affine open
subset.)

We now invoke Chow’s Lemma to construct a projective morphism µ : X ′ → X

that is an isomorphism on a dense open subset U of X (so dimX \U < dimX), and
such that π ◦ µ : X ′ → SpecA is projective.

Then G = µ∗F is a coherent sheaf on X ′, µ∗G is a coherent sheaf on X (by the
projective case, Theorem 18.8.1(d)) and the adjunction map F → µ∗G = µ∗µ

∗F
is an isomorphism on U. The kernel E and cokernel H are coherent sheaves on X
that are supported in smaller dimension:

0→ E → F → µ∗G →H → 0.

18.9.C. EXERCISE. By the inductive hypothesis, the higher pushforwards of E and
H are coherent. Show that if all the higher pushforwards of µ∗G are coherent,
then the higher pushforwards of F are coherent.

So we are reduced to showing that the higher pushforwards of µ∗G are coher-
ent for any coherent G on X ′.

The Leray spectral sequence (Theorem 23.4.5) for X ′ µ // X
π // SpecA

has E2 page given by Rpπ∗(Rqµ∗G ) converging to Rp+q(π ◦ µ)∗G . Now Rqµ∗G is
coherent by Theorem 18.8.1(d). Furthermore, as µ is an isomorphism on a dense
open subsetU of X, Rqµ∗G is zero onU, and is thus supported on the complement
of U, whose dimension is less than that of X. Hence by our inductive hypothesis,
Rpπ∗(R

qµ∗G ) is coherent for all p, and all q ≥ 1. The only possibly noncoherent
sheaves on the E2 page are in the row q = 0 — precisely the sheaves we are
interested in. Also, by Theorem 18.8.1(d) applied to π◦µ, Rp+q(π◦µ)∗G is coherent.

18.9.D. EXERCISE. Show that Ep,qn is always coherent for any n ≥ 2, q > 0. Show
that Ep,0n is coherent for a given n ≥ 2 if and only if Ep,02 is coherent. Show that
Ep,q∞ is coherent, and hence that Ep,02 is coherent, thereby completing the proof of
Grothendieck’s Coherence Theorem 18.9.1.



November 18, 2017 draft 503

□

18.9.4. ⋆⋆ Proof of Chow’s Lemma.
We use the properness hypothesis on π through each of its three constituent

parts: finite type, separated, universally closed. The parts using separatedness are
particularly tricky.

As X is Noetherian, it has finitely many irreducible components. Cover Xwith
affine open sets U1, . . . , Un. We may assume that each Ui meets each irreducible
component. (If some Ui does not meet an irreducible component Z, then take any
affine open subset Z ′ of Z− X− Z, and replace Ui by Ui ∪ Z ′.) Then U := ∩iUi is
a dense open subset of X. As each Ui is finite type over A, we can choose a closed
embedding Ui ⊂ Ani

A . Let Ui be the (scheme-theoretic) closure of Ui in Pni

A .
Now we have the diagonal morphism U → X×A

∏
Ui (where the product is

over SpecA), which is a locally closed embedding (the composition of the closed
embedding U ↪→ Un+1 with the open embedding Un+1 ↪→ X×A

∏
Ui). Let X ′ be

the scheme-theoretic closure ofU in X×A
∏
Ui. Let µ be the composed morphism

X ′ → X×A
∏
Ui → X, so we have a diagram

X ′

µ

&&MM
MMM

MMM
MMM

MM� _

cl. emb.
��

X×A
∏
Ui proj.

//

proper
��

X

proper

��∏
Ui proj.

// SpecA

(where the square is Cartesian). The morphism µ is projective (as it is the composi-
tion of two projective morphisms and X is quasicompact, Exercise 17.3.B). We will
conclude the argument by showing that µ−1(U) = U (or more precisely, µ is an
isomorphism above U), and that X ′ → ∏Ui is a closed embedding (from which
the composition

X→∏Ui → SpecA

is projective).

18.9.E. EXERCISE. Suppose T0, . . . , Tn are separated schemes over A with isomor-
phic open sets, which we sloppily call V in each case. Then V is a locally closed
subscheme of T0×A · · ·×ATn. Let V be the closure of this locally closed subscheme.
Show that

V ∼= V ∩ (V ×A T1 ×A · · · ×A Tn)
= V ∩ (T0 ×A V ×A T2 ×A · · · ×A Tn)
= · · ·
= V ∩ (T0 ×A · · · ×A Tn−1 ×A V).

(Hint for the first isomorphism: the graph of the morphism V → T1×A · · ·×A Tn is
a closed embedding, as T1×A · · ·×A Tn is separated overA, by Proposition 10.1.18.
Thus the scheme-theoretic closure ofV inV×AT1×A· · ·×ATn isV itself. Finally, the
scheme-theoretic closure can be computed locally, essentially by Theorem 8.3.4.)
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18.9.F. EXERCISE. Using (the idea behind) the previous exercise, show that µ−1(U) =
U.

It remains to show that X ′ → ∏Ui is a closed embedding. Now X ′ → ∏Ui
is closed (it is the composition of two closed maps), so it suffices to show that
X ′ →∏Ui is a locally closed embedding.

18.9.G. EXERCISE. Let Ai be the closure of U in

Bi := X×A U1 ×A · · · ×A Ui ×A · · · ×A Un
(only the ith term is missing the bar), and let Ci be the closure of U in

Di := U1 ×A · · · ×A Ui ×A · · · ×A Un.
Show that there is an isomorphism Ai → Ci induced by the projection Bi → Di.
Hint: note that the sectionDi → Bi of the projection Bi → Di, given informally by
(t1, . . . , tn) 7→ (ti, t1, . . . , tn), is a closed embedding, as it can be interpreted as the
graph of a morphism to a separated A-scheme (Proposition 10.1.18). So U can be
interpreted as a locally closed subscheme of Di, which in turn can be interpreted
as a closed subscheme of Bi. Thus the closure of U in Di may be identified with
its closure in Bi.

As the Ui cover X, the µ−1(Ui) cover X. But µ−1(Ui) = Ai (closure can be be
computed locally — the closure ofU in Bi is the intersection of Bi with the closure
X of U in X×A U1 ×A · · · ×A Un).

Hence over each Ui, we get a closed embedding of Ai ↪→ Di, and thus X ′ →∏
Ui is a locally closed embedding as desired. □

18.9.5. Other versions of Chow’s Lemma. We won’t use these versions, but their
proofs are similar to what we have already shown.

18.9.6. Remark. Notice first that if X is reduced (resp. irreducible, integral), then
X ′ can be taken to be reduced (resp. irreducible, integral) as well.

18.9.H. EXERCISE. By suitably crossing out lines in the proof above, weaken
the hypothesis “π is proper” to “π finite type and separated”, at the expense of
weakening the conclusion “π ◦ µ is projective” to “π ◦ µ is quasiprojective”.

18.9.7. Remark. The target SpecA can be generalized to a scheme S that is (i) Noe-
therian, or (ii) separated and quasicompact with finitely many irreducible compo-
nents. This can be combined with Remark 18.9.6 and Exercise 18.9.H. See [Gr-EGA,
II.5.6.1] for a proof. See also [GW, Thm. 13.100] for a version that is slightly more
general.



CHAPTER 19

Application: Curves

We now use what we have developed to study something explicit — curves.
Throughout this chapter, we will assume that all curves are projective, geometri-
cally integral, regular curves over a field k. We will sometimes add the hypothesis
that k is algebraically closed. Most people are happy with working over alge-
braically closed fields, and those people should ignore the adverb “geometrically”.

We certainly do not need the massive machinery we have developed in order
to understand curves, but with the perspective we have gained, the development
is quite clean. The key ingredients we will need are as follows. We use a crite-
rion for a morphism to be a closed embedding, that we prove in §19.1. We use
the “black box” of Serre duality (to be proved in Chapter 30). In §19.2, we use this
background to observe a very few useful facts, which we will use repeatedly. Fi-
nally, in the course of applying them to understand curves of various genera, we
develop the theory of hyperelliptic curves in a hands-on way (§19.5), in particular
proving a special case of the Riemann-Hurwitz formula.

If you are jumping into this chapter without reading much beforehand, you should
skip §19.1, taking Theorem 19.1.1 as a black box. Depending on your background, you
may want to skip §19.2 as well, taking the “crucial tools” as a black box.

19.1 A criterion for a morphism to be a closed embedding

We will repeatedly use a criterion for when a morphism is a closed embedding,
which is not special to curves. Before stating it, we recall some facts about closed
embeddings. Suppose π : X→ Y is a closed embedding. Then π is projective, and it
is injective on points. This is not enough to ensure that it is a closed embedding, as
the example of the normalization of the cusp shows (Figure 9.4). Another example
is the following.

19.1.A. EXERCISE (FROBENIUS, CF. §7.3.16). Show that π : A1Fp
→ A1Fp

given by
x 7→ xp is a bijection on points, and induces an isomorphism of residue fields on
closed points, yet is not a closed embedding.

The additional information you need to ensure that a morphism π is a closed
embedding is that the tangent map is injective at all closed points.

19.1.B. EXERCISE. Show (directly, not invoking Theorem 19.1.1) that in the two
examples described above (the normalization of a cusp and the Frobenius mor-
phism), the tangent map is not injective at all closed points.

505
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19.1.1. Theorem. — Suppose k = k, and π : X → Y is a projective morphism of finite
type k-schemes that is injective on closed points and injective on tangent vectors at closed
points. Then π is a closed embedding.

(Remark: In this case of finite type schemes over an algebraically closed field,
“injective on tangent vectors at closed points” is equivalent to “unramified”, see
Exercise 21.6.I. We will define unramified in §21.6.)

The example SpecC → SpecR shows that we need the hypothesis that k is
algebraically closed in Theorem 19.1.1. Those allergic to algebraically closed fields
should still pay attention, as we will use this to prove things about curves over k
where k is not necessarily algebraically closed (see also Exercises 9.2.J and 19.1.E).

We need the hypothesis that the morphism be projective, as shown by the
example of Figure 19.1. It is the normalization of the node, except we erase one of
the preimages of the node. We map A1 to the plane, so that its image is a curve
with one node. We then consider the morphism we get by discarding one of the
preimages of the node. Then this morphism is an injection on points, and is also
injective on tangent vectors, but it is not a closed embedding. (In the world of
differential geometry, this fails to be an embedding because the map doesn’t give
a homeomorphism onto its image.)

FIGURE 19.1. The projectivity hypothesis in Theorem 19.1.1 can-
not be dropped

Theorem 19.1.1 appears to be fundamentally a statement about varieties, but
it isn’t. We will reduce it to the following result.

19.1.2. Theorem. — Suppose π : X → Y is a finite morphism of Noetherian schemes
whose degree at every point of Y (§13.7.5) is 0 or 1. Then π is a closed embedding.

19.1.C. EXERCISE. Suppose π : X → Y is a finite morphism whose degree at every
point of Y is 0 or 1. Show that π is injective on points (easy). If p ∈ X is any point,
show that π induces an isomorphism of residue fields κ(π(p)) → κ(p). Show that
π induces an injection of tangent spaces. Thus key hypotheses of Theorem 19.1.1
are implicitly in the hypotheses of Theorem 19.1.2.

19.1.3. Reduction of Theorem 19.1.1 to Theorem 19.1.2. The property of being a closed
embedding is local on the base, so we may assume that Y is affine, say SpecB.
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I next claim that π has finite fibers, not just finite fibers above closed points: the
fiber dimension for projective morphisms is upper semicontinuous (Exercise 18.1.B,
or Theorem 11.4.2(b)), so the locus where the fiber dimension is at least 1 is a closed
subset, so if it is nonempty, it must contain a closed point of Y. Thus the fiber over
any point is a dimension 0 finite type scheme over that point, hence a finite set.

Hence π is a projective morphism with finite fibers, thus finite by Theorem 18.1.8.
But the degree of a finite morphism is upper semicontinuous, (§13.7.5), and is

at most 1 at closed points of Y, hence is at most 1 at all points.

19.1.4. Proof of Theorem 19.1.2. The problem is local on Y, so we may assume
Y is affine, say Y = SpecB. Thus X is affine too, say SpecA, and π corresponds
to a ring morphism B → A. We wish to show that this is a surjection of rings, or
(equivalently) of B-modules. Let K be the cokernel of this morphism of B-modules:

(19.1.4.1) B→ A→ K→ 0.

We wish to show that K = 0. It suffices to show that for any maximal ideal n of B,
Kn = 0. (Do you remember why?) Localizing (19.1.4.1) at n, we obtain the exact
sequence

Bn → An → Kn → 0.

Applying the right-exact functor ⊗Bn
(Bn/nBn), we obtain

(19.1.4.2) Bn/nBn
α // An/nAn

// Kn/nKn
// 0.

Now SpecAn/nAn is the scheme theoretic preimage of [n] ∈ SpecB, so by hypoth-
esis, it is either empty, or the map α is an isomorphism (in which case we will
see that the map α will turn out to be the map of residue fields). In the first case,
An/nAn = 0, from which Kn/nKn = 0. In the second case, Kn/nKn = 0 as well. Ap-
plying Nakayama’s Lemma 7.2.9 (noting that A is a finitely generated B-module,
hence K is too, hence Kn is a finitely generated Bn-module), Kn = 0 as desired. □

Exercise 9.2.J can be used to extend Theorem 19.1.1 to general fields k, not
necessarily algebraically closed.

19.1.D. EXERCISE. Use Theorem 19.1.1 to show that the dth Veronese embedding
from Pnk , corresponding to the complete linear series |OPn

k
(d)|, is a closed embed-

ding. Do the same for the Segre embedding from Pmk ×Speck Pnk . (This is just for
practice for using this criterion. It is a weaker result than we had before; we have
earlier checked both of these statements over an arbitrary base ring in Remark 8.2.8
and §9.6 respectively, and we are now checking it only over algebraically closed
fields. However, see Exercise 19.1.E below.)

19.1.E. LESS IMPORTANT EXERCISE. Using the ideas from this section, prove that
the dth Veronese embedding from PnZ (over the integers!), is a closed embedding.
(Again, we have done this before. This exercise is simply to show that these meth-
ods can easily extend to work more generally.)

19.2 A series of crucial tools
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We are now ready to start understanding curves in a hands-on way. We will
repeatedly make use of the following series of crucial remarks, and it will be im-
portant to have them at the tip of your tongue.

19.2.1. In what follows, C will be a projective, geometrically regular, geometrically inte-
gral curve over a field k, and L is an invertible sheaf on C.

19.2.2. Reminder: Serre duality. Serre duality (Theorem 18.5.1) on a geometri-
cally irreducible regular genus g curve C over k involves an invertible sheaf ωC
(of degree 2g−2, with g sections, Exercise 18.5.A), such that for any coherent sheaf
F on C, hi(C,F ) = h1−i(C,ωC ⊗ F∨) for i = 0, 1. (Better: there is a duality be-
tween the two cohomology groups.)

19.2.3. Negative degree line bundles have no nonzero section. If deg L < 0,
then h0(C,L ) = 0. Reason: deg L is the number of zeros minus the number
of poles (suitably counted) of any rational section (Important Exercise 18.4.C). If
there is a regular section (i.e., with no poles), then this is necessarily non-negative.
Refining this argument yields the following.

19.2.4. Degree 0 line bundles, and recognizing when they are trivial. If deg L =
0, then h0(C,L ) = 0 or 1; and if h0(C,L ) = 1 then L ∼= OC. Reason: if there
is a nonzero section s, it has no poles, and hence no zeros, because deg L = 0.
Then div s = 0, so L ∼= OC(div s) = OC. (Recall how this works, cf. Important
Exercise 14.2.E: s gives a trivialization for the invertible sheaf. We have a natural
bijection for any open set Γ(U,L )↔ Γ(U,OU), where the map from left to right is
s ′ 7→ s ′/s, and the map from right to left is f 7→ sf.) Conversely, for a geometrically
integral projective variety, h0(O) = 1. (§10.3.7 shows this for k algebraically closed
— this is where geometric integrality is used — and Exercise 18.2.H shows that
cohomology commutes with base field extension.)

Serre duality turns these statements about line bundles of degree at most 0
into statements about line bundles of degree at least 2g− 2, as follows.

19.2.5. We know h0(C,L ) if the degree is sufficiently high. If deg L > 2g − 2,
then

(19.2.5.1) h0(C,L ) = deg L − g+ 1.

So we know h0(C,L ) if deg L ≫ 0. (This is important — remember this!) Reason:
h1(C,L ) = h0(C,ωC⊗L ∨); butωC⊗L ∨ has negative degree (asωC has degree
2g−2), and thus this invertible sheaf has no sections. The result then follows from
the Riemann-Roch Theorem in the guise of (18.4.2.1).

19.2.A. USEFUL EXERCISE (RECOGNIZING ωC AMONG DEGREE 2g − 2 LINE BUN-
DLES). Suppose L is a degree 2g − 2 invertible sheaf. Show that it has g − 1 or g
sections, and it has g sections if and only if L ∼= ωC.

19.2.6. Twisting L by a (degree 1) point changes h0 by at most 1. Suppose p
is any closed point of degree 1 (i.e., the residue field of p is k). Then h0(C,L ) −
h0(C,L (−p)) = 0 or 1. (The twist of L by a divisor, such as L (−p), was defined
in §14.2.11.) Reason: consider 0→ OC(−p)→ OC → O |p → 0, tensor with L (this
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is exact as L is locally free) to get

0→ L (−p)→ L → L |p → 0.

Then h0(C,L |p) = 1, so as the long exact sequence of cohomology starts off

0→ H0(C,L (−p))→ H0(C,L )→ H0(C,L |p),

we are done.

19.2.7. A numerical criterion for L to be base-point-free. Suppose for this
remark that k is algebraically closed, so all closed points have degree 1 over k.
Then if h0(C,L ) −h0(C,L (−p)) = 1 for all closed points p, then L is base-point-
free, and hence induces a morphism from C to projective space (Theorem 16.4.1).
Reason: given any p, our equality shows that there exists a section of L that does
not vanish at p— so by definition, p is not a base point of L .

19.2.8. Next, suppose p and q are distinct (closed) points of degree 1. Then
h0(C,L ) − h0(C,L (−p − q)) = 0, 1, or 2 (by repeating the argument of Re-
mark 19.2.6 twice). If h0(C,L ) − h0(C,L (−p− q)) = 2, then necessarily
(19.2.8.1)
h0(C,L ) = h0(C,L (−p)) + 1 = h0(C,L (−q)) + 1 = h0(C,L (−p− q)) + 2.

Then the linear series L separates points p and q, i.e., the corresponding map f to
projective space satisfies f(p) ̸= f(q). Reason: there is a hyperplane of projective
space passing through q but not passing through p, or equivalently, there is a
section of L vanishing at q but not vanishing at p. This is because of the last
equality in (19.2.8.1).

19.2.9. By the same argument as above, if p is a (closed) point of degree 1, then
h0(C,L ) − h0(C,L (−2p)) = 0, 1, or 2. I claim that if this is 2, then the map
corresponding to L (which is already seen to be base-point-free at p from the
above) separates the tangent vectors at p. To show this, we need to show that the
cotangent map is surjective. To show surjectivity onto a one-dimensional vector
space, we just need to show that the map is nonzero. So it suffices to find a function
on the target vanishing at the image of p that pulls back to a function that vanishes
at p to order 1 but not 2. In other words, we want a section of L vanishing at p
to order 1 but not 2. But that is the content of the statement h0(C,L (−p)) −
h0(C,L (−2p)) = 1.

19.2.10. Criterion for L to be very ample. Combining some of our previous
comments: suppose C is a curve over an algebraically closed field k, and L is
an invertible sheaf such that for all closed points p and q, not necessarily distinct,
h0(C,L ) − h0(C,L (−p − q)) = 2, then L gives a closed embedding into projective
space, as it separates points and tangent vectors, by Theorem 19.1.1.

19.2.B. EXERCISE. Suppose that k is algebraically closed, so the previous remark
applies. Show that C \ {p} is affine. Hint: Show that if j ≫ 0, then O(jp) is base-
point-free and has at least two linearly independent sections, one of which has
divisor jp. Use these two sections to map to P1 so that the set-theoretic preimage
of∞ is p. Argue that the map is finite, and that C \ {p} is the preimage of A1. (A
trivial variation of this argument shows that C \ {p1, . . . , pn} is affine if n > 0.)
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19.2.11. Conclusion. We can combine much of the above discussion to give the
following useful fact. If k is algebraically closed, then deg L ≥ 2g implies that L
is base-point-free (and hence determines a morphism to projective space). Also,
deg L ≥ 2g + 1 implies that for any basis of sections s0, . . . , sdeg L−g of L , the
morphism given by (s0, . . . , sdeg L−g) is in fact a closed embedding into Pdeg L−g

(so L is very ample). Remember this!

19.2.C. EXERCISE (ON A PROJECTIVE, REGULAR, INTEGRAL CURVE OVER k, AMPLE
= POSITIVE DEGREE). Show that an invertible sheaf L on a projective, regular,
integral curve over k is ample if and only if deg L > 0.

(This can be extended to curves over general fields using Exercise 19.2.D be-
low.) Thus there is a blunt purely numerical criterion for ampleness of line bun-
dles on curves. This generalizes to projective varieties of higher dimension; this is
called the Nakai-Moishezon criterion for ampleness, Theorem 20.4.1.

19.2.D. EXERCISE (EXTENSION TO NON-ALGEBRAICALLY CLOSED FIELDS). Show
that the statements in §19.2.11 hold even without the hypothesis that k is alge-
braically closed. (Hint: to show one of the facts about some curve C and line bun-
dle L , consider instead C×Speck Speck. Then show that if the pullback of L here
has sections giving you one of the two desired properties, then there are sections
downstairs with the same properties. You may want to use facts that we have used,
such as the fact that base-point-freeness is independent of extension of base field,
Exercise 18.2.I, or that the property of an affine morphism over k being a closed
embedding holds if and only if it does after an extension of k, Exercise 9.2.J.)

19.2.E. EXERCISE (EXTENDING EXERCISE 19.2.C). Suppose L is an invertible
sheaf on a projective, geometrically regular, geometrically integral curve C (over a
field k). Show that L is ample if and only if deg L > 0. Hint: reduce to the case
where k is algebraically closed, with the help of Exercise 9.2.J. (This was promised
in Exercise 18.7.C.)

We are now ready to take these facts and go to the races.

19.3 Curves of genus 0

We are now ready to (in some form) answer the question: what are the curves
of genus 0?

In §6.5.9, we saw a genus 0 curve (over a field k) that was not isomorphic to P1:
x2+y2+z2 = 0 in P2R. (It has genus 0 by (18.6.6.1).) We have already observed that
this curve is not isomorphic to P1R, because it doesn’t have an R-valued point. On
the other hand, we haven’t seen a genus 0 curve over an algebraically closed field
with this property. This is no coincidence: the lack of an existence of a k-valued
point is the only obstruction to a genus 0 curve being P1.

19.3.1. Proposition. — Suppose C is genus 0, and C has a k-valued (degree 1) point.
Then C ∼= P1k.
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Thus we see that all genus 0 (integral, regular, projective) curves over an alge-
braically closed field are isomorphic to P1.

Proof. Let p be the point, and consider L = O(p). Then deg L = 1, so we can
apply what we know above: first, h0(C,L ) = 2 (Remark 19.2.5), and second,
these two sections give a closed embedding into P1k (Remark 19.2.11). But the only
closed embedding of a curve into the integral curve P1k is an isomorphism! □

As a bonus, Proposition 19.3.1 implies that x2+y2+z2 = 0 in P2R has no line bun-
dles of degree 1 over R; otherwise, we could just apply the above argument to the
corresponding line bundle. This example shows us that over a non-algebraically
closed field, there can be genus 0 curves that are not isomorphic to P1k. The next
result lets us get our hands on them as well.

19.3.2. Claim. — All genus 0 curves can be described as conics in P2k.

Proof. Any genus 0 curve has a degree −2 line bundle — the dualizing sheaf ωC.
Thus any genus 0 curve has a degree 2 line bundle: L = ω∨

C . We apply Re-
mark 19.2.11: deg L = 2 ≥ 2g + 1, so this line bundle gives a closed embedding
into P2. □

19.3.A. EXERCISE. SupposeC is a genus 0 curve (projective, geometrically integral
and regular). Show that C has a point of degree at most 2. (The degree of a point
was defined in §5.3.8.)

The geometric means of finding Pythagorean triples presented in §6.5.8 looked
quite different, but was really the same. There was a genus 0 curve C (a plane
conic) with a k-valued point p, and we proved that it was isomorphic to P1k. The
line bundle used to show the isomorphism wasn’t the degree 1 line bundle OC(p);
it was the degree 1 line bundle OP2(1)|C ⊗ OC(−p).

19.4 Classical geometry arising from curves of positive genus

We will use the following Proposition and Corollary later, and we take this as
an excuse to revisit some very classical geometry from a modern standpoint.

19.4.1. Proposition. — Recall our standing assumptions for this chapter (§19.2.1), that
C is a projective, geometrically regular, geometrically integral curve over a field k. Suppose
C is not isomorphic to P1k (with no assumptions on the genus of C), and L is an invertible
sheaf of degree 1. Then h0(C,L ) < 2.

Proof. Otherwise, let s1 and s2 be two (independent) sections. As the divisor of
zeros of si is the degree of L , each vanishes at a single point pi (to order 1). But
p1 ̸= p2 (or else s1/s2 has no poles or zeros, i.e., is a constant function, so s1 and
s2 are linearly dependent). Thus s1 and s2 generate a base-point-free linear series,
so we have an induced morphism C → P1. This is a finite degree 1 morphism
from one regular curve to another (Exercise 17.4.F), which hence induces a degree
1 extension of function fields, i.e., an isomorphism of function fields, which means
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that the curves are isomorphic (cf. Theorem 17.4.3). But we assumed that C is not
isomorphic to P1k, so we have a contradiction. □

19.4.2. Corollary. — If C is a projective, geometrically regular, geometrically integral
curve over k, not isomorphic to P1k and p and q are degree 1 points, then OC(p) ∼= OC(q)
if and only if p = q.

19.4.A. EXERCISE. Show that if k is algebraically closed, then C has genus 0 if and
only if all degree 0 line bundles are trivial.

19.4.B. EXERCISE. Suppose C is a regular plane curve of degree e > 2, and D1
and D2 are two plane curves of the same degree d not containing C. By Bézout’s
Theorem for plane curves (§18.6.3), Di meets C at de points, counted “correctly”.
Suppose D1 and D2 meet C at de − 1 of the “same points”, plus one more. Show
that the remaining points are the same as well. More precisely, suppose there is
a divisor E on C of degree de − 1, and degree 1 (k-valued) points p1 and p2 such
that Di ∩ C = E + pi (as divisors on C). Show that p1 = p2. (The case d = e = 3

is Chasles’ Theorem, and is the first case of the Cayley-Bacharach Theorem, see
[EGH].)

As an entertaining application of Exercise 19.4.B, we can prove two classical re-
sults. For convenience, in this discussion we will assume k is algebraically closed,
although this assumption can be easily removed.

19.4.3. Pappus’s Theorem (Pappus of Alexandria). — (See Figure 19.2.) Suppose
ℓ and m are distinct lines in the plane, and α, β, γ are distinct points on ℓ, and α ′, β ′,
and γ ′ are distinct points on m, and all six points are distinct from ℓ ∩m. Then points
x = αβ ′ ∩ α ′β, y = aγ ∩ αγ ′, and z = βγ ′ ∩ β ′γ are collinear.

FIGURE 19.2. Pappus’ Theorem

Pascal’s “Mystical Hexagon” Theorem was discovered by Pascal at age 16.
(What were you doing at age 16?)

19.4.4. Pascal’s “Mystical Hexagon” Theorem. — (See Figure 19.3.) If a hexagon
αγ ′βα ′γβ ′ is inscribed in a smooth conic K, and opposite pairs of sides are extended until
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they meet, the three intersection points x = αβ ′∩α ′β, y = α ′γ∩αγ ′, and z = βγ ′∩β ′γ

are collinear.

FIGURE 19.3. Pascal’s “Mystical Hexagon” Theorem

Pappus’s Theorem can be seen as a degeneration of Pascal’s Theorem: the
conic degenerates into the union of two lines, and the six points degenerate so
that α, β, and γ are on one, and α ′, β ′, and γ ′ are on the other. We thus prove
Pascal’s Theorem, and you should check that the proof readily applies to prove
Pappus’s Theorem.

19.4.C. EXERCISE. Suppose α, β, γ, α ′, β ′ are five points in P2R, no three on a line.
Show that there is a unique conic C passing through the five points. Show that C is
regular. Explain how to construct the tangent to C at α using only a straightedge.
(Hint for the last part: apply Pascal’s Theorem, taking γ ′ = α. You may need to
first figure out why you can apply Pascal’s Theorem in this degenerate case.)

In particular, given an ellipse C ⊂ R2 and a point α ∈ C, you will now be able
to construct the tangent to C at α using only a straightedge.

19.4.5. Proof of Pascal’s Theorem 19.4.4. We wish to show that the line xymeets βγ ′

and β ′γ at the same point. Let C be the curve that is the union of X and the line
xy. (Warning, cf. §19.2.1: for one time in this chapter, we are not assuming C to be
regular!)

Let D1 be the union of the three lines αβ ′, βγ ′, and γα ′, and let D2 be the
union of the three lines α ′β, β ′γ, and γ ′α. Note thatD1 meets C at the nine points
α, β, γ, α ′, β ′, γ ′, x, y, and xy ∩ βγ ′, and D2 meets C at the same nine points,
except xy∩βγ ′ is replaced by xy∩β ′γ. Thus if we knew Corollary 19.4.2 so that it
applied to our C (which is singular), then we would be done (cf. Exercise 19.4.B).

So we extend Corollary 19.4.2 to our situation. So to do this, we extend Propo-
sition 19.4.1 to our situation. We have a plane cubic C which is the union of a line
L and a conic K, and two points p = xy∩βγ ′ and q = xy∩β ′γ, with O(p) ∼= O(q).
(Reason: both are the restriction of OP2(3) to C, twisted by −(α+β+γ+α ′+β ′+
γ ′ + x+ y).) Call this invertible sheaf L . Suppose p ̸= q. Then the two sections of
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L with zeros at p and q give a base-point-free linear series, and thus a morphism
π : C→ P1, with π−1(0) = p and π−1(∞) = q.

By the argument in the proof of Proposition 19.4.1, π gives an isomorphism of
Lwith P1. As π is proper, π(K) is closed, and as K is irreducible, π(K) is irreducible.
As π(K) does not contain 0 (or∞), it can’t be all of P1. Hence π(K) is a point.

The conic Kmeets the line L in two points with multiplicity (by Bézout’s Theo-
rem, §18.6.3, or by simple algebra). If K∩L consists of two points a and b, we have
a contradiction: K can’t be contracted to both π(a) and π(b). But what happens if
Kmeets L at one point, i.e., if the conic is tangent to the line?

19.4.D. EXERCISE. Finish the proof of Pascal’s Theorem by dealing with this case.
Hint: nilpotents will come to the rescue. The intuition is as follows: K ∩ L is a
subscheme of L of length 2, but the scheme theoretic image π(K) can be shown to
be a reduced closed point.

□

19.4.6. Remark. The key motivating fact that makes our argument work, Propo-
sition 19.4.1, is centrally about curves not of genus 0, yet all the curves involved
in Pappus’s Theorem and Pascal’s Theorem have genus 0. The insight to keep in
mind is that union of curves of genus 0 need not have genus 0. In our case, it
mattered that cubic curves have genus 1, even if they are union of P1’s.

19.5 Hyperelliptic curves

We next discuss an important class of curves, the hyperelliptic curves. In this
section, we assume k is algebraically closed of characteristic not 2. (These hypotheses
can be relaxed, at some cost.)

A (projective regular integral) genus g curve C is hyperelliptic if it admits
a double cover of (i.e., degree 2, necessarily finite, morphism to) P1k. For conve-
nience, when we say C is hyperelliptic, we will implicitly have in mind a choice of
double cover π : C → P1. (We will later see that if g ≥ 2, then there is at most one
such double cover, Proposition 19.5.7, so this is not a huge assumption.) The map
π is called the hyperelliptic map.

By Exercise 17.4.D, the preimage of any closed point p of P1 consists of either
one or two points. If π−1(p) is a single point, we say p is a branch point, and
π−1(p) is a ramification point of π. (The notion of ramification will be defined
more generally in §21.6.)

19.5.1. Theorem (hyperelliptic Riemann-Hurwitz formula). — Suppose k = k and
chark ̸= 2, π : C→ P1k is a double cover by a projective regular irreducible genus g curve
over k. Then π has 2g+ 2 branch points.

This is a special case of the Riemann-Hurwitz formula, which we will state
and prove in §21.7. You may have already heard about genus 1 complex curves
double covering P1, branched over 4 points.

To prove Theorem 19.5.1, we first prove the following.
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19.5.2. Proposition. — Assume chark ̸= 2 and k = k. Given r distinct points
p1, . . . , pr ∈ P1, there is precisely one double cover branched at precisely these points if r
is even, and none if r is odd.

Proof. Pick points 0 and ∞ of P1 distinct from the r branch points. All r branch
points are in P1 − ∞ = A1 = Speck[x]. Suppose we have a double cover of
A1, C ′ → A1, where x is the coordinate on A1. This induces a quadratic field
extension K over k(x). As char k ̸= 2, this extension is Galois. Let σ : K → K be
the Galois involution. Let y be a nonzero element of K such that σ(y) = −y, so
1 and y form a basis for K over the field k(x), and are eigenvectors of σ. Now
σ(y2) = y2, so y2 ∈ k(x). We can replace y by an appropriate k(x)-multiple so that
y2 is a polynomial, with no repeated factors, and monic. (This is where we use the
hypothesis that k is algebraically closed, to get leading coefficient 1.)

Thus y2 = xN+aN−1x
N−1+ · · ·+a0, where the polynomial on the right (call it

f(x)) has no repeated roots. The Jacobian criterion (in the guise of Exercise 12.2.E)
implies that this curve C ′

0 in A2 = Spec k[x, y] is regular. Then C ′
0 is normal and

has the same function field as C ′. Thus C ′
0 and C ′ are both normalizations of A1 in

the finite extension of fields generated by y, and hence are isomorphic. Thus we
have identified C ′ in terms of an explicit equation.

The branch points correspond to those values of x for which there is exactly
one value of y, i.e., the roots of f(x). In particular, N = r, and

f(x) = (x− p1) · · · (x− pr),
where the pi are interpreted as elements of k.

Having mastered the situation over A1, we return to the situation over P1. We
will examine the branched cover over the affine open set P1\{0} = Spec k[u], where
u = 1/x. The previous argument applied to Speck[u] rather than Speck[x] shows
that any such double cover must be of the form

C ′′ = Speck[z, u]/
(
z2 − (u− 1/p1) · · · (u− 1/pr)

)
= Speck[z, u]/

((∏
pi

)
z2 − (−u)

r
f (1/u)

)
→ Speck[u] = A1.

So if there is a double cover over all of P1, it must be obtained by gluing C ′′ to
C ′, “over” the gluing of Speck[x] to Spec k[u] to obtain P1.

Thus in K(C), we must have

z2 = urf(1/u) = f(x)/xr = y2/xr

from which z2 = y2/xr.
If r is even, considering K(C) as generated by y and x, there are two possible

values of z: z = ±y/xr/2. After renaming z by −z if necessary, there is a single way
of gluing these two patches together (we choose the positive square root).

If r is odd, the result follows from Exercise 19.5.A below.

19.5.A. EXERCISE. Suppose chark ̸= 2. Show that x does not have a square root in
the field k(x)[y]/(y2− f(x)), where f is a polynomial with nonzero roots p1, . . . , pr.
(Possible hint: why is

√
3 /∈ Q(

√
2)?) Explain how this proves Proposition 19.5.2 in

the case where r is odd.
□
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For future reference, we collect here our explicit (two-affine) description of the
hyperelliptic cover C→ P1.

(19.5.2.1) Spec k[x, y]/(y2 − f(x))

��

z=y/xr/2

y=z/ur/2
Speck[u, z]/(z2 − urf(1/u))

��
Speck[x]

u=1/x

x=1/u
Spec k[u]

19.5.3. If k is not algebraically closed. If k is not algebraically closed (but of character-
istic not 2), the above argument shows that if we have a double cover of A1, then
it is of the form y2 = af(x), where f is monic (and a ̸= 0). Furthermore, if a and a ′

differ (multiplicatively) by an element of (k×)2, then y2 = af(x) is isomorphic to
y2 = a ′f(x). You may be able to use this to show that (assuming that k× ̸= (k×)2)
a double cover is not determined by its branch points. Moreover, this failure is
classified by k×/(k×)2. Thus we have lots of curves that are not isomorphic over
k, but become isomorphic over k. These are often called twists of each other.

(In particular, once we define elliptic curves, you will be able to show that
there exist two elliptic curves over Q with the same j-invariant, that are not iso-
morphic, see Exercise 19.9.D.)

19.5.4. Back to proving the hyperelliptic Riemann-Hurwitz formula, Theorem 19.5.1.
Our explicit description of the unique double cover of P1 branched over r dif-
ferent points will allow us to compute the genus, thereby completing the proof of
Theorem 19.5.1.

We continue the notation (19.5.2.1) of the proof of Proposition 19.5.2. Suppose
P1 has affine cover by Spec k[x] and Speck[u], with u = 1/x, as usual. Suppose
C → P1 is a double cover, given by y2 = f(x) over Speck[x], where f has degree
r, and z2 = urf(1/u). Then C has an affine open cover by Speck[x, y]/(y2 − f(x))
and Speck[u, z]/(z2 − urf(1/u)). The corresponding Čech complex for OC is

0 // k[x, y]/(y2 − f(x))× k[u, z]/(z2 − urf(1/u)) d //

(
k[x, y]/(y2 − f(x))

)
x

// 0.

The second (and last) nonzero part of the complex has basis consisting of mono-
mials xnyϵ, where n ∈ Z and ϵ = 0 or 1. To compute the genus g = h1(C,OC),
we must compute cokerd. We can use the first factor k[x, y]/(y2 − f(x)) to hit the
monomials xnyϵ where n ∈ Z≥0, and ϵ = 0 or 1. The image of the second factor
is generated by elements of the form umzϵ, where m ≥ 0 and ϵ = 0 or 1. But
umzϵ = x−m(y/xr/2)ϵ. By inspection, the cokernel has basis generated by mono-
mials x−1y, x−2y, . . . , x−r/2+1y, and thus has dimension r/2−1. Hence g = r/2−1,
from which Theorem 19.5.1 follows. □

19.5.5. Curves of every genus. As a consequence of the hyperelliptic Riemann-
Hurwitz formula (Theorem 19.5.1), we see that there are curves of every genus
g ≥ 0 over an algebraically closed field of characteristic not 2: to get a curve of
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genus g, consider the branched cover branched over 2g + 2 distinct points. The
unique genus 0 curve is of this form, and we will see in §19.6.2 that every genus 2
curve is of this form. We will soon see that every genus 1 curve (reminder: over an
algebraically closed field!) is too (§19.9.5). But it is too much to hope that all curves
are of this form, and we will soon see (§19.7.2) that there are genus 3 curves that
are not hyperelliptic, and we will even get heuristic evidence that “most” genus 3
curves are not hyperelliptic. We will later give vague evidence (that can be made
precise) that “most” genus g curves are not hyperelliptic if g > 2 (§19.8.3).

19.5.B. EXERCISE. Verify that a curve C of genus at least 1 admits a degree 2 cover
of P1 if and only if it admits a degree 2 invertible sheaf L with h0(C,L ) = 2.
Possibly in the course of doing this, verify that if C is a curve of genus at least
1, and C has a degree 2 invertible sheaf L with at least 2 (linearly independent)
sections, then L has precisely two sections, and that this L is base-point-free and
gives a hyperelliptic map.

19.5.6. Proposition. — Assume g ≥ 2. If L corresponds to a hyperelliptic cover
C→ P1, then L ⊗(g−1) ∼= ωC.

Proof. Compose the hyperelliptic map with the (g− 1)th Veronese map:

(19.5.6.1) C
|L | // P1

|OP1(g−1)| // Pg−1.

The composition corresponds to L ⊗(g−1). This invertible sheaf has degree 2g− 2
(by Exercise 18.4.F). The pullback H0(Pg−1,O(1)) → H0(C,L ⊗(g−1)) is injective
because the image ofC in Pg−1 (a rational normal curve) is nondegenerate: if there
were a hyperplane s ∈ H0(Pg−1,O(1)) that pulled back to 0 onC, then the image of
Cwould lie in that hyperplane, yet a rational normal curve cannot. Thus L ⊗(g−1)

has at least g sections. But by Exercise 19.2.A, the only invertible sheaf of degree
2g− 2with (at least) g sections is the dualizing sheaf. □

As an added bonus, we see that the composition of (19.5.6.1) is the complete
linear series |L ⊗(g−1)| — all sections of L ⊗(g−1) come up in this way.

19.5.7. Proposition (a genus ≥ 2 curve can be hyperelliptic in only one way). —
Any curve C of genus at least 2 admits at most one double cover of P1. More precisely, if
L and M are two degree two line bundles yielding maps C→ P1, then L ∼= M .

Proof. If C is hyperelliptic, then we can recover the hyperelliptic map by consider-
ing the canonical linear series given by ωC (the canonical map, which we will use
again repeatedly in the next few sections): it is a double cover of a degree g− 1 ra-
tional normal curve (by the previous proposition), which is isomorphic to P1. This
double cover is the hyperelliptic cover (also by the proof of the previous proposi-
tion). Thus we have uniquely recovered the map C → P1, and this map must be
induced by both L and M , from which we have L ∼= M (using Theorem 16.4.1,
relating maps to projective space and line bundles). □

19.5.8. The “space of hyperelliptic curves”. Thanks to Proposition 19.5.7, we can now
classify hyperelliptic curves of genus at least 2. Hyperelliptic curves of genus g ≥ 2
correspond to precisely 2g + 2 distinct points on P1 modulo S2g+2, and modulo
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automorphisms of P1. Thus “the space of hyperelliptic curves” has dimension

2g+ 2− dim AutP1 = 2g− 1.

This is not a well-defined statement, because we haven’t rigorously defined “the
space of hyperelliptic curves” — it is an example of a moduli space. For now, take
this as a plausibility statement. It is also plausible that this space is irreducible and
reduced — it is the image of something irreducible and reduced.

19.6 Curves of genus 2

19.6.1. The reason for leaving genus 1 for later. It might make most sense to jump to
genus 1 at this point, but the theory of elliptic curves is especially rich and subtle,
so we will leave it for §19.9.

In general, curves have quite different behaviors (topologically, arithmetically,
geometrically) depending on whether g = 0, g = 1, or g ≥ 2. This trichotomy
extends to varieties of higher dimension. We already have some inkling of it in
the case of curves. Arithmetically, genus 0 curves can have lots and lots of ratio-
nal points, genus 1 curves can have lots of rational points, and by Faltings’ Theo-
rem (Mordell’s Conjecture) any curve of genus at least 2 has at most finitely many
rational points. (Thus even before the proof of important cases of the Taniyama-
Shimura conjecture [Wi, TWi], and hence Fermat’s Last Theorem, we knew that
xn + yn = zn in P2 has at most finitely many rational solutions for n ≥ 4, as such
curves have genus

(
n−1
2

)
> 1, see (18.6.6.1).) In the language of differential geome-

try, Riemann surfaces of genus 0 are positively curved, Riemann surfaces of genus
1 are flat, and Riemann surfaces of genus at least 2 are negatively curved. It is a
fact that curves of genus at least 2 have finite automorphism groups (see §21.7.8),
while curves of genus 1 have one-dimensional automorphism groups, see Ques-
tion 19.10.6), and the unique curve of genus 0 over an algebraically closed field
has a three-dimensional automorphism group (see Exercises 16.4.B and 16.4.C).
(See Exercise 21.5.G for more on this issue.)

19.6.2. Back to curves of genus 2.
Over an algebraically closed field, we saw in §19.3 that there is only one genus

0 curve. In §19.5 we established that there are hyperelliptic curves of genus 2. How
can we get a hold of curves of genus 2? For example, are they all hyperelliptic?
“How many” are there? We now tackle these questions.

Fix a curve C of genus g = 2. ThenωC is degree 2g− 2 = 2, and has 2 sections
(Exercise 19.2.A). By Exercise 19.5.B, ωC is base-point-free, and thus induces a
double cover C → P1 (unique up to automorphisms of P1, which we studied in
Exercises 16.4.B and 16.4.C). Conversely, any double cover C → P1 arises from a
degree 2 invertible sheaf with at least 2 sections. Hence if g(C) = 2, this invertible
sheaf must be the dualizing sheaf, just because it is a degree 2g−2 = 2 line bundle
with g = 2 sections (or alternatively, by the easiest case of Proposition 19.5.6).

Hence we have a natural bijection between genus 2 curves and genus 2 double
covers of P1 (up to automorphisms of P1). If the characteristic is not 2, the hyper-
elliptic Riemann-Hurwitz formula (Theorem 19.5.1) shows that the double cover
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is branched over 2g + 2 = 6 geometric points. In particular, we have a “three-
dimensional space of genus 2 curves”. This is not rigorous, but we can certainly
show that there are an infinite number of genus 2 curves. Precisely:

19.6.A. EXERCISE. Fix an algebraically closed field k of characteristic not 2. Show
that there are an infinite number of (pairwise) non-isomorphic genus 2 curves over
k.

19.6.B. EXERCISE. Show that every genus 2 curve (over any field of characteristic
not 2) has finite automorphism group.

19.7 Curves of genus 3

Suppose C is a curve of genus 3. ThenωC has degree 2g−2 = 4, and has g = 3
sections.

19.7.1. Claim. — The invertible sheaf ωC is base-point-free, and hence gives a map to
P2.

Proof. We check base-point-freeness by working over the algebraic closure k (which
we can, by Exercise 18.2.I). For any point p, by Riemann-Roch,

h0(C,ωC(−p)) − h
0(C,O(p)) = deg(ωC(−p)) − g+ 1 = 3− 3+ 1 = 1.

But h0(C,O(p)) = 1 by Proposition 19.4.1, so

h0(C,ωC(−p)) = 2 = h
0(C,ωC) − 1.

Thus p is not a base point ofωC for any p, so by Criterion 19.2.7ωC is base-point-
free. □

The next natural question is: Is this a closed embedding? Again, we can check
over the algebraic closure. We use our “closed embedding test” of §19.1. If it isn’t
a closed embedding, then we can find two points p and q (possibly identical) such
that

h0(C,ωC) − h
0(C,ωC(−p− q)) = 1 or 0,

i.e., h0(C,ωC(−p − q)) = 2. But by Serre duality, this means that h0(C,O(p +
q)) = 2. We have found a degree 2 divisor with 2 sections, so C is hyperelliptic.
Conversely, if C is hyperelliptic, then we already know that ωC gives a double
cover of a regular conic in P2, and henceωC does not give a closed embedding.

Thus we conclude that if (and only if) C is not hyperelliptic, then the canonical
map describes C as a degree 4 curve in P2.

Conversely, any quartic plane curve is canonically embedded. Reason: the
curve has genus 3 (see (18.6.6.1)), and is mapped by an invertible sheaf of degree
4with 3 sections. But by Exercise 19.2.A, the only invertible sheaf of degree 2g− 2
with g sections isωC.

In particular, each nonhyperelliptic genus 3 curve can be described as a quartic
plane curve in only one way (up to automorphisms of P2, which were described
in Exercise 16.4.B).

In conclusion, there is a bijection between nonhyperelliptic genus 3 curves,
and plane quartic curves up to projective linear transformations.
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19.7.2. Remark. In particular, as there exist regular plane quartics (Exercise 12.3.E),
there exist nonhyperelliptic genus 3 curves.

19.7.A. EXERCISE (CF. §19.5.8). Give a heuristic (non-rigorous) argument that the
nonhyperelliptic curves of genus 3 form a family of dimension 6. (Hint: Count
the dimension of the family of regular quartic curves, and quotient by AutP2 =
PGL(3).)

The genus 3 curves thus seem to come in two families: the hyperelliptic curves
(a family of dimension 5), and the nonhyperelliptic curves (a family of dimension
6). This is misleading — they actually come in a single family of dimension 6.

In fact, hyperelliptic curves are naturally limits of nonhyperelliptic curves. We
can write down an explicit family. (This explanation necessarily requires some
hand-waving, as it involves topics we haven’t seen yet.) Suppose we have a hy-
perelliptic curve branched over 2g+2 = 8 points of P1. Choose an isomorphism of
P1 with a conic in P2. There is a regular quartic meeting the conic at precisely those
8 points. (This requires a short argument using Bertini’s Theorem 12.4.2, which we
omit.) Then if f is the equation of the conic, and g is the equation of the quartic,
then f2 + t2g is a family of quartics that are smooth for most t (smoothness is an
open condition in t, as we will see in Theorem 25.3.3 on generic smoothness). The
t = 0 case is a double conic. Then it is a fact that if you normalize the total space of
the family, the central fiber (above t = 0) turns into our hyperelliptic curve. Thus
we have expressed our hyperelliptic curve as a limit of nonhyperelliptic curves.

19.7.B. UNIMPORTANT EXERCISE. A (projective) curve (over a field k) admitting
a degree 3 cover of P1 is called trigonal. Show that every nonhyperelliptic genus
3 complex curve is trigonal, by taking the quartic model in P2, and projecting to
P1 from any point on the curve. Do this by choosing coordinates on P2 so that p is
at [0, 0, 1]. (The same idea, applied to cubics rather than quartics, will be used in
§19.9.9.)

19.7.3. ⋆ A genus 3 curve with no nontrivial automorphisms.
We have seen that a (smooth projective integral) curve of genus at most 2 al-

ways has nontrivial automorphisms. It turns out that there are genus 3 curves
with no nontrivial automorphisms.

19.7.C. EXERCISE. Suppose C ′ ⊂ P2 is a smooth plane quartic curve (over any
field k). Show that there is bijection between automorphisms of C ′ and automor-
phisms of P2 preserving C ′ (as a set).

Thus to find a genus 3 curve with no nontrivial automorphisms, we need
only find a smooth quartic plane curve C ′ such that the only automorphism of
P2 fixing C ′ as a set must be the identity. Your intuition may (correctly) tell you
that most quartics have this property. But exhibiting a specific C ′ (with proof) re-
quires rolling up our sleeves and getting to work. Poonen gives automorphism
free curves over any field in [P1]; an example in characteristic 0 is

y3z− 3yz3 = 3x4 − 4x3z+ z4.

19.7.D. EXERCISE. Suppose C is a smooth projective curve with no nontrivial
automorphisms. Show that no two distinct open subsets of C are isomorphic.
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19.7.4. Genus 3 curves with nontrivial automorphisms.
Certainly genus 3 curves can have automorphisms: witness hyperelliptic curves.

More impressive is the Klein quartic

x3y+ y3z+ z3x = 0

in P2C, which has 168 automorphisms. (Can you find them all?) In fact, the auto-
morphism group of the Klein quartic is the unique finite simple group of order
168 (the second-smallest nonabelian finite simple group). In §21.7.8, we will see
that no genus 3 curve can have more automorphisms (assuming the hard fact that
curves of genus greater than 1 have finite automorphism groups).

19.8 Curves of genus 4 and 5

We begin with two exercises in general genus, then specialize to genus 4.

19.8.A. EXERCISE. Assume k = k (purely to avoid distraction — feel free to
remove this hypothesis). Suppose C is a genus g curve, with g > 1. Show that if C
is not hyperelliptic, then the dualizing invertible sheaf gives a closed embedding
C ↪→ Pg−1. (In the hyperelliptic case, we have already seen that the dualizing
sheaf gives us a double cover of a rational normal curve.) Hint: follow the genus 3
case. Such a curve is called a canonical curve, and this closed embedding is called
the canonical embedding of C.

19.8.B. EXERCISE. Suppose C is a curve of genus g > 1, over a field k that is not
necessarily algebraically closed. Show that C has a closed point of degree at most
2g − 2 over the base field. (For comparison: if g = 1, for any n, there is a genus 1
curve over Q with no point of degree less than n!)

We next consider nonhyperelliptic curves C of genus 4. Note that degωC = 6
and h0(C,ωC) = 4, so the canonical map expresses C as a sextic curve in P3. Let
i : C ↪→ P3 be the canonical (closed) embedding. We shall see that all such C are
complete intersections of quadric surfaces and cubic surfaces, and conversely all
regular complete intersections of quadric surfaces and cubic surfaces are genus 4
nonhyperelliptic curves, canonically embedded.

By (19.2.5.1) (Riemann-Roch and Serre duality),

h0(C, i∗OP3(2)) = h0(C,ω⊗2
C ) = degω⊗2

C − g+ 1 = 12− 4+ 1 = 9.

On the other hand, h0(P3,OP3(2)) =
(
3+2
2

)
= 10. Thus the restriction map

H0(P3,OP3(2))→ H0(C, i∗OP3(2))

must have a nontrivial kernel, so there is at least one quadric surface Q in P3
that contains our curve C. Now quadric surfaces are either double planes, or the
union of two planes, or cones, or regular quadrics. (They correspond to quadric
forms of rank 1, 2, 3, and 4 respectively. The rank of a quadratic form was defined
in Exercise 5.4.J.) But C can’t lie in a plane, so Q must be a cone or regular. In
particular,Q is irreducible.

Now C can’t lie on two (distinct) such quadrics, say Q and Q ′. Otherwise, as
Q and Q ′ have no common components (they are irreducible and not the same!),
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Q ∩ Q ′ is a curve (not necessarily reduced or irreducible). By Bézout’s Theorem
(Exercise 18.6.K), Q ∩Q ′ is a curve of degree 4. Thus our curve C, being of degree
6, cannot be contained in Q ∩ Q ′. (If you don’t see why directly, Exercise 18.6.F
might help.)

19.8.1. We next consider cubic surfaces. By (19.2.5.1) again,

h0(C,ω⊗3
C ) = degω⊗3

C − g+ 1 = 18− 4+ 1 = 15.

Now Sym3
Γ(C,ωC) has dimension

(
4+2
3

)
= 20. ThusC lies on at least a 5-dimensional

vector space of cubics. Now a 4-dimensional subspace comes from multiplying the
quadratic formQ by a linear form (?w+?x+?y+?z). But hence there is still one cu-
bic Kwhose underlying form is not divisible by the quadric formQ (i.e., K doesn’t
containQ.) Then K andQ share no component, so K∩Q is a complete intersection
containing C as a closed subscheme. Now K ∩Q and C are both degree 6 (the for-
mer by Bézout’s Theorem, Exercise 18.6.K, and the latter because C is embedded
by a degree 6 line bundle, Exercise 18.6.I). Also, K ∩Q and C both have arithmetic
genus 4 (the former by Exercise 18.6.R). These two invariants determine the (lin-
ear) Hilbert polynomial, so K∩Q and C have the same Hilbert polynomial. Hence
C = K ∩Q by Exercise 18.6.F.

We now show the converse, and that any regular complete intersection C of a
quadric surface with a cubic surface is a canonically embedded genus 4 curve. By
Exercise 18.6.R, such a complete intersection has genus 4.

19.8.C. EXERCISE. Show that OC(1) has at least 4 sections. (Translation: C doesn’t
lie in a hyperplane.)

The only degree 2g−2 invertible sheaf with (at least) g sections is the dualizing
sheaf (Exercise 19.2.A), so OC(1) ∼= ωC, and C is indeed canonically embedded.

19.8.D. EXERCISE. Give a heuristic argument suggesting that the nonhyperelliptic
curves of genus 4 “form a family of dimension 9”.

On to genus 5!

19.8.E. EXERCISE. Suppose C is a nonhyperelliptic genus 5 curve. Show that the
canonical curve is degree 8 in P4. Show that it lies on a three-dimensional vec-
tor space of quadrics (i.e., it lies on 3 linearly independent independent quadrics).
Show that a regular complete intersection of 3 quadrics is a canonical(ly embed-
ded) genus 5 curve.

Unfortunately, not all canonical genus 5 curves are the complete intersection of
3 quadrics in P4. But in the same sense that most genus 3 curves can be described
as plane quartics, most canonical genus 5 curves are complete intersections of 3
quadrics, and most genus 5 curves are nonhyperelliptic. The correct way to say
this is that there is a dense Zariski-open locus in the moduli space of genus 5
curves consisting of nonhyperelliptic curves whose canonical embedding is cut
out by 3 quadrics.

(Those nonhyperelliptic genus 5 canonical curves not cut out by a three-dimensional
vector space of quadrics are precisely the trigonal curves, see Exercise 19.7.B. The
triplets of points mapping to the same point of P1 under the trigonal map turn out
to lie on a line in the canonical map. Any quadric vanishing along those 3 points
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must vanish along the line — basically, any quadratic polynomial with three zeros
must be the zero polynomial.)

19.8.F. EXERCISE. Assuming the discussion above, count complete intersections
of three quadrics to give a heuristic argument suggesting that the curves of genus
5 “form a family of dimension 12”.

19.8.2. We have now understood curves of genus 3 through 5 by thinking of canon-
ical curves as complete intersections. Sadly our luck has run out.

19.8.G. EXERCISE. Show that if C ⊂ Pg−1 is a canonical curve of genus g ≥ 6, then
C is not a complete intersection. (Hint: Bézout’s Theorem, Exercise 18.6.K.)

19.8.3. Some discussion on curves of general genus. However, we still have some data.
If Mg is this ill-defined “moduli space of genus g curves”, we have heuristics to
find its dimension for low g. In genus 0, over an algebraically closed field, there is
only genus 0 curve (Proposition 19.3.1), so it appears that dim M0 = 0. In genus 1,
over an algebraically closed field, we will soon see that the elliptic curves are clas-
sified by the j-invariant (Exercise 19.9.C), so it appears that dim M1 = 1. We have
also informally computed dim M2 = 3, dim M3 = 6, dim M4 = 9, dim M5 = 12.
What is the pattern? In fact in some strong sense it was known by Riemann that
dim Mg = 3g − 3 for g > 1. What goes wrong in genus 0 and genus 1? As a clue,
recall our insight when discussing Hilbert functions (§18.6) that whenever some
function is “eventually polynomial”, we should assume that it “wants to be poly-
nomial”, and there is some better function (usually an Euler characteristic) that
is polynomial, and that cohomology-vanishing ensures that the original function
and the better function “eventually agree”. Making sense of this in the case of
Mg is far beyond the scope of our current discussion, so we will content ourselves
by observing the following facts. Every regular curve of genus greater than 1 has
a finite number of automorphisms — a zero-dimensional automorphism group.
Every regular curve of genus 1 has a one-dimensional automorphism group (see
Question 19.10.6). And the only regular curve of genus 0 has a three-dimensional
automorphism group (Exercise 16.4.C). (See Aside 21.5.12 for more discussion.) So
notice that for all g ≥ 0,

dim Mg − dim AutCg = 3g− 3

where AutCg means the automorphism group of any curve of genus g.
In fact, in the language of stacks (or orbifolds), it makes sense to say that the

dimension of the moduli space of (smooth projective geometrically irreducible)
genus 0 curves is −3, and the dimension of the moduli space of genus 1 curves is
0.

19.9 Curves of genus 1

Finally, we come to the very rich case of curves of genus 1. We will present the
theory by discussing interesting things about line bundles of steadily increasing
degree.

19.9.1. Line bundles of degree 0.
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Suppose C is a genus 1 curve. Then degωC = 2g − 2 = 0 and h0(C,ωC) =
g = 1 (by Exercise 19.2.A). But the only degree 0 invertible sheaf with a section
is the structure sheaf (§19.2.4), so we conclude that ωC ∼= OC. (If you know that
complex genus 1 curves are of the form C modulo a lattice, and Miracle 18.5.2 that
the sheaf of differentials is dualizing, then you might not be surprised.)

We move on to line bundles of higher degree. Next, note that if deg L > 0,
then Riemann-Roch and Serre duality (19.2.5.1) give

h0(C,L ) = deg L − g+ 1 = deg L .

19.9.2. Line bundles of degree 1.
Each degree 1 (k-valued) point q determines a line bundle O(q), and two dis-

tinct points determine two distinct line bundles (as a degree 1 line bundle has only
one section, up to scalar multiples). Conversely, any degree 1 line bundle L is of
the form O(q) (as L has a section — then just take its divisor of zeros).

Thus we have a canonical bijection between degree 1 line bundles and degree
1 (closed) points. (If k is algebraically closed, as all closed points have residue field
k, this means that we have a canonical bijection between degree 1 line bundles and
closed points.)

Define an elliptic curve to be a genus 1 curve Ewith a choice of k-valued point
p. The choice of this point should always be considered part of the definition of
an elliptic curve — “elliptic curve” is not a synonym for “genus 1 curve”. (Note: a
genus 1 curve need not have any k-valued points at all! For example, the genus 1
curve “compactifying” y2 = −x4−1 in A2Q has no R-points, and hence no Q-points.
Of course, if k = k, then any closed point is k-valued, by the Nullstellensatz 3.2.4.)
We will often denote elliptic curves by E rather than C.

If (E, p) is an elliptic curve, then there is a canonical bijection between the set
of degree 0 invertible sheaves (up to isomorphism) and the set of degree 1 points
of E: simply the twist the degree 1 line bundles by O(−p). Explicitly, the bijection
is given by

L � // div(L (p))

O(q− p) oo �
q

But the degree 0 invertible sheaves form a group (under tensor product), so
we have proved:

19.9.3. Proposition (the group law on the degree 1 points of an elliptic curve). —
The above bijection defines an abelian group structure on the degree 1 points of an elliptic
curve, where p is the identity.

From now on, we will identify closed points of E with degree 0 invertible
sheaves on Ewithout comment.

For those familiar with the complex analytic picture, this is not surprising: E
is isomorphic to the complex numbers modulo a lattice: E ∼= C/Λ. (We haven’t
shown this, of course.)

Proposition 19.9.3 is currently just a bijection of sets. Given that E has a much
richer structure (it has a generic point, and the structure of a variety), this is a sign
that there should be a way of defining some scheme Pic0(E), and that this should be
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an isomorphism of schemes. We will soon show (Theorem 19.10.4) that this group
structure on the degree 1 points of E comes from a group variety structure on E.

19.9.4. Aside: The Mordell-Weil Theorem, group, and rank. This is a good excuse to
mention the Mordell-Weil Theorem: for any elliptic curve E over Q, the Q-points of
E form a finitely generated abelian group, often called the Mordell-Weil group. By the
classification of finitely generated abelian groups (a special case of the classifica-
tion of finitely generated modules over a principal ideal domain, Remark 12.5.14),
the Q-points are a direct sum of a torsion part, and of a free Z-module. The rank
of the Z-module is called the Mordell-Weil rank.

19.9.5. Line bundles of degree 2 (see Figure 19.4).
Note that OE(2p) has 2 sections, so E admits a double cover of P1 (Exercise 19.5.B).

One of the ramification points is p: one of the sections of OE(2p) vanishes at p to
order 2, so there is a point of P1 whose preimage consists of p (with multiplicity 2).
Assume now that k = k and char k ̸= 2, so we can use the hyperelliptic Riemann-
Hurwitz formula (Theorem 19.5.1), which implies that E has 4 ramification points
(p and three others). Conversely, given 4 points in P1, there exists a unique double
cover branched at those 4 points (Proposition 19.5.2). Thus elliptic curves corre-
spond to 4 distinct points in P1, where one is marked p, up to automorphisms of
P1. Equivalently, by placing p at ∞, elliptic curves correspond to 3 points in A1,
up to affine maps x 7→ ax+ b.

FIGURE 19.4. Elliptic curves yield double covers of the projective
line, branched at four points (§19.9.5)

19.9.A. EXERCISE. Show that the other three ramification points are precisely the
(non-identity) 2-torsion points in the group law. (Hint: if one of the points is q,
show that O(2q) ∼= O(2p), but O(q) is not congruent to O(p).)

Thus (if chark ̸= 2 and k = k) every elliptic curve has precisely four 2-torsion
points. If you are familiar with the complex picture E ∼= C/Λ, this isn’t surprising.

19.9.6. Follow-up remark. An elliptic curve with full level n structure is an ellip-
tic curve with an isomorphism of its n-torsion points with (Z/n)2. (This notion
has problems if n is divisible by char k.) Thus an elliptic curve with full level 2
structure is the same thing as an elliptic curve with an ordering of the three other
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branch points in its degree 2 cover description. Thus (if k = k) these objects are
parametrized by the λ-line, which we discuss below.

Follow-up to the follow-up. There is a notion of moduli spaces of elliptic curves
with full level n structure. Such moduli spaces are smooth curves (where this is
interpreted appropriately — they are stacks), and have smooth compactifications.
A weight k level n modular form is a section of ω⊗k

M where ωM is the dualizing (or
canonical) sheaf of this moduli space (“modular curve”).

19.9.7. The cross-ratio and the j-invariant. (We maintain the assumption that k is
algebraically closed and characteristic not 2.) If the three other points are tem-
porarily labeled q1, q2, q3, there is a unique automorphism of P1 taking p, q1, q2
to (∞, 0, 1) respectively (as AutP1 is three-transitive, Exercise 16.4.C). Suppose
that q3 is taken to some number λ under this map, where necessarily λ ̸= 0, 1,∞.

The value λ is called the cross-ratio of the four points (p, q1, q2, q3) of P1 (first
defined by W. Clifford, but implicitly known since the time of classical Greece).

19.9.B. EXERCISE. Show that isomorphism classes of four ordered distinct (closed)
points on P1 (over an algebraically closed field k), up to projective equivalence
(automorphisms of P1), are classified by the cross-ratio.

We have not defined the notion of moduli space, but the previous exercise illus-
trates the fact that P1 − {0, 1,∞} (the image of the cross-ratio map) is the moduli
space for four ordered distinct points of P1 up to projective equivalence.

Notice:
• If we had instead sent p, q2, q1 to (∞, 0, 1), then q3 would have been sent

to 1− λ.
• If we had instead sent p, q1, q3 to (∞, 0, 1), then q2 would have been sent

to 1/λ.
• If we had instead sent p, q3, q1 to (∞, 0, 1), then q2 would have been sent

to 1− 1/λ = (λ− 1)/λ.
• If we had instead sent p, q2, q3 to (∞, 0, 1), then q1 would have been sent

to 1/(1− λ).
• If we had instead sent p, q3, q2 to (∞, 0, 1), then q1 would have been sent

to 1− 1/(1− λ) = λ/(λ− 1).
Thus these six values (which correspond to S3, the symmetric group permut-

ing q1, q2, and q3) yield the same elliptic curve, and this elliptic curve will (upon
choosing an ordering of the other 3 branch points) yield one of these six values.

This is fairly satisfactory already. To check if two elliptic curves (E, p), (E ′, p ′)

over k = k are isomorphic, we write both as double covers of P1 ramified at p
and p ′ respectively, then order the remaining branch points, then compute their
respective λ’s (say λ and λ ′ respectively), and see if they are related by one of the
six expressions above:

(19.9.7.1) λ ′ = λ, 1/λ, 1− λ, 1/(1− λ), (λ− 1)/λ, or λ/(λ− 1).

It would be far more convenient if, instead of a “six-valued invariant” λ, there
were a single invariant (let’s call it j), such that j(λ) = j(λ ′) if and only if one of
the equalities of (19.9.7.1) holds. This j-function should presumably be algebraic,
so it would give a map j from the λ-line A1 − {0, 1} to the A1. By the Curve-to-
Projective Extension Theorem 16.5.1, this would extend to a morphism j : P1 → P1.
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By Exercise 17.4.D, because this is (for most λ) a 6-to-1 map, the degree of this
cover is 6 (or more correctly, at least 6).

We can make this dream more precise as follows. The elliptic curves over k
correspond to k-valued points of P1− {0, 1,∞}, modulo the action of S3 on λ given
above. Consider the subfield K of k(λ) fixed by S3. Then the extension k(λ)/K
is necessarily Galois (see for example [DF, §14.2, Thm. 9]), and degree 6. We are
hoping that this subfield is of the form k(j), and if so, we would obtain the j-map
P1 → P1 as described above. One could show that K is finitely generated over k,
and then invoke Lüroth’s Theorem, which we will soon prove in Example 21.7.6;
but we won’t need this.

Instead, we will just hunt for such a j. Note that λ should satisfy a sextic poly-
nomial over k(λ) (or more precisely given what we know right now, a polynomial
of degree at least six), as for each j-invariant, there are six values of λ in general.

As you are undoubtedly aware, there is such a j-invariant. Here is the formula
for the j-invariant that everyone uses:

(19.9.7.2) j = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

You can readily check that j(λ) = j(1/λ) = j(1 − λ) = · · · , and that as j (in
lowest terms) has a degree 6 numerator and degree < 6 denominator, j indeeds
determines a degree 6 map from P1 (with coordinate λ) to P1 (with coordinate j).
But this complicated-looking formula begs the question: where did this formula
come from? How did someone think of it? We will largely answer this, but we will
ignore the 28. This, as you might imagine, arises from characteristic 2 issues, and
in order to invoke the results of §19.5 we have been assuming chark ̸= 2. (To see
why the 28 is forced upon us by characteristic 2, see [De, p. 64]. From a different,
complex-analytic, point of view, the 28 comes from the fact that the q-expansion of
j begins j = q−1+ 744+ · · · : the q−1 term has coefficient 1; see [Se5, p. 90, Rem. 2].
These seemingly different explanations are related by the theory of the Tate curve,
see [Si2, Thm. V.3.1].)

Rather than using the formula handed to us, let’s try to guess what j is. We
won’t expect to get the same formula as (19.9.7.2), but our answer should differ by
an automorphism of the j-line (P1) — we will get j ′ = (aj+b)/(cj+d) for some a,
b, c, d (Exercise 16.4.B).

We are looking for some j ′(λ) such that j ′(λ) = j ′(1/λ) = · · · . Hence we
want some expression in λ that is invariant under this S3-action. A first possibility
would be to take the product of the six numbers

λ · (1− λ) · 1
λ
· λ− 1
λ

· 1

1− λ
· λ

λ− 1

This is silly, as the product is obviously 1.
A better idea is to add them all together:

λ+ (1− λ) +
1

λ
+
λ− 1

λ
+

1

1− λ
+

λ

λ− 1

This also doesn’t work, as they add to 3— the six terms come in pairs adding to 1.
(Another reason you might realize this can’t work: if you look at the sum, you

will realize that you will get something of the form “degree at most 3” divided by
“degree at most 2”. Then if j ′ = p(λ)/q(λ), then λ is a root of a cubic over j. But we
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said that λ should satisfy a sextic over j ′. The only way we avoid a contradiction
is if j ′ ∈ k.)

But you will undoubtedly have another idea immediately. One good idea is
to take the second symmetric function in the six roots. An equivalent one that is
easier to do by hand is to add up the squares of the six terms. Even before doing
the calculation, we can see that this will work: it will clearly produce a fraction
whose numerator and denominator have degree at most 6, and it is not constant,
as when λ is some fixed small number (say 1/2), the sum of squares is some small
real number, while when λ is a large real number, the sum of squares will have to
be some large real number (different from the value when λ = 1/2).

When you add up the squares by hand (which is not hard), you will get

j ′ =
2λ6 − 6λ5 + 9λ4 − 8λ3 + 9λ2 − 6λ+ 2

λ2(λ− 1)2
.

Indeed k(j) ∼= k(j ′): you can check (again by hand) that

2j/28 =
2λ6 − 6λ5 + 12λ4 − 14λ3 + 12λ2 − 6λ+ 2

λ2(λ− 1)2
.

Thus 2j/28 − j ′ = 3.

19.9.C. EXERCISE. Explain why genus 1 curves over an algebraically closed field
of characteristic not 2 are classified (up to isomorphism) by j-invariant. (Caution:
note that the problem says “genus 1”, not “elliptic”.)

19.9.D. EXERCISE. Give (with proof) two elliptic curves over Q with the same
j-invariant that are not isomorphic. (Hint: §19.5.3.)

19.9.8. Line bundles of degree 3.
In the discussion of degree 2 line bundles 19.9.5, we assumed chark ̸= 2 and

k = k, in order to invoke the Riemann-Hurwitz formula. In this section, we will
start with no assumptions, and add them as we need them. In this way, you will
see what partial results hold with weaker assumptions.

Consider the degree 3 invertible sheaf OE(3p). By Riemann-Roch (19.2.5.1),
h0(E,OE(3p)) = deg(3p)−g+1 = 3. As degE > 2g, this gives a closed embedding
(Remark 19.2.11 and Exercise 19.2.D). Thus we have a closed embedding E ↪→
P2k as a cubic curve. Moreover, there is a line in P2k meeting E at point p with
multiplicity 3, corresponding to the section of O(3p) vanishing precisely at pwith
multiplicity 3. (A line in the plane meeting a smooth curve with multiplicity at
least 2 is a tangent line, see Definition 12.3.2. A line in the plane meeting a smooth
curve with multiplicity at least 3 is said to be a flex line, and that point is a flex
point or flex of the curve.) (See Figure 19.5.)
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FIGURE 19.5. Finding the Weierstrass cubic incarnation of an el-
liptic curve

Choose projective coordinates on P2k so that pmaps to [0, 1, 0], and the flex line
is the line at infinity z = 0. Then the cubic is of the following form:

? x3 + 0 x2y + 0 xy2 + 0 y3

+ ? x2z + ? xyz + ? y2z = 0

+ ? xz2 + ? yz2

+ ? z3

The coefficient of x3 is not 0 (or else this cubic is divisible by z). Dividing the
entire equation by this coefficient, we can assume that the coefficient of x3 is 1.
The coefficient of y2z is not 0 either (or else this cubic is singular at x = z = 0).
We can scale z (i.e., replace z by a suitable multiple) so that the coefficient of y2z
is −1. If the characteristic of k is not 2, then we can then replace y by y + ?x + ?z
so that the coefficients of xyz and yz2 are 0, and if the characteristic of k is not 3,
we can replace x by x + ?z so that the coefficient of x2z is also 0. In conclusion, if
chark ̸= 2, 3, the elliptic curve may be written as

(19.9.8.1) y2z = x3 + axz2 + bz3.

This is called the Weierstrass normal form of the curve.

19.9.9. From the Weierstrass cubic to the double cover. We see the hyperelliptic (double
cover) description of the curve by setting z = 1, or more precisely, by working in
the distinguished open set z ̸= 0 and using inhomogeneous coordinates. Here is
the geometric explanation of why the double cover description is visible in the
cubic description. Project the cubic from p = [0, 1, 0] (see Figure 19.6). This is a
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map E−p→ P1 (given by [x, y, z] 99K [x, z]), and is basically the vertical projection
of the cubic to the x-axis. (Figure 19.7 may help you visualize this.) By the Curve-
to-Projective Extension Theorem 16.5.1, the morphism E− p→ P1 extends over p.
If L := O(3p) is the line bundle giving the morphism E ↪→ P2 (via Theorem 16.4.1
describing maps to projective space in terms of line bundles), then the two sections
x and z giving the map to P1 vanish at p to order 1 and 3 respectively. To “resolve”
the rational map into an honest morphism, we interpret x and z as sections of
L (−p) = O(2p), and now they generate a base-point-free linear series, and thus a
morphism to P1. (You may be able to interpret this as implementing the proof of
Theorem 16.4.1 in a different language.) A similar idea, applied to quartics rather
than cubics, was used in Exercise 19.7.B.

FIGURE 19.6. From the Weierstrass cubic to the double cover in-
terpretation of an elliptic curve

As a consequence, with a little sweat, we can compute the j-invariant as a
function of a and b:

j(a, b) =
2833a3

4a3 + 27b2
.

19.9.E. EXERCISE. Show that the flexes of the cubic are the 3-torsion points in the
group E. (“Flex” was defined in §19.9.8: it is a point where the tangent line meets
the curve with multiplicity at least 3 at that point. In fact, if k is algebraically closed
and char k ̸= 3, there are nine of them. This won’t be surprising if you are familiar
with the complex story, E ∼= C/Λ.)

19.9.10. The group law, geometrically.
The group law has a beautiful classical description in terms of the Weierstrass

form. Consider Figure 19.7. In the Weierstrass coordinates, the origin p is the only
point of Emeeting the line at infinity (z = 0); in fact the line at infinity corresponds
to the tautological section of O(3p). If a line meets E at three points p1, p2, p3, then

O(p1 + p2 + p3) ∼= O(3p)

from which (in the group law) p1 + p2 + p3 = 0.
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Hence to find the inverse of a point s, we consider the intersection of E with
the line sp; −s is the third point of intersection. To find the sum of two points q
and r, we consider the intersection of E with the line qr, and call the third point s.
We then compute −s by connecting s to p, obtaining q+ r.

FIGURE 19.7. The group law on the elliptic curve, geometrically

We could give this description of a group law on a cubic curve in Weierstrass
normal form to anyone familiar with the notion of projective space, and the notion
of a group, but we would then have to prove that the construction we are giving
indeed defines a group. In particular, we would have to prove associativity, which
is not a priori clear. But in this case, we have already established that the degree 1
points form a group, by giving a bijection to Pic0 E, and we are merely interpreting
the group law on Pic0 E.

Note that this description works even in characteristic 2 and 3; we do not need
the cubic to be in Weierstrass normal form, and we need only that O(3p) gives a
closed embedding into P2.

19.9.11. Degree 4 line bundles. You have probably forgotten that we began by
studying line bundles degree by degree. The story doesn’t stop in degree 3. In the
same way that we showed that a canonically embedded nonhyperelliptic curve of
genus 4 is the complete intersection in P3k of a quadric surface and a cubic surface
(§19.8), we can show the following.

19.9.F. EXERCISE. Show that the complete linear series for O(4p) embeds E in
P3 as the complete intersection of two quadrics. Hint: Show the image of E is
contained in at least 2 linearly independent quadrics. Show that neither can be
reducible, so they share no components. Use Bézout’s Theorem (Exercise 18.6.K)
and Exercise 18.6.F, as in §19.8.1.



532 The Rising Sea: Foundations of Algebraic Geometry

The beautiful structure doesn’t stop with degree 4, but it gets more compli-
cated. For example, the degree 5 embedding is not a complete intersection (of
hypersurfaces), but is the complete intersection of G(2, 5) under its Plücker em-
bedding with five hyperplanes (or perhaps better, a codimension 5 linear space).
In seemingly different terminology, its equations are 4×4 Pfaffians of a general 5×5
skew-symmetric matrix of linear forms, although I won’t say what this means.

19.10 Elliptic curves are group varieties

Ever since 1949, I considered the construction of an algebraic theory of the Picard
variety as the task of greatest urgency in abstract algebraic geometry.

— A. Weil [Weil, p. 537]

We initially described the group law on the degree 1 points of an algebraic
curve in a rather abstract way. From that definition, it was not clear that over C the
group operations (addition, inverse) are continuous. But the explicit description in
terms of the Weierstrass cubic makes this clear. In fact we can observe even more:
addition and inverse are algebraic in general. Better yet, elliptic curves are group
varieties. (Thus they are abelian varieties, see Definition 10.3.11.)

19.10.1. (This is a clue that Pic0(E) really wants to be a scheme, and not just a
group. Once the notion of “moduli space of line bundles on a variety” is made
precise, this can be shown, see for example [FGIKNV, Part 5].)

We begin with the “group inverse” morphism, as a warm-up.

19.10.2. Proposition. — If chark ̸= 2, 3, there is a morphism of k-varieties E → E

sending a (degree 1) point to its inverse, and this construction behaves well under field
extension of k.

In other words, the “inverse map” in the group law actually arises from a mor-
phism of schemes — it isn’t just a set map. (You are welcome to think through the
two remaining characteristics, and to see that essentially the same proof applies.
But the proof of Theorem 19.10.4 will give you a better sense of how to proceed.)

Proof. Consider the map (the hyperelliptic involution) y 7→ −y of the Weierstrass
normal form. □

The algebraic description of addition would be a big mess if we were to write
it down. We will be able to show algebraicity by a trick — not by writing it down
explicitly, but by thinking through how we could write it down explicitly. The
main part of the trick is the following proposition. We give it in some generality
just because it can be useful, but you may prefer to assume that k = k and C is a
regular cubic.

19.10.3. Proposition. — Suppose C ⊂ P2k is a geometrically integral cubic curve (so
in particular C contains no lines). Let Creg be the regular points of C. There is a unique
morphism t : Creg × Creg → Creg such that
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(a) if p and q are distinct regular k-valued points of C, then t(p, q) is obtained by
intersecting the line pq with C, and taking the third “residual” point of inter-
section with C. More precisely, pq will meet C at three points with multiplicity
(Exercise 8.2.E), including p and q; t(p, q) is the third point; and

(b) this property remains true after extension to k.
Furthermore, if p is a k-valued point of Creg, then t(p, p) is where the tangent line ℓ to C
at p meets C again. More precisely, ℓ will meet C at three points with multiplicity, which
includes p with multiplicity 2; t(p, p) is the third point.

We will need property (b) because C may have few enough k-valued points
(perhaps none!) that the morphism t can not be determined by its behavior on
them. In the course of the proof, we will see that (b) can be extended to “this
property remains true after any field extension of k”.

Proof. We first show (in this paragraph) that if p and q are distinct regular points,
then the third point r of intersection of pq with C is also regular. If r = p or r = q,
we are done. Otherwise, the cubic obtained by restrictingC to pq has three distinct
(hence reduced, i.e., multiplicity 1) roots, p, q, and r. Thus C ∩ pq is regular at r,
so r is a regular point of C by the slicing criterion for regularity, Exercise 12.2.C.

We now assume that k = k, and leave the general case to the end. Fix p, q,
and r, where p ̸= q, and r is the “third” point of intersection of pqwith C. We will
describe a morphism tp,q in an open neighborhood of (p, q) ∈ Creg × Creg. By Ex-
ercise 10.2.B, showing that morphisms of varieties over k are determined by their
behavior on closed (k-valued) points, these morphisms glue together (uniquely)
to give a morphism t, completing the proof in the case k = k.

Choose projective coordinates on P2 in such a way that U0 ∼= Spec k[x1, x2]
contains p, q, and r, and the line pq is not “vertical”. More precisely, in Speck[x1, x2],
say p = (p1, p2) (in terms of “classical coordinates” — more pedantically, p =
[(x1−p1, x2−p2)]), q = (q1, q2), r = (r1, r2), and p1 ̸= q1. In these coordinates, the
curve C is cut out by some cubic, which we also sloppily denote C: C(x1, x2) = 0.

Now suppose P = (P1, P2) and Q = (Q1, Q2) are two points of C ∩ U0 (not
necessarily our p and q). We attempt to compute the third point of intersection of
PQwith C, in a way that works on an open subset of C×C that includes (p, q). To
do this explicitly requires ugly high school algebra, but because we know how it
looks, we will be able to avoid dealing with any details!

The line PQ is given by x2 = mx1 + b, where m = P2−Q2

P1−Q1
and b = P2 −mP1

are both rational functions of P and Q. Then m and b are defined for all P and Q
such that P1 ̸= Q1 (and hence for an open neighborhood of (p, q), as p1 ̸= q1, and
as P1 ̸= Q1 is an open condition).

Now we solve forC∩PQ, by substituting x2 = mx1+b intoC, to getC(x1,mx1+
b). This is a cubic in x1, say

γ(x1) = Ax
3
1 + Bx

2
1 + Cx1 +D = 0.

The coefficients of γ are rational functions of P1, P2,Q1, andQ2. The cubic γ has 3
roots (with multiplicity) so long as A ̸= 0 , which is a Zariski-open condition onm
and b, and hence a Zariski-open condition on P1, P2,Q1,Q2. As P,Q ∈ C∩PQ∩U0,
P1 and Q1 are two of the roots of γ(x1) = 0. The sum of the roots of γ(x1) = 0

is −B/A (by Viète’s formula), so the third root of γ is R1 := −B/A − P1 − Q1.
Thus if we take R2 = mR1 + b, we have found the third point of intersection of
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PQ with C (which happily lies in U0) We have thus described a morphism from
the open subset of (Creg ∩ U0) × (Creg ∩ U0), containing (p, q), that does what we
want. (Precisely, the open subset is defined by A ̸= 0, which can be explicitly
unwound.) We have thus completed the proof of Proposition 19.10.3 (except for
the last paragraph) for k = k. (Those who believe they are interested only in
algebraically closed fields can skip ahead.)

We extend this to Proposition 19.10.3 for every field k except F2. Suppose
U

[x1,x2]
0 = Speck[x1, x2] is any affine open subset of P2k, along with choice of coor-

dinates. (The awkward superscript “[x1, x2]” is there to emphasize that the partic-
ular coordinates are used in the construction.) Then the construction above gives a
morphism defined over k from an open subset of (Creg ∩U[x1,x2]

0 )× (Creg ∩U[x1,x2]
0 )

(note that all of the hypothetical algebra was done over k), that sends P and Q to
the third point of intersection of PQwith C. Note that this construction commutes
with any field extension, as the construction is insensitive to the field we are work-
ing over. Thus after base change to the algebraic closure, the map also has the
property that it takes as input two points, and spits out the third point of intersec-
tion of the line with the cubic. Furthermore, all of these maps (as U[x1,x2]

0 varies
over all complements U0 of lines “with k-coefficients”, and choices of coordinates
on U0) can be glued together: they agree on their pairwise overlaps (as after base
change to k they are the same, by our previous discussion, and two maps that are
the same after base change to kwere the same to begin with by Exercise 9.2.I), and
this is what is required to glue them together (Exercise 6.2.A).

We can geometrically interpret the open subset (Creg ∩ U[x1,x2]
0 ) × (Creg ∩

U
[x1,x2]
0 ) by examining the construction: it is defined in the locus {P = (P1, P2), Q =

(Q1, Q2)} where (i) P1 ̸= Q1, and (ii) the third point of intersection R of PQwith C
also lies in U0.

So which points (P,Q) of Creg ×Creg are missed? Condition (i) isn’t important;
if (P,Q) satisfies (ii) but not (i), we can swap the roles of x1 and x2, and (P,Q) will
then satisfy (i). The only way (P,Q) can not be covered by one of these open sets
is if there is no U0 (a complement of a line defined over k) that includes P, Q, and
R.

19.10.A. EXERCISE. Use |k| > 2 to show that there is a linear form on P2 with
coefficients in k that misses P, Q, and R. (This is sadly not true if k = F2 — do you
see why?)

19.10.B. EXERCISE. Prove the last statement of Proposition 19.10.3.

19.10.C. ⋆⋆ UNIMPORTANT EXERCISE. Complete the proof by dealing with the
case k = F2. Hint: first produce the morphism t over F4. The goal is then to
show that this t is really “defined over” F2 (“descends to” F2). The morphism
t is initially described locally by considering the complement of a line defined
over F4 (and then letting the line vary). Instead, look at the map by looking at
the complement of a line and its “conjugate”. The complement of the line and
its conjugate is an affine F2-variety. The partially-defined map t on this affine
variety is a priori defined over F4, and is preserved by conjugation. Show that this
partially defined map is “really” defined over F2. (If you figure out what all of this
means, you will have an important initial insight into the theory of “descent”.)
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□
We can now use this to define the group variety structure on E.

19.10.4. Theorem. — Suppose (E, p) is an elliptic curve (a regular genus 1 curve over
k, with a k-valued point p). Take the Weierstrass embedding of E in P2k, via the complete
linear series |OE(3p)|. Define the k-morphism e : Spec k → E by sending Spec k to p.
Define the k-morphism i : E→ E via q 7→ t(p, q), or more precisely, as the composition

E
(id,e) // E× E t // E.

Define the k-morphism m : E × E → E via (q, r) 7→ t(p, t(q, r)). Then (E, e, i,m) is a
group variety over k.

By the construction of t, all of these morphisms “commute with arbitrary base
extension”.

Proof. We need to check that various pairs of morphisms described in axioms (i)–
(iii) of §6.6.4 are equal. For example, in axiom (iii), we need to show that m ◦
(i, id) = m ◦ (id, i); all of the axioms are clearly of this sort.

Assume first that k = k. Then each of these pairs of morphisms agree as
maps of k-points: PicE is a group, and under the bijection between PicE and E of
Proposition 19.9.3, the group operations translate into the maps described in the
statement of Theorem 19.10.4 by the discussion of §19.9.10.

But morphisms of k-varieties are determined by their maps on the level of
k-points (Exercise 10.2.B), so each of these pairs of morphisms are the same.

For general k, we note that from the k case, these morphisms agree after base
change to the algebraic closure. Then by Exercise 9.2.I, they must agree to begin
with. □

19.10.5. Features of this construction. The most common derivation of the proper-
ties of an elliptic curve is to describe it as a cubic, and then to describe addition
using the explicit construction with lines. Then one has to work to prove that the
multiplication described is associative.

Instead, we started with something that was patently a group (the degree 0
line bundles). We interpreted the maps used in the definition of the group (ad-
dition and inverse) geometrically using our cubic interpretation of elliptic curves.
This allowed us to see that these maps were algebraic.

As a bonus, we see that in some vague sense, the Picard group of an elliptic
curve wants to be an algebraic variety.

19.10.D. EXERCISE. Suppose p and q are k-points of a genus 1 curve E. Show that
there is an automorphism of E sending p to q.

19.10.E. EXERCISE. Suppose (E, p) is an elliptic curve over an algebraically closed
field k of characteristic not 2 or 3. Show that the automorphism group of (E, p)
is isomorphic to Z/2, Z/4, or Z/6. (An automorphism of an elliptic curve (E, p)

over k = k is an automorphism of E fixing p scheme-theoretically, or equiva-
lently, fixing the k-valued point p by Exercise 10.2.B.) Hint: reduce to the ques-
tion of automorphisms of P1 fixing a point ∞ and a set of distinct three points
{p1, p2, p3} ∈ P1 \ {∞}. (The algebraic closure of k is not essential, so feel free to
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remove this hypothesis, using Exercise 9.2.I. What happens if the characteristic is
3?)

19.10.6. Vague question. What are the possible automorphism groups of a genus 1
curve over an algebraically closed k of characteristic not 2? You should be able to
convince yourself that the group has “dimension 1”.

19.10.F. IMPORTANT EXERCISE: A DEGENERATE ELLIPTIC CURVE. Consider the
genus 1 curve C ⊂ P2k given by y2z = x3+x2z, with the point p = [0, 1, 0]. Emulate
the above argument to show that C \ {[0, 0, 1]} is a group variety (where the oper-
ation is that given by tensoring line bundles). Show that it is isomorphic to Gm
(the multiplicative group scheme Spec k[t, t−1], see Exercise 6.6.E) with coordinate
t = y/x, by showing an isomorphism of schemes, and showing that multiplication
and inverse in both group varieties agree under this isomorphism.

19.10.G. EXERCISE: AN EVEN MORE DEGENERATE ELLIPTIC CURVE. Consider the
genus 1 curve C ⊂ P2k given by y2z = x3, with the point p = [0, 1, 0]. Emulate
the above argument to show that C \ {[0, 0, 1]} is a group variety. Show that it
is isomorphic to A1 (with additive group structure) with coordinate t = x/y, by
showing an isomorphism of schemes, and showing that multiplication/addition
and inverse in both group varieties agree under this isomorphism.

19.10.7. ⋆ Towards Poncelet’s Porism.
These ideas lead to a beautiful classical fact, Poncelet’s Porism. (A porism is an

archaic name for a type of mathematical result.)

FIGURE 19.8. Poncelet’s Porism 19.10.8

19.10.8. Poncelet’s Porism. — Suppose C andD are two ellipses in R2, with C contain-
ing D. Choose any point p0 on C. Choose one of the two tangents ℓ1 from p0 to D. Then
ℓ1 meets C at two points in total: p0 and another point p1. From p1, there are two tan-
gents to D, ℓ1 and another line ℓ2. The line ℓ2 meets C at some other point p2. Continue
this to get a sequence of points p0, p1, p2, . . . . Suppose this sequence starting with p0 is
periodic, i.e., p0 = pn for some n. Then it is periodic with any starting point p ∈ C (see
Figure 19.8).

It is possible to prove Poncelet’s Porism in an elementary manner, but a proof
involving elliptic curves is quite beautiful, and gives connections to more sophisti-
cated ideas. Rather than proving Poncelet’s Porism, we discuss some related facts.
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19.10.H. EXERCISE. Suppose E is a smooth degree 3 projective plane curve over
an algebraically closed field, q, r ∈ E, and n is a positive integer. Let F : E → E

be the morphism x 7→ t(r, t(q, x)). Suppose that Fn(p) = p for some closed point
p ∈ E. Show that Fn(x) = x for all points x ∈ E.

You should feel the urge to improve this result. (Can you show that if Fn(p) =
p for some p ∈ E, then Fn is the identity morphism on E? Can you extend this to
the case where the base field is not algebraically closed?)

19.10.I. EXERCISE. Suppose E is an ellipse in R2. For each point (x, y) ∈ E, there is
another point G(x, y) := (x, y ′) (possibly the same), with the same first coordinate,
corresponding to the “other” intersection of the vertical line through (x, y) with E.
Similarly, there is another pointH(x, y) := (x ′, y), with the same second coordinate.
Let F = G ◦H. Show that if F17(p) = p for some point p ∈ E, then F17(x) = x for all
points x ∈ E. (See Figure 19.9, where 17 is replaced by 3.) Hint: this might be best
done not using any fancy methods from algebraic geometry.

Again, you should wish to improve this. To what extent is this dependent on
the real numbers? What if the ellipse was instead a different conic section? (And
what does this have to do with elliptic curves? Why is the conic called E?!)

FIGURE 19.9. Exercise 19.10.I (with 17 replaced by 3)

19.10.J. ⋆⋆ EXERCISE. Let k be a field, algebraically closed purely for convenience.
SupposeQ is a smooth quadric surface in P3k, and K is a cone (a rank 3 quadric) in
P3, such that E = Q ∩ K is a smooth curve.
(a) Show that E has genus 1.
(b) If ℓ is a line on Q, show that Emeets ℓ at two points (with multiplicity).
(c) Fix one of the rulings (family of lines) of Q. Show that there exists a morphism
G : E → E that takes a closed point p of E, and sends it to the other point of E on
the line ℓ in the ruling containing p.
(d) Define H : E→ E similarly, using the other ruling ofQ. Fix a positive integer n.
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Let F = G ◦ H. Show that if Fn(p) = p for one closed point p ∈ E, then Fn(x) = x

for all x ∈ E.

We now connect Exercise 19.10.J to Poncelet’s Porism 19.10.8. Let v be the
cone point of K. Then v /∈ Q, as otherwise v would be a singular point of Q ∩ K
(do you see why?). It is a fact that projection from v gives a morphism Q → P2k
that is branched over a smooth conic D. (You may be able to make this precise,
and prove it, after reading Chapter 21.) The lines on Q project to tangent lines
to D in P2k. The projection from v contracts K \ {v} to a conic C. You may be
able to interpret the statement of Poncelet’s Porism 19.10.8 (for this C and D) in
terms of Exercise 19.10.J. (Caution: the field is not algebraically closed in Poncelet’s
Porism 19.10.8, and is algebraically closed in Exercise 19.10.J.) You may even be
able to take an arbitrary C and D as in Poncelet’s Porism 19.10.8, and reverse-
engineer K and Q as in Exercise 19.10.J, thereby proving Poncelet’s Porism (and
discovering why there is an elliptic curve hidden in its statement).

19.11 Counterexamples and pathologies using elliptic curves

We now give some fun counterexamples using our understanding of elliptic
curves. The main extra juice elliptic curves give us comes from the fact that elliptic
curves are the simplest varieties with “continuous Picard groups”.

19.11.1. An example of a scheme that is factorial, but such that no affine open
neighborhood of any point has ring that is a unique factorization domain.

Suppose E is an elliptic curve over C (or some other uncountable algebraically
closed field). Consider p ∈ E. The local ring OE,p is a discrete valuation ring
and hence a unique factorization domain (Theorem 12.5.8). Then any affine open
neighborhood of E is of the form E − q1 − · · · − qn for some points q1, . . . , qn. I
claim that its Picard group is nontrivial. Recall the exact sequence:

Z⊕n (a1,...,an) 7→a1q1+···+anqn // PicE // Pic(E− q1 − · · ·− qn) // 0 .

But the group on the left is countable, and the group in the middle is uncountable,
so the group on the right, Pic(E − q1 − · · · − qn), is nonzero. We have shown
that every nonempty open subset of E has nonzero line bundles, as promised in
Remark 13.1.8.

As E−q1− · · ·−qn is affine, by Exercise 14.2.T the corresponding ring is not a
unique factorization domain. To summarize: complex elliptic curves are factorial,
but no affine open subset has a ring that has unique factorization, as promised in
§5.4.5.

19.11.A. EXERCISE. The above argument shows that over an uncountable field,
PicE is not a finitely generated group. Show that even over the countable field Q,
PicE is not a finitely generated group, as follows. If the elliptic curve E is generated
by q1, . . . , qn, then there is a finite extension of fields K of Q over which all qi are
defined (the compositum of the residue fields of the qi). Show that any point in
the subgroup of E generated by the qi must also be defined over K. Show that E
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has a point not defined over K. Use this to show that PicE is not finitely generated.
(The same argument works with Q replaced by Fp.)

19.11.2. Remark. In contrast to the above discussion, over Q, the Mordell-Weil
Theorem states that PicE is finitely generated (see Aside 19.9.4).

19.11.3. ⋆⋆ A complex surface with infinitely many algebraic structures (for those
with sufficient complex geometric background).

As remarked in Exercise 6.3.N, a complex manifold may have many algebraic
structures. The following example of M. Kim gives an example with infinitely
many algebraic structures. Suppose E is an elliptic curve over C with origin p,
and let L be a nontrivial line bundle on E − p. Then L is analytically trivial be-
cause E− p is a Stein space, so the analytification of the total space is independent
of the choice of L . However, you know enough to show (with work) that there are
infinitely many pairwise (algebraically) nonisomorphic L , and also that their total
spaces are likewise pairwise (algebraically) nonisomorphic. This gives a complex
surface with infinitely many algebraic structures (indeed a continuum of them).
See [MO68421] for more details.

19.11.4. Counterexamples using a non-torsion point.
We next give a number of counterexamples using the existence of a non-torsion

point of a complex elliptic curve. We first show the existence of such a point.

19.11.5. We have a “multiplication by n” map [n] : E → E, which sends p to np.
If n = 0, the map [n] has degree 0 (even though [n] isn’t dominant, degree is still
defined, see Definition 11.2.2). If n = 1, the map [n] has degree 1. Given the
complex picture of a torus, you might not be surprised that the degree of [n] is n2.
If n = 2, we have almost shown that it has degree 4, as we have checked that there
are precisely 4 points q such that 2p = 2q (Exercise 19.9.A). All that really shows
(using Exercise 17.4.D(b)) is that the degree is at least 4. (We could check by hand
that the degree is 4 is we really wanted to.)

19.11.6. Proposition. — Suppose E is an elliptic curve over a field k of characteristic not
2. For each n > 0, the “multiplication by n” morphism [n] has positive degree, so there
are only a finite number of n-torsion points.

Proof. We may assume k = k, as the degree of a map of curves is independent of
field extension.

We prove the result by induction; it is true for n = 1 and n = 2.
If n is odd (2k + 1, say), then assume otherwise that nq = 0 for all closed

points q. Let r be a non-trivial 2-torsion point, so 2r = 0. But nr = 0 as well, so
r = (n− 2k)r = 0, contradicting r ̸= 0.

If n is even, then [n] = [2] ◦ [n/2] (degree is multiplicative under composition
of rational maps, §11.2.2), and by our inductive hypothesis both [2] and [n/2] have
positive degree. □

In particular, the total number of torsion points on E is countable. If k is an
uncountable field, then E has an uncountable number of closed points (consider an
open subset of the curve as y2 = x3 + ax+ b; there are uncountably many choices
for x, and each of them has 1 or 2 choices for y). Thus we have the following.
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19.11.7. Corollary. — If E is a curve over an uncountable algebraically closed field of
characteristic not 2 (e.g., C), then E has a non-torsion point.

Proof. For each n, there are only finitely many n-torsion points. Thus there are (at
most) countably many torsion points. The curve E has uncountably many closed
points. (One argument for this: take a double cover π : E → P1. Then P1 has
uncountably many closed points, and π is surjective on closed points.) □

19.11.8. Remark. This argument clearly breaks down over countable fields. In fact,
over Fp, all points of an elliptic curve E are torsion. (Any point x is defined over
some finite field Fpr . The points defined over Fpr form a subgroup of E, using
the explicit geometric construction of the group law, and there are finite number
of points over Fpr — certainly no more than the number of Fpr-points of P2.) But
over Q, there are elliptic curves with non-torsion points. Even better, there are
examples over Q: [2, 1, 8] is a Q-point of the elliptic curve y2z = x3+4xz2−z3 that
is not torsion. The proof would carry us too far afield, but one method is to use
the Nagell-Lutz Theorem (see for example [Si1, Cor. 7.2]).

We now use the existence of a non-torsion point to create some interesting
pathologies.

19.11.9. A map of projective varieties not arising from a map of graded rings,
even after regrading.

19.11.B. EXERCISE. Suppose E ↪→ P2C is a smooth complex plane cubic (hence
genus 1), yielding a graded ring S•. Let t : E → E be translation by a non-torsion
point. Show that t does not correspond to a map of graded rings S• → S•, even
after regrading (cf. Remark 16.4.7). (If you wish, you can show the following. If
u : E→ E is a translation, show that u corresponds to some map of regraded rings
Sn• → Sn• if and only if u is translation by a torsion point.)

19.11.10. An affine open subset of an affine scheme that is not a distinguished
open set.

We can use this to construct an example of an affine scheme X and an affine
open subset Y that is not distinguished in X. Let X = E − p, which is affine (see
Exercise 19.2.B, or better, note that the linear series O(3p) sends E to P2 in such a
way that the “line at infinity” meets E only at p; then E−p has a closed embedding
into the affine scheme A2).

Let q be another point on E so that q − p is non-torsion. Then E − p − q is
affine (Exercise 19.2.B). Assume that it is distinguished. Then there is a function f
on E−p that vanishes on q (to some positive order d). Thus f is a rational function
on E that vanishes at q to order d, and (as the total number of zeros minus poles
of f is 0) has a pole at p of order d. But then d(p − q) = 0 in Pic0 E, contradicting
our assumption that p− q is non-torsion.

In particular, E − p is an affine scheme, and q is locally cut out by one equa-
tion, but it is not globally cut out even set-theoretically by one equation. This was
promised in Exercise 7.3.F and §8.4.1.

19.11.11. A proper (nonprojective) surface with no nontrivial line bundles.
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We next use a non-torsion point p on an elliptic curve E to construct a proper
nonprojective surface with no nontrivial line bundles. Let X1 be P2, and Z1 a
smooth cubic in X1, identified with E. Let Z2 ⊂ X2 be exactly the same. Glue X1
to X2 along the isomorphism Z1 ∼= Z2 given, not by the identity, but by translation
by p. (This gluing construction was described in §16.4.11.) Call the result X. By
Exercise 16.4.O (and the sentence thereafter), X is proper.

19.11.C. EXERCISE. Show that every line bundle on X is trivial. Hint: Suppose
L is an invertible sheaf on X. Then L |Xi

is O(di) for some di (for i = 1, 2). The
restriction of L |X1

to Z1 must agree with the restriction of L |X2
to Z2. Use this

to show that d1 = d2 = 0. Explain why gluing two trivial bundles (on X1 and X2
respectively) together in this way yields a trivial bundle on X.

19.11.D. EXERCISE. Show that X is not projective.

See Exercise 20.2.G for a somewhat simpler example of a proper nonprojective
surface.

19.11.12. A Picard group that has no chance of being a scheme.
We informally observed that the Picard group of an elliptic curve “wants to

be” a scheme (see §19.10.5). This is true of projective (and even proper) varieties
in general (see [FGIKNV, Ch. 9]). On the other hand, if we work over C, the affine
scheme E− p− q (in the language of §19.11.10 above) has a Picard group that can
be interpreted as C modulo a lattice modulo a non-torsion point (e.g., C/⟨1, i, π⟩).
This has no reasonable interpretation as a manifold, let alone a variety. So the fact
that the Picard group of proper varieties turns out to be a scheme should be seen
as quite remarkable.

19.11.13. A variety whose ring of functions is not finitely-generated.
We next show an example of a complex variety whose ring of global sections

is not finitely generated. (An example over Q can be constructed in the same way
using the curve of Remark 19.11.8.) This is related to Hilbert’s fourteenth problem
(see [Mu5, §3]).

19.11.E. PRELIMINARY EXERCISE. Suppose X is a scheme, and L is the total space
of a line bundle corresponding to invertible sheaf L , so L = Spec ⊕n≥0(L ∨)⊗n.
(This construction first appeared in Definition 17.1.4.) Show that if X is quasicom-
pact, then H0(L,OL) = ⊕H0(X, (L ∨)⊗n). (Possible hint: choose a trivializing
cover for L . Rhetorical question: can you figure out the more general statement if
L is a rank r locally free sheaf?)

Let E be an elliptic curve over some ground field k, N a degree 0 non-torsion
invertible sheaf on E, and P a positive-degree invertible sheaf on E. ThenH0(E,N m⊗
Pn) is nonzero if and only if either (i) n > 0, or (ii) m = n = 0 (in which case the
sections are elements of k).

19.11.F. EASY EXERCISE. Show that the ring R = ⊕m,n≥0H0(E,N m ⊗ Pn) is not
finitely generated.
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19.11.G. EXERCISE. Let X be the total space of the vector bundle associated to
(N ⊕P)∨ over E. Show that the ring of global sections of X is R, and hence is not
finitely generated. (Hint: interpret X as a line bundle over a line bundle over E.)

19.11.H. EXERCISE. Show that X (as in the above exercise) is a variety (and in
particular, Noetherian) whose ring of global sections is not Noetherian.



CHAPTER 20

Application: A glimpse of intersection theory

The only reason this chapter appears after Chapter 19 is because we will use
Exercise 19.2.E in the double-starred proof of the Nakai-Moishezon criterion for
ampleness (see §20.4.5).

20.1 Intersecting n line bundles with an n-dimensional variety

Throughout this chapter, X will be a k-variety; in most applications, X will be
projective. The central tool in this chapter is the following.

20.1.1. Definition: intersection product, or intersection number (L1, . . . ,Ln), (L1, . . . ,F ),
(L1, . . . , Y). Suppose F is a coherent sheaf on X with proper support (automatic
if X is proper) of dimension at most n, and L1, . . . , Ln are invertible sheaves on X.
Let (L1 · L2 · · ·Ln · F ) be the signed sum over the 2n subsets of {1, . . . , n}

(20.1.1.1)
∑

{i1,...,im}⊂{1,...,n}

(−1)mχ(X,L ∨
i1

⊗ · · · ⊗ L ∨
im

⊗ F ).

We call this the intersection of L1, . . . , Ln with F . (Never forget that whenever
we write (L1 · · ·Ln · F ), we are implicitly assuming that dim Supp F ≤ n.) The
case we will find most useful is if F is the structure sheaf of a closed subscheme
Y (of dimension at most n). In this case, we may write it (L1 · L2 · · ·Ln · Y). If
the Li are all the same, say L , one often writes (L n · F ) or (L n · Y). (Be careful
with this confusing notation: L n does not mean L ⊗n.) In some circumstances
the convention is to omit the parentheses.

We will prove many things about the intersection product in this chapter. One
fact will be left until we study flatness (Exercise 24.7.D): that it is “deformation-
invariant” — that it is constant in “nice” families.

20.1.A. EXERCISE (REALITY CHECK). Show that if L1 ∼= OX then (L1 ·L2 · · ·Ln ·
F ) = 0.

The following exercise suggests that the intersection product might be inter-
esting, as it “interpolates” between two useful notions: the degree of a line bundle
on a curve, and Bézout’s Theorem.

20.1.B. EXERCISE.
(a) If X is a projective curve, and L is an invertible sheaf on X, show that (L ·X) =
deg

X
L .

(b) Suppose k is an infinite field, X = PN, and Y is a dimension n subvariety of X. If
H1, . . . , Hn are generally chosen hypersurfaces of degrees d1, . . . , dn respectively

543
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(so dim(H1 ∩ · · · ∩ Hn ∩ Y) = 0 by Exercise 11.3.C(d)), then by Bézout’s Theorem
(Exercise 18.6.K),

deg(H1 ∩ · · · ∩Hn ∩ Y) = d1 · · ·dn deg(Y).

Show that
(OX(H1) · · ·OX(Hn) · Y) = d1 · · ·dn deg(Y).

We now describe some of the properties of the intersection product. In the
course of proving Exercise 20.1.B(b) you may in effect solve the following exercise.

20.1.C. EXERCISE. Suppose D is an effective Cartier divisor on X that restricts to
an effective Cartier divisorD|Y = D∩Y on Y (i.e., remains locally not a zerodivisor
on Y). Show that

(L1 · · ·Ln−1 · O(D) · Y) = (L1 · · ·Ln−1 ·D|Y).

More generally, if D is an effective Cartier divisor on X that does not contain any
associated point of F , show that

(L1 · · ·Ln−1 · O(D) · F ) = (L1 · · ·Ln−1 · F |D).

(A similar idea came up in the proof that the Hilbert polynomial is actually poly-
nomial; see the discussion around (18.6.2.1).)

20.1.2. Definition. For this reason, ifD is an effective Cartier divisor, in the symbol
for the intersection product, we often write D instead of O(D). We interchange-
ably think of intersecting effective Cartier divisors rather than line bundles. For
example, we will discuss the special case of intersection theory on a surface in
§20.2, and when we intersect two curves C andD, we will write the intersection as
(C ·D) or even C ·D.

20.1.D. EXERCISE. Show that the intersection product (20.1.1.1) is preserved by
field extension of k.

20.1.3. Proposition. — Assume X is projective. For fixed F , the intersection product
(L1 · · ·Ln · F ) is a symmetric multilinear function of the L1, . . . , Ln.

Proposition 20.1.3 is actually true with “projective” replaced by “proper”, see
[Kl1, Prop. 2] or [Ko1, Prop. VI.2.7]. Unlike most extensions to the proper case,
this is not just an application of Chow’s Lemma. It involves a different approach,
involving a beautiful trick called dévissage.

Proof. Symmetry is clear. By Exercise 20.1.D, we may assume that k is infinite (e.g.,
algebraically closed). We now prove the result by induction on n.

20.1.E. EXERCISE (BASE CASE). Prove the result when n = 1. Hint: Exercise 18.4.S.
(In fact, you can take the base case to be n = 0, if this doesn’t confuse you.)

We now assume the result for smaller values of n. We use a trick. We wish to
show that (for arbitrary L1, L ′

1 , L2, . . . , Ln),

(20.1.3.1) (L1 ·L2 · · ·Ln ·F )+(L ′
1 ·L2 · · ·Ln ·F )−((L1⊗L ′

1 ) ·L2 · · ·Ln ·F )

is 0.
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20.1.F. EXERCISE. Rewrite (20.1.3.1) as

(20.1.3.2) (L1 · L ′
1 · L2 · · ·Ln · F ).

(There are now n + 1 line bundles appearing in the product, but this does not
contradict the definition of the intersection product, as dim Supp F ≤ n < n+ 1.)

20.1.G. EXERCISE. Use the inductive hypothesis to show that (20.1.3.1) is 0 if
Ln ∼= O(D) for D an effective Cartier divisor missing the associated points of F .

In particular, if Ln is very ample, then (20.1.3.1) is 0, as Exercise 18.6.A shows
that there exists a section of Ln missing the associated points of F .

By the symmetry of its incarnation as (20.1.3.2), expression (20.1.3.1) vanishes
if L1 is very ample. Let A and B be any two very ample line bundles on X. Then
by substituting L1 = B and L ′

1 = A ⊗ B∨, using the vanishing of (20.1.3.1), we
have

(20.1.3.3) (A ⊗ B∨ · L2 · · ·Ln · F ) = (A · L2 · · ·Ln · F ) − (B · L2 · · ·Ln · F )

Both summands on the right side of (20.1.3.3) are linear in Ln, so the same is true
of the left side. But by Exercise 16.6.F, any invertible sheaf on X may be written in
the form A ⊗B∨ (“as the difference of two very amples”), so (L1 ·L2 · · ·Ln ·F ) is
linear in Ln, and thus (by symmetry) in each of the Li. (An interesting feature of
this argument is that we intended to show linearity in L1, and ended up showing
linearity in Ln.) □

We have an added bonus arising from the proof.

20.1.H. EXERCISE. Suppose X is projective. Show that if dim Supp F < n+1, and
L1, L ′

1 , L2, . . . , Ln are invertible sheaves on X, then (20.1.3.2) vanishes. In other
words, the intersection product of n + 1 invertible sheaves with a coherent sheaf
F vanishes if the dim Supp F < n + 1. (In fact, the result holds with “projective”
replaced by “proper”, as the results it relies on hold in this greater generality.)

20.1.4. Proposition. — Suppose X is projective. The intersection product depends only
on the numerical equivalence classes of the Li.

(Numerical equivalence was defined in §18.4.10.) Again, the result remains
true with “projective” replaced by “proper”. But in the proof here, we use the fact
that every line bundles is the difference two very ample line bundles in both the
proof of Proposition 20.1.3 and in the proof of Proposition 20.1.4 itself. For the
proof of the Proposition in the proper case, see [FGIKNV, Prop. B.20].

Proof. Suppose L1 is numerically equivalent to L ′
1 , and L2, . . . , Ln, and F are

arbitrary. We wish to show that (L1 · L2 · · ·Ln · F ) = (L ′
1 · L2 · · ·Ln · F ).

By Exercise 20.1.D, we may assume that k is infinite (e.g., algebraically closed).
We proceed by induction on n. The case n = 1 follows from Exercise 18.4.S. We
assume that n > 1, and assume the result for “smaller n”. By multilinearity of the
intersection product, and the fact that each Ln maybe written as the “difference”
of two very ample invertible sheaves (Exercise 16.6.F), it suffices to prove the result
in the case when Ln is very ample. We may then write Ln = O(D), whereD is an
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effective Cartier divisor missing the associated points of F (Exercise 18.6.A). Then

(L1 · L2 · · ·Ln · F ) = (L1 · L2 · · ·Ln−1 · F |D) (Exercise 20.1.C)
= (L ′

1 · L2 · · ·Ln−1 · F |D) (inductive hyp.)
= (L ′

1 · L2 · · ·Ln · F ) (Exercise 20.1.C).

□

20.1.5. Asymptotic Riemann-Roch.
If Y is a proper curve, χ(Y,L ⊗m) = mdeg

Y
L + χ(Y,OY) (see (18.4.4.1)) is

a linear polynomial in m, whose leading term is an intersection product. This
generalizes as follows.

20.1.I. EXERCISE (ASYMPTOTIC RIEMANN-ROCH). Suppose X is projective. (As
usual, the result will remain true with “projective” replaced by “proper”.) Sup-
pose F is a coherent sheaf on X with dim Supp F ≤ n, and L is a line bundle on
X. Show that χ(X,L ⊗m⊗F ) is a polynomial inm of degree at most n. Show that
the coefficient ofmn in this polynomial (the “leading term”) is (L n ·F )/n!. Hint:
Exercise 20.1.H implies that (L n+1 · (L ⊗i ⊗ F )) = 0. (Careful with this notation:
L n+1 doesn’t mean L ⊗(n+1), it means L · L · · ·L with n + 1 factors.) Expand
this out using (20.1.1.1) to get a recursion for χ(X,L ⊗m⊗F ). Your argument may
resemble the proof of polynomiality of the Hilbert polynomial, Theorem 18.6.1, so
you may find further hints there. Exercise 18.6.C in particular might help.

We know all the coefficients of this polynomial if X is a curve, by Riemann-
Roch (see (18.4.4.1)), or basically by definition. We will know/interpret all the
coefficients ifX is a regular projective surface and F is an invertible sheaf when we
prove Riemann-Roch for surfaces (Exercise 20.2.B(b)). To understand the general
case, we need the theory of Chern classes. The result is the Hirzebruch-Riemann-
Roch Theorem, which can be further generalized to the celebrated Grothendieck-
Riemann-Roch Theorem (see [F, §15.2]).

20.1.J. EXERCISE (THE PROJECTION FORMULA). Suppose π : X1 → X2 is a (projec-
tive) morphism of integral projective schemes (over a field k) of the same dimen-
sion n, and L1, . . . , Ln are invertible sheaves on X2. Show that

(π∗L1 · · ·π∗Ln) = deg(X1/X2)(L1 · · ·Ln).

(The first intersection is on X1, and the second is on X2.) Hint: Let d = degπ, and
assume d > 0. (Deal with the case where π is not dominant separately, so d = 0

by convention, using Chevalley’s Theorem 7.4.2.) Argue that by the multilinearity
of the intersection product, it suffices to deal with the case where the Li are very
ample. Then choose sections of each Li, all of whose intersections lie in an open
subsetUwhere π has “genuine degree d”. To findU: first use Exercise 9.3.G to find
a dense open subsetU ′ ⊂ X2 over which π is finite. Then use Useful Exercise 13.7.F
to show that there exists a dense open subset U ⊂ U ′ on which π∗O is a locally
free sheaf of rank d. In the “flatness” language of Chapter 24, you are showing that
there is a dense open subset U of X2 over which π is finite and flat (and hence has
“constant degree”, see Remark 24.4.8). (As usual, the result holds with “projective”
replaced with “proper”; see [Ko1, Prop. VI.2.11].)
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20.1.6. Remark: A more general projection formula. Suppose π : X1 → X2 is a proper
morphism of proper varieties, and F is a coherent sheaf onX1 with dim Supp F ≤
n (so dim Suppπ∗F ≤ n, using Exercise 11.2.C). Suppose also that L1, . . . , Ln are
invertible sheaves on X2. Then

(π∗L1 · · ·π∗Ln · F ) = (L1 · · ·Ln · π∗F ).

This is also called the projection formula (and generalizes, in a nonobvious way,
Exercise 20.1.J). Proofs are given in [FGIKNV, B.15] and [Ko1, Prop. VI.2.11]. Be-
cause we won’t use this version of the projection formula, we do not give a proof
here.

20.1.K. EXERCISE (INTERSECTING WITH AMPLE LINE BUNDLES). Suppose X is
a projective k-variety, and L is an ample line bundle on X. Show that for any
subvariety Y of X of dimension n, (L n · Y) > 0. (Hint: use Proposition 20.1.3
and Theorem 16.6.2 to reduce to the case where L is very ample. Then show that
(L n · Y) = deg Y in the embedding into projective space induced by the linear
series |L |.)

The Nakai-Moishezon criterion (Theorem 20.4.1) states that this characterizes
ampleness.

20.1.7. ⋆⋆ Cohomological interpretation in the complex projective case, generalizing Ex-
ercise 18.4.G and §18.6.4. If k = C, we can interpret (L1 · · ·Ln · Y) as the degree
of

(20.1.7.1) c1((L1)an) ∪ · · · ∪ c1((Ln)an) ∩ [Yan]

in H0(Yan,Z). (Recall c1((Li)an) ∈ H2(Xan,Z), as discussed in Exercise 18.4.G.)
One way of proving this is to use multilinearity of both the intersection product
and (20.1.7.1) to reduce to the case where the Ln is very ample, so Ln ∼= O(D),
where D restricts to an effective Cartier divisor E on Y. Then show that if L is an
analytic line bundle on Yan with nonzero section Ean, then c1(L )∩ [Yan] = [Ean].
Finally, use induction on n and Exercise 20.1.C.

20.1.8. Important remark: additive notation for line bundles. There is a stan-
dard, useful, but confusing convention suggested by the multilinearity of the in-
tersection product: we write tensor product of invertible sheaves additively. This is
convenient for working with multilinearity. (Some people try to avoid confusion
by using divisors rather than line bundles, as we add divisors when we “multi-
ply” the corresponding line bundles. This is psychologically helpful, but may add
more confusion, as one then has to worry about the whether and why and how
and when line bundles correspond to divisors.) We will use this, for example, in
Exercises 20.2.B–20.2.G, §20.2.10, and §20.4.

20.2 Intersection theory on a surface

We now apply the general machinery of §20.1 to the case of a regular projective
surface X. (What matters is that X is Noetherian and factorial, so PicX → ClX is
an isomorphism, Proposition 14.2.10. Recall that regular schemes are factorial by
the Auslander-Buchsbaum Theorem 12.8.5.)
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20.2.A. EXERCISE/DEFINITION. Suppose C and D are effective divisors (i.e.,
curves) on X.
(a) Show that

deg
C

OX(D)|C(20.2.0.1)
= (O(C) · O(D) · X)(20.2.0.2)
= deg

D
OX(C)|D.(20.2.0.3)

We call this the intersection number of C and D, and denote it C ·D.
(b) If C does not contain any associated point of D (so in particular, if C and D
have no components in common), show that

(20.2.0.4) C ·D = h0(C ∩D,OC∩D)

where C ∩D is the scheme-theoretic intersection of C and D on X.

20.2.1. Remark. In particular, if C and D have no irreducible component in com-
mon, then C ·D ≥ 0. This means that we cannot hope to understand intersection
numbers using moving lemmas as in topology — if we have some irreducible
curve E with E2 < 0, we cannot “move” E to something (call if F) “equivalent” to
E, to compute E · E as E · F.

20.2.2. Important aside. The hypothesis in Exercise 20.2.A(b), thatC not contain any
associated point of D, is somewhat of a red herring. In fact, D can never have any
embedded points, as we will see in §26.2.5 when discussing Cohen-Macaulay rings.
(More generally, we will see that local complete intersections have no embedded
points — this should help motivate you to learn about Cohen-Macaulayness.) The
case of A2 (and hence P2) can be done by hand (Exercise 5.5.I).

Thus the hypothesis in Exercise 20.2.A(b) can be replaced by the more simple
“C and D have no common components”.

20.2.3. Advantages and disadvantages. We thus have four descriptions of the in-
tersection number (20.2.0.1)–(20.2.0.4), each with advantages and disadvantages.
The Euler characteristic description (20.2.0.2) is remarkably useful (for example, in
the exercises below), but the geometry is obscured. The definition deg

C
OX(D)|C,

(20.2.0.1), is not obviously symmetric in C andD. The definition h0(C∩D,OC∩D),
(20.2.0.4), is clearly local — to each point of C ∩ D, we have a vector space. For
example, we know that in A2k, y − x2 = 0 meets the x-axis with multiplicity 2, be-
cause h0 of the scheme-theoretic intersection (k[x, y]/(y− x2, y)) has dimension 2.
(This h0 is also the length of the dimension 0 scheme, whose definition you may be
able to figure out given Definition 18.4.7 of the length of a module. But we won’t
use this terminology.)

By Proposition 20.1.3, the intersection number induces a bilinear “intersection
form”

(20.2.3.1) PicX× PicX→ Z.

By Asymptotic Riemann-Roch (Exercise 20.1.I), χ(X,O(nD)) is a quadratic polyno-
mial in n.
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20.2.4. You can verify that Exercise 20.2.A recovers Bézout’s Theorem for plane
curves (see Exercise 18.6.K), using χ(P2,O(n)) = (n + 2)(n + 1)/2 (from Theo-
rem 18.1.3), and the fact that effective Cartier divisors on P2k have no embedded
points (Exercise 5.5.I).

Before getting to a number of interesting explicit examples, we derive a couple
of fundamental theoretical facts.

20.2.B. EXERCISE. Assuming Serre duality for X (Theorem 18.5.1), prove the fol-
lowing for a smooth projective surface X. (We are mixing divisor and invertible
sheaf notation, as described in Remark 20.1.8, so be careful. Here KX is a divisor
corresponding toωX.)
(a) (sometimes called the adjunction formula) C · (KX +C) = 2pa(C) − 2 for any curve
C ⊂ X. Hint: compute (C · (−KX − C) instead. (See Exercise 21.5.B and §30.4 for
other versions of the adjunction formula.)
(b) (Riemann-Roch for surfaces)

χ(X,OX(D)) = D · (D− KX)/2+ χ(X,OX)

for any Weil divisor D (cf. Riemann-Roch for curves, Exercise 18.4.B).

20.2.5. Two explicit examples: P1 × P1 and Blp P2.

20.2.C. EXERCISE: X = P1 × P1. Recall from Exercise 14.2.O that Pic(P1 × P1) =
Zℓ × Zm, where ℓ is the curve P1 × {0} and m is the curve {0} × P1. Show that the
intersection form (20.2.3.1) is given by ℓ · ℓ = m ·m = 0, ℓ ·m = 1. (Hint: You can
compute the cohomology groups of line bundles on P1 × P1 using Exercise 18.3.3,
but it is much faster to use Exercise 20.2.A(b).) What is the class of the diagonal in
P1 × P1 in terms of these generators?

20.2.D. EXERCISE: THE BLOWN UP PROJECTIVE PLANE. (You needn’t have read
Chapter 22 to do this exercise!) Let X = Blp P2 be the blow-up of P2k at a k-valued
point (the origin, say) p — see Exercise 9.3.F, which describes the blow-up of A2k,
and “compactify”. Interpret PicX as generated (as an abelian group) by ℓ and e,
where ℓ is a line not passing through the origin, and e is the exceptional divisor.
Show that the intersection form (20.2.3.1) is given by ℓ·ℓ = 1, e·e = −1, and ℓ·e = 0.
Hence show that PicX ∼= Zℓ × Ze (as promised in the aside in Exercise 14.2.P). In
particular, the exceptional divisor has negative self-intersection. (This exercise will
be generalized in §22.4.13.)

20.2.6. Hint. Here is a possible hint to get the intersection form in Exercise 20.2.D.
The scheme-theoretic preimage in Blp P2 of a line through the origin is the scheme-
theoretic union of the exceptional divisor e and the “proper transform” m of the
line through the origin. Show that ℓ = e + m in Pic(Blp P2) (writing the Picard
group operation additively, cf. Remark 20.1.8). Show that ℓ ·m = e ·m = 1 and
m ·m = 0.

20.2.7. Definition: (−1)-curve. Notice that the exceptional divisor e has self-
intersection −1. We will see more generally in Exercise 22.4.O that this is the case
for all exceptional divisors of blow-ups of smooth surfaces (over k) blown up at a
k-valued point. We give such curves a name. If X is a surface over k, and C ⊂ X is
a curve in X consisting of smooth points, with C ∼= P1k, and C ·C = −1, we say that
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C is a (−1)-curve. (Once we know more, we will be able to restate “C ·C = −1” as
“C has normal bundle O(−1)”: combine Exercise 21.2.H with Exercise 20.2.A(a).)

20.2.E. EXERCISE. Show that the blown up projective plane Blp P2 in Exercise 20.2.D
is not isomorphic to P1×P1, perhaps considering their (isomorphic) Picard groups,
and identifying which classes are effective (represented by effective divisors). (This
is an example of a pair of smooth projective birational surfaces that have isomor-
phic Picard groups, but which are not isomorphic. This exercise shows that F0 is
not isomorphic to F1. (The method and result are generalized in Exercise 20.2.Q.)

20.2.F. EXERCISE (CF. EXERCISE 18.4.X). Show that the nef cone (Exercise 18.4.W)
of Blp P2 is generated by ℓ andm. Hint: show that ℓ andm are nef. By intersecting
line bundles with the curves e and ℓ, show that nothing outside the cone spanned
by ℓ and m is nef. (Side Remark: note that as in Exercise 18.4.X, linear series
corresponding to the boundaries of the cone give “interesting contractions”.)

20.2.G. EXERCISE: A PROPER NONPROJECTIVE SURFACE. Show the existence of
a proper nonprojective surface over a field as follows, paralleling the construction
of a proper nonprojective threefold in §16.4.10. Take two copies of the blown up
projective plane Blp P2, gluing ℓ on the first to e on the second, and e on the second
to ℓ on the first. Hint: show that if L is a line bundle having positive degree on
each effective curve, then L · ℓ > L · e, using ℓ = e +m from Hint 20.2.6. (See
§19.11.11 for another example of a proper nonprojective surface.)

20.2.8. Fibrations.
Suppose π : X→ B is a morphism from a regular projective surface to a regular

curve and b ∈ B is a closed point. Let F = π∗b. Then OX(F) = π∗OB(b), which is
isomorphic to O on F. Thus F · F = deg

F
OX(F) = 0: “the self-intersection of a fiber

is 0”. The same argument works without X being regular, so long as you phrase it
properly: (π∗OX(b))2 = 0.

20.2.H. EXERCISE. Suppose E is an elliptic curve, with origin p. On E× E, let ∆ be
the diagonal. By considering the “difference” map E×E→ E, for which π∗(p) = ∆,
show that ∆2 = 0. Show that N1Q(E × E) has rank at least 3. Show that in general
for schemes X and Y, PicX × Pic Y → Pic(X × Y) (defined by pulling back and
tensoring) need not be isomorphism; the case of X = Y = P1 is misleading.

Remark: dimQN
1
Q(E × E) is always 3 or 4. It is 4 if there is a nontrivial en-

domorphism from E to itself (i.e., not just multiplication [n] by some n, §19.11.5,
followed by a translation); the additional class comes from the graph of this en-
domorphism. (See [Mu3, §21, App. III] for an introduction to the tools needed to
show this.)

Our next goal is to describe the self-intersection of a curve on a ruled surface
(Exercise 20.2.J). To set this up, we have a useful preliminary result.

20.2.I. EXERCISE (THE NORMAL BUNDLE TO A SECTION OF Proj OF A RANK 2 VEC-
TOR BUNDLE). Suppose X is a scheme, and and V is a rank 2 locally free sheaf on
X. Explain how the short exact sequences

(20.2.8.1) 0→ S → V → Q → 0
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on X, where S and Q have rank 1, correspond to the sections σ : X → PV to the
projection PV → X. Show that the normal bundle to σ(X) in PV is Q⊗S ∨. (A gen-
eralization is stated in §21.4.10.) Hint: (i) For simplicity, it is convenient to assume
S = OX, by replacing V by V ⊗S ∨, as the statement of the problem respects ten-
soring by an invertible sheaf (see Exercise 17.2.G). (ii) Assume now (with loss of
generality) that Q ∼= OX, and the exact sequence splits. Then describe the section
as σ : X→ P1×X, with Xmapping to the 0 section. Describe an isomorphism of OX
with the normal bundle to σ(X)→ P1 ×X. (Do not just say that the normal bundle
“is trivial”.) (iii) Now consider the case where Q is general. Choose trivializing
open neighborhoods Ui of Q, and let gij be the the transition function for Q. On
the overlap between two trivializing open neighborhoodsUi ∩Uj, determine how
your two isomorphisms of OX with Nσ(X)/P1

X
from (ii) (one for Ui, one for Uj) are

related. In particular, show that they differ by gij.

20.2.J. EXERCISE (SELF-INTERSECTIONS OF SECTIONS OF RULED SURFACES). Sup-
pose C is a regular curve, and V is a rank 2 locally free sheaf on C. Then PV is a
ruled surface (Example 17.2.4). Fix a section σ of PV corresponding to a filtration
(20.2.8.1). Show that σ(C) · σ(C) = deg

C
(Q ⊗ S ∨).

20.2.9. The Hirzebruch surfaces Fn = ProjP1(OP1 ⊕ OP1(n)).
Recall the definition of the Hirzebruch surface Fn = ProjP1(OP1 ⊕ OP1(n))

in Example 17.2.4. It is a P1-bundle over P1; let π : Fn → P1 be the structure
morphism. Using Exercise 20.2.J, corresponding to

0→ O(n)→ O ⊕ O(n)→ O → 0,

we have a section of π of self-intersection −n; call it E ⊂ Fn. Similarly, correspond-
ing to

0→ O → O ⊕ O(n)→ O(n)→ 0,

we have a section C ⊂ Fn of self-intersection n. Let p be any k-valued point of P1,
and let F = π∗(p).

20.2.K. EXERCISE. Show that the line bundle O(F) is independent of the choice of
p.

20.2.L. EXERCISE. Show that PicFn is generated by E and F. In the course of
doing this, you will develop “local charts” for Fn, which will help you solve later
exercises.

20.2.M. EXERCISE. Compute the intersection matrix on PicFn. Show that E and F
are independent, and thus PicFn ∼= ZE⊕ ZF. Calculate C in terms of E and F.

20.2.N. EXERCISE. Show how to identify Fn \ E, along with the structure map
π, with the total space of the line bundle O(n) on P1, with C as the 0-section.
Similarly show how to identify Fn\Cwith the total space of the line bundle O(−n)
on P1; with E as the 0-section.

20.2.O. EXERCISE. Show that h0(Fn,OFn
(C)) > 1. Hint: As OFn

(C) has a section
— namely C — we have that h0(Fn,OFn

(C)) ≥ 1. One way to proceed is to write
down another section using local charts for Fn.
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20.2.P. EXERCISE. Show that every effective curve on Fn is a non-negative linear
combination of E and F. (Conversely, it is clear that for every nonnegative a and
b, O(aE + bF) has a section, corresponding to the effective curve “aE + bF”. The
extension of this to N1Q is called the effective cone, and this notion, extended to
proper varieties more general, can be very useful. This exercise shows that E and
F generate the effective cone of Fn.) Hint: show that because “F moves”, any
effective curve must intersect F nonnegatively, and similarly because “C moves”
(Exercise 20.2.O), any effective curve must intersectC nonnegatively. If O(aE+bF)
has a section corresponding to an effective curveD, what does this say about a and
b?

20.2.Q. EXERCISE. By comparing effective cones, and the intersection pairing,
show that the Fn are pairwise nonisomorphic. (This result was promised in Exam-
ple 17.2.4. Exercise 20.2.E is a special case.)

Exercise 20.2.Q is difficult to do otherwise, and foreshadows the fact that nef
and effective cones are useful tools in classifying and understanding varieties gen-
eral. In particular, they are central to the minimal model program.

20.2.R. EXERCISE. If n = 0, show that there are no curves on Fn of negative self-
intersection. If n ≥ 0, show that E is the unique curve on Fn with self-intersection
−n, and there are no reduced curves on Fn of smaller self-intersection. This again
gives another (related) means of showing that the Fn are pairwise nonisomorphic.

20.2.S. EXERCISE. Show that the nef cone of Fn is generated by C and F. (We will
soon see that by Kleiman’s criterion for ampleness, Theorem 20.4.7, that the ample
cone is the interior of this cone, so we have now identified the ample line bundles
on Fn.)

20.2.T. EXERCISE. We have seen earlier (Exercises 20.2.F and 18.4.X) that the
boundary of the nef cone give “interesting contractions”. What are the maps given
by the two linear series corresponding to O(F) and O(C)?

After this series of exercises, you may wish to revisit Exercises 20.2.C-20.2.F,
and interpret them as special cases: F0 ∼= P1 × P1 and F1 ∼= Blp P2.

20.2.10. The Hodge Index Theorem.
We use what we have learned to prove the following celebrated result.

20.2.11. The Hodge Index Theorem. — Suppose X is an irreducible smooth projective
surface (over a field k) with L ,H ∈ PicX, with H · H > 0 and L · H = 0. Then (a)
L · L ≤ 0, and (b) equality holds if and only if L is numerically trivial.

Before reading on, you should review the definitions of N1(X) and ρ(X) in
§18.4.10.

20.2.U. EXERCISE (REASON FOR THE NAME). (We will not use this.) By arguments
similar to the classification of quadratic forms over algebraically closed fields (Ex-
ercise 5.4.J), one can show that given a symmetric bilinear form on a real vector
space of (finite) dimension n, there are integers a+, a0, a− such that then given
any orthogonal basis v1, . . . , vn, the number of vi · vi that are positive (resp. zero,
negative) is a+ (resp. a0, a−). The ordered pair (a+, a−) is often called the index,
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and is sometimes called the signature. (This result is sometimes called Sylvester’s
law of inertia. See, for example, [Lan, §XV.4] for a proof.) Show that the Hodge
Index Theorem implies that N1R(X) := N1(X) ⊗Z R, along with the bilinear form
coming from the intersection product, has index (1, ρ(X) − 1). You should think of
the positive “term” as coming from the existence of an ample class; the “rest” is
negative.

Proof.

20.2.12. We begin with the following fact. If H is an ample invertible sheaf, M
is any invertible sheaf, and M · H > ωX · H , then h2(X,M ) = 0. (Translation:
for all invertible sheaves “more positive than ωX”, there is no top cohomology;
compare this to §19.2.5, the corresponding statement in dimension 1.) Reason: by
Serre duality (Theorem 18.5.1), we wish to show that h0(X,ωX ⊗ M∨) = 0. But
if otherwise ωX ⊗ M∨ had a nonzero section, then its (effective nonzero) divisor
would intersect H nonnegatively (Exercise 20.1.K), so (using additive notation,
see Remark 20.1.8) (ωX − M ) · H ≥ 0, contradicting M · H > ωX · H .

20.2.13. We next show that if H is ample, and L is any invertible sheaf with
L · L > 0 and L · H > 0, then for n ≫ 0, L ⊗n has a section. Here is why. For
n≫ 0,

L ⊗n · H = nL · H > ωX · H ,

so h2(X,L ⊗n) = 0 by §20.2.12 (taking M = L ⊗n). Then for n ≫ 0, by Riemann-
Roch for surfaces (Exercise 20.2.B(b)),

h0(X,L ⊗n) − h1(X,L ⊗n) = χ(X,L ⊗n)

= (n2/2)L · L − nL ·ωX/2+ χ(X,OX).
As L · L > 0, the right side is positive for n≫ 0, so

h0(X,L ⊗n) ≥ h0(X,L ⊗n) − h1(X,L ⊗n) > 0

as desired.

20.2.14. We are now ready to prove the Hodge Index Theorem. Assume first that
L · L > 0 (and L · H = 0). Then for n≫ 0, H ′ := L ⊗ H ⊗n is ample (indeed
very ample) by Exercise 16.6.E. Then L · H ′ = L · L > 0, so by §20.2.13, L ⊗n

is effective, which implies that L · H = (L ⊗n · H )/n > 0 (using Exercise 20.1.K
again), contradicting our hypothesis.

20.2.15. Assume finally that L · H = 0, and (i) L · L = 0, but that (ii) L is not
numerically trivial. By (ii), we can find an invertible sheaf Q such that Q · L ̸= 0.
Then we can find an invertible sheaf R such that R · L ̸= 0 and R · H = 0: take

R = (H · H )Q − (Q · H )H .

Then take L ′ = L ⊗n ⊗ R, so L ′ · H = 0, but because R · L ̸= 0, we can find
some n ∈ Z so that

L ′ · L ′ = nL · R + R · R > 0.

Then the argument of §20.2.14 applies, with L ′ in the place of L . □

20.2.16. Generalizations and variations. The hypotheses can be weakened consider-
ably. We used smoothness only because we need Serre duality, with an invertible
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sheaf ωX. We will see in §30.4 that we need less than smoothness for this. But we
can do much better, and a proof where X is merely required to be geometrically
irreducible and proper requires only a minor modification of our argument, see
[FGIKNV, Thm. B.27].

20.3 The Grothendieck group of coherent sheaves, and an
algebraic version of homology

The construction of the intersection product (20.1.1.1) may leave you hun-
gry for something more, especially in light of the cohomological interpretation
of §20.1.7. You may want some sort of homology-like theory which is a repository
for cycles of different directions, on which (Chern classes of) line bundles can act.
We can actually do this easily, given what we know.

20.3.1. Definition. If X is a k-variety, we define the Grothendieck group of co-
herent sheaves, which we denote K(X) (and which is often denoted K0(X)), as the
abelian group generated symbols of the form [F ] where F is a coherent sheaf on
X, subject to the relations that [F ] = [F ′] if F ∼= F ′, and [F ′] + [F ′′] = [F ] if
there is a short exact sequence

0→ F ′ → F → F ′′ → 0.

(Caution: the notation K(X) is now used for two concepts, the Grothendieck group
and the function field. The meaning of the symbol should be clear from the con-
text.) By construction, the Grothendieck group is the universal construction of
an operator on the category of coherent sheaves that “behaves well in exact se-
quences”. For example, if X is proper, then:

(i) We have a map χ : CohX → Z, as the Euler characteristic of a coherent
sheaf is finite by Theorem 18.1.4(i) in the projective case, and more gener-
ally by Grothendieck’s Coherence Theorem 18.9.1 in the proper case. This
map descends to χ : K(X)→ Z by Exercise 18.4.A (which extends without
change to the proper case).

(ii) If X is integral, then the rank function

rank : CohX → Z

descends to rank : K(X)→ Z. (The argument of Exercise 18.4.H applies.)

20.3.2. Definition and nonstandard notation. The Grothendieck group is filtered by
dimension: let K(X)≤d be the subgroup of K(X) generated by coherent sheaves
supported in dimension at most d. Let A ′

d(X) be the dth graded piece of K(X), i.e.,
A ′
d(X) := K(X)

≤d/K(X)≤d−1.
If L is an invertible sheaf on X, define L · : K(X) → K(X) by L · [F ] = [F ] −

[L ∨ ⊗ F ]. (Do you see why this operator is well-defined?)

20.3.A. EXERCISE. If X is projective and k is infinite, show that L · sends K(X)≤d to
K(X)≤d−1. (Hint: for each fixed F supported on a subset of dimension at most d,
write L is a difference of two very ample invertible sheaves, and choose sections
of those two, missing the associated points of F .)
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20.3.3. Remark. The previous exercise holds true without k being infinite or X
being proper; see [Ko1, Prop. VI.2.5].

20.3.4. For the rest of this section, we assume X is projective and k is infinite. (But
in light of Remark 20.3.3, these hypotheses can be removed.) By Exercise 20.3.A,
L · descends to a map A ′

d(X) → A ′
d−1(X); we denote this operator c1(L )∩. (It is

the action of the first Chern class.)

20.3.B. EXERCISE (“c1 IS ADDITIVE”). Show that c1(L ⊗ L ′)∩ = (c1(L )∩) +
(c1(L ′)∩). Hint: show that ((L ⊗ L ′)·) − (L ·) − (L ′·) = −(L ·) ◦ (L ′·), and
thus sends K(X)≤d to K(X)≤d−2. (This will remind you of the trick in the proof of
Proposition 20.1.3, and indeed is the motivation for that trick. Caution: the action
of Pic(X) is not additive on K(X); it only becomes additive once we pass to the
associated graded ring A ′

•(X).)

If F has support of dimension at most n, and L1, . . . , Ln are n invertible
sheaves, we can now reinterpret the intersection product (L1 · L2 · · ·Ln · F ) as

c1(L1) ∩ · · · ∩ c1(Ln) ∩ [F ]

where [F ] is interpreted as lying in eitherK(X) orA ′
n(X). You can now go back and

read §20.1, and reprove all the results with this starting point, sometimes obtaining
interesting generalizations.

These A ′
d(X) behave like homology groups in a number of ways. If Y ⊂ X is a

closed subvariety of pure dimension d, we have a class [Y] := [OY ] ∈ A ′
d(X). The

groups A ′
d(X) have appropriate functorial properties. For example, if π : X1 → X2

is a proper morphism (even if the Xi are not themselves proper), we have a map
π∗ : K(X1)→ K(X2) given by

(20.3.4.1) π∗[F ] = [π∗F ] − [R1π∗F ] + · · ·

(using the long exact sequence for higher pushforwards, Theorem 18.8.1 (c)) which
descends to a map A ′

d(X1)→ A ′
d(X2), where the “later terms” on the right side of

(20.3.4.1) disappear, so π∗[F ] = [π∗F ]. This pushforward interacts well with the
first Chern class of line bundles, yielding the projection formula of Remark 20.1.6.

If π is instead a flat morphism (Remark 16.3.8, soon to be discussed at length
in Chapter 24), then π∗ is exact, so we have a map π∗ : K(X2) → K(X1). If the
“relative dimension” of this map is r (to be properly defined in Definition 24.5.7),
this yields a map π∗A ′

d(X2) → A ′
d+r(X1). This interacts well with first Chern

classes and proper pushforwards.
If k = C and X is proper, there is a mapA ′

d(X)→ H2d(X,Q), which behaves as
you might hope (for example, in its interaction with Chern classes of line bundles).
If X is not proper (but k = C), then the map is to Borel-Moore homology rather
than usual homology.

Our groups A ′
d(X) are a good approximation of the theory of Chow groups

Ad(X), as developed in [F]. In fact, there is a surjective map

(20.3.4.2) Ad(X)→ A ′
d(X)

[F, Examp. 15.1.5], and this map is an isomorphism once tensored with Q [F,
Thms. 18.2 and 18.3]. This is the beginning of a long and rich story in algebraic
geometry.
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20.3.5. Side Remark. The surjection map (20.3.4.2) need not be an isomorphism,
see [SGA6, Exp. XIV, §4.5-4.7] (although its kernel must be torsion, as described
above). As a tantalizing example, if X is the group E8, the kernel has 2-torsion,
3-torsion, and 5-torsion, see [KN, DZ].

20.4 ⋆⋆ The Nakai-Moishezon and Kleiman criteria for ampleness

Exercise 20.1.K stated that if X is projective k-variety, and L is an ample line
bundle on X, then for any subvariety Y of X of dimension n, (L n · Y) > 0. The
Nakai-Moishezon criterion states that this is a characterization:

20.4.1. Theorem (Nakai-Moishezon criterion for ampleness). — If L is an in-
vertible sheaf on a projective k-scheme X, and for every subvariety Y of X of dimension n,
(L n · Y) > 0, then L is ample.

20.4.2. Remarks. We note that X need only be proper for this result to hold ([Kl1,
Thm. III.1.1]).

Before proving the Nakai-Moishezon criterion, we point out some consequences
related to our discussion of numerical equivalence in §18.4.9. By Proposition 20.1.4,
(L n · Y) depends only on the numerical equivalence class of L , so ampleness is
a numerical property. As a result, the notion of ampleness makes sense on N1Q(X).
As the tensor product of two ample invertible sheaves is ample (Exercise 16.6.H),
the ample Q-line bundles in N1Q(X) form a cone, called the ample cone of X.

20.4.3. Proposition. — If X is a projective k-scheme, the ample cone is open.

20.4.4. In the rest of this section, we often use additive notation for the tensor
product of invertible sheaves, as described in Remark 20.1.8. This is because we
want to deal with intersections on the Q-vector space N1Q(X). For example by
((aL1 + bL ′

1 ) · L2 · · ·Ln · F ) (where a, b ∈ Q), we mean a(L1 · L2 · · ·Ln ·
F ) + b(L ′

1 · L2 · · ·Ln · F ).

Proof. Suppose A is an ample invertible sheaf on X. We will describe a small
open neighborhood of [A ] in N1Q(X) consisting of ample Q-line bundles. Choose
invertible sheaves L1, . . . , Ln on X whose classes form a basis of N1Q(X). By Ex-
ercise 16.6.E, there is some m such that A ⊗m ⊗ Li and A ⊗m ⊗ L ∨

i are both
very ample for all n. Thus (in the additive notation of § 20.4.4), A + 1

m
Li and

A − 1
m

Li are both ample. As the ample Q-line bundles form a cone, it follows
that A + ϵ1L1 + · · ·+ ϵnLn is ample for

∑
i |ϵi| ≤ 1/m. □

20.4.5. Proof of the Nakai-Moishezon criterion, Theorem 20.4.1. We prove the Nakai-
Moishezon criterion in several steps.

20.4.A. UNIMPORTANT EXERCISE. Prove the case where dimX = 0.

Step 1: initial reductions. Suppose L satisfies the hypotheses of the Theorem;
we wish to show that L is ample. By Exercises 18.7.A and 18.7.B, we may assume
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that X is integral. Moreover, we can work by induction on dimension, so we can
assume that L is ample on any closed subvariety. The base case is dimension 1,
which was done in Exercise 19.2.E.

Step 2: sufficiently high powers of L have sections. We show thatH0(X,L ⊗m) ̸= 0
form≫ 0.

Our plan is as follows. By Asymptotic Riemann-Roch (Exercise 20.1.I), χ(X,L ⊗m) =
mn(L n)/n! + · · · grows (as a function of m) without bound. A plausible means
of attack is to show that hi(X,L ⊗m) = 0 for i > 0 and m ≫ 0. We won’t do that,
but will do something similar.

By Exercise 16.6.C, L is the difference of two very ample line bundles, say
L ∼= A ⊗B−1 with A = O(A) and B = O(B). From 0→ O(−A)→ O → OA → 0

we have

(20.4.5.1) 0→ L ⊗m(−B)→ L ⊗(m+1) → L ⊗(m+1)|A → 0.

From 0→ O(−B)→ O → OB → 0, we have

(20.4.5.2) 0→ L ⊗m(−B)→ L ⊗m → L ⊗m|B → 0.

Choose m large enough so that both L ⊗(m+1)|A and L ⊗m|B have vanishing
higher cohomology (i.e., h>0 = 0 for both; use the inductive hypothesis that L is
ample on all proper closed subvarieties, and Serre vanishing, Theorem 18.1.4(ii)).
This implies that for i ≥ 2,

Hi(X,L ⊗m) ∼= Hi(X,L ⊗m(−B)) (long exact sequence for (20.4.5.2))
∼= Hi(X,L ⊗m+1) (long exact sequence for (20.4.5.1))

so the higher cohomology stabilizes (is constant) for largem. From

χ(X,L ⊗m) = h0(X,L ⊗m) − h1(X,L ⊗m) + constant,

H0(L ⊗m) ̸= 0 form≫ 0, completing Step 2.
So by replacing L by a suitably large multiple (ampleness is independent of

taking tensor powers, Theorem 16.6.2), we may assume L has a section D. We
now use D as a crutch.

Step 3: L ⊗m is globally generated form≫ 0.
As D is effective, L ⊗m is globally generated on the complement of D: we

have a section nonvanishing on that big open set. Thus any base locus must be
contained in D. Consider the short exact sequence

(20.4.5.3) 0→ L ⊗(m−1) → L ⊗m → L ⊗m|D → 0

Now L |D is ample by our inductive hypothesis. Choosem so large thatH1(X,L ⊗m|D) =
0 (Serre vanishing, Theorem 18.1.4(ii)). From the exact sequence associated to
(20.4.5.3),

ϕm : H1(X,L ⊗(m−1))→ H1(X,L ⊗m)

is surjective form≫ 0. Using the fact that the H1(X,L ⊗m) are finite-dimensional
vector spaces, as m grows, H1(X,L ⊗m) must eventually stabilize, so the ϕm are
isomorphisms form≫ 0.

Thus for large m, from the long exact sequence in cohomology for (20.4.5.3),
H0(X,L ⊗m)→ H0(X,L ⊗m|D) is surjective form≫ 0. ButH0(X,L ⊗m|D) has no
base points by our inductive hypothesis (applied to D), i.e., for any point p of D
there is a section of L ⊗m|D not vanishing at p, so H0(X,L ⊗m) has no base points
on D either, completing Step 3.
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Step 4. Thus L is a base-point-free line bundle with positive degree on each
curve (by hypothesis of Theorem 20.4.1), so by Exercise 18.4.L we are done. □

The following result is the key to proving Kleiman’s numerical criterion of
ampleness, Theorem 20.4.7.

20.4.6. Kleiman’s Theorem. — Suppose X is a projective k-scheme. If L is a nef
invertible sheaf on X, then (L k · V) ≥ 0 for every irreducible subvariety V ⊂ X of
dimension k.

As usual, this extends to the proper case, see [Kl1, Thm. IV.2.1]. And as usual,
we postpone the proof until after we appreciate the consequences.

20.4.B. EXERCISE.
(a) (limit of amples is nef) If L and H are any two invertible sheaves such that
L + ϵH is ample for all sufficiently small ϵ > 0, show that L is nef. (Hint:
limϵ→0. This doesn’t require Kleiman’s Theorem.)
(b) (nef + ample = ample) Suppose X is a projective k-scheme, H is ample, and
L is nef. Show that L + ϵH is ample for all ϵ ∈ Q≥0. (Hint: use the Nakai-
Moishezon criterion: ((L + ϵH )k · V) > 0. This may help you appreciate the
additive notation.)

20.4.7. Theorem (Kleiman’s numerical criterion for ampleness). — Suppose X is
a projective k-scheme.

(a) The nef cone is the closure of the ample cone.
(b) The ample cone is the interior of the nef cone.

Side remark: of course (a) is false if “projective” is relaxed to “proper” (as
the ample cone of a proper nonprojective variety is empty, but 0 is nef so the nef
cone is nonempty). However, part (b) is true if X is proper and factorial (see [Kl1,
Thm. IV.2.2] for a proof and a more general statement). Hence if X is smooth,
proper, and nonprojective, then the interior of the nef cone is empty.

20.4.C. EXERCISE. See [Kl1, p. 326, Ex. 2] for Mumford’s example of a non-
ample line bundle on a smooth projective surface that meets every curve positively.
Doesn’t this contradict Theorem 20.4.7?

Proof. (a) Ample invertible sheaves are nef (Exercise 18.4.V(e)), and the nef cone
is closed (Exercise 18.4.W), so the closure of the ample cone is contained in the
cone. Conversely, each nef element of N1Q(X) is the limit of ample classes by Exer-
cise 20.4.B(a), so the nef cone is contained in the closure of the ample cone.

(b) As the ample cone is open (Proposition 20.4.3), the ample cone is contained
in the interior of the nef cone. Conversely, suppose L is in the interior of the nef
cone, and H is any ample class. Then L −ϵH is nef for all small enough positive
ϵ. Then by Exercise 20.4.B(b), L = (L − ϵH ) + ϵH is ample. □

Suitably motivated, we prove Kleiman’s Theorem 20.4.6.

Proof. We may immediately reduce to the case where X is irreducible and reduced.
We work by induction on n := dimX. The base case n = 1 is obvious. So we
assume that (L dimV · V) ≥ 0 for all irreducible V not equal to X. We need only
show that (L n · X) ≥ 0.
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Fix some very ample invertible sheaf H on X.

20.4.D. EXERCISE. Show that (L k · H n−k · X) ≥ 0 for all k < n. (Hint: use the
inductive hypothesis).

Consider P(t) := ((L + tH )n · X) ∈ Q[t]. We wish to show that P(0) ≥ 0.
Assume otherwise that P(0) < 0. Now for t ≫ 0, L + tH is ample, so P(t) is
positive for large t. Thus P(t) has positive real roots. Let t0 be the largest positive
real root of t. (In fact there is only one positive root, as Exercise 20.4.D shows that
all the nonconstant coefficients of P(t) are nonnegative.

20.4.E. EXERCISE. Show that for (rational) t > t0, L + tH is ample. Hint: use the
Nakai-Moishezon criterion (Theorem 20.4.1); if V ̸= X is an irreducible subvariety,
show that ((L + tH )dimV · V) > 0 by expanding (L + tH )dimV .

Let Q(t) := (L · (L + tH )n−1 · X) and R(t) := (tH · (L + tH )n−1 · X), so
P(t) = Q(t) + R(t).

20.4.F. EXERCISE. Show that Q(t) ≥ 0 for all rational t > t0. Hint (which you will
have to make sense of): (L +tH ) is ample by Exercise 20.4.E, so forN sufficiently
large, N(L + tH ) is very ample. Use the idea of the proof of Proposition 20.1.4
to intersect X with n − 1 divisors in the class of N(L + tH ) so that “((N(L +
tH ))n−1 · X) is an effective curve C”. Then (L · C) ≥ 0 as L is nef. Thus

Q(t0) ≥ 0.

20.4.G. EXERCISE. Show that R(t0) > 0. (Hint: Exercise 20.4.D.)

Thus P(t0) > 0 as desired. □





CHAPTER 21

Differentials

21.1 Motivation and game plan

Differentials are an intuitive geometric notion, and we are going to figure out
the right description of them algebraically. The algebraic manifestation is some-
what non-intuitive, so it is helpful to understand differentials first in terms of ge-
ometry. Also, although the algebraic statements are odd, none of the proofs are
hard or long. You will notice that this topic could have been done as soon as we
knew about morphisms and quasicoherent sheaves. We have usually introduced
new ideas through a number of examples, but in this case we will spend a fair
amount of time discussing theory, and only then get to examples.

Suppose X is a “smooth” k-variety. We would like to define a tangent bundle.
We will see that the right way to do this will easily apply in much more general
circumstances.
• We will see that the cotangent sheaf is more “natural” for schemes than tangent
bundle/sheaf. This is similar to the fact that the Zariski cotangent space is more
natural than the tangent space (i.e., if A is a ring and m is a maximal ideal, then
m/m2 is “more natural” than (m/m2)∨), as we have repeatedly discussed since
§12.1. In both cases this is because we are understanding “spaces” via their (sheaf
of) functions on them, which is somehow dual to the geometric pictures you have
of spaces in your mind.

So we will define the cotangent sheaf first. An element of the (co)tangent space
will be called a (co)tangent vector.
• Our undergraduate intuition will continue to work — we can calculate using the
Jacobian matrix, the answers will be the same in cases where our undergraduate
calculations apply, and we will even have the advantage of avoiding δ’s and ϵ’s.
• Our construction will automatically apply for generalX, even ifX is not “smooth”
(or even at all nice, e.g., finite type). The cotangent sheaf will not necessarily be
locally free, but it will still be a quasicoherent sheaf.
• Better yet, this construction will naturally work “relatively”. For any π : X →
Y, we will define Ωπ = ΩX/Y , a quasicoherent sheaf on X, the sheaf of relative
differentials. The fiber of this sheaf at a point will be the cotangent vectors of the
fiber of the map. This will specialize to the earlier case by taking Y = Speck. The
idea is that this glues together the cotangent sheaves of the fibers of the family.
Figure 21.1 is a sketch of the relative tangent space of a map X → Y at a point
p ∈ X— it is the tangent to the fiber. (The tangent space is easier to draw than the
cotangent space!) An element of the relative (co)tangent space is called a vertical
or relative (co)tangent vector.
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FIGURE 21.1. The relative tangent space of a morphism X→ Y at
a point p

Thus the central concept of this chapter is the cotangent sheaf Ωπ = ΩX/Y
for a morphism π : X → Y of schemes. A good picture to have in your mind
is the following. If π : X → Y is a submersion of manifolds (a map inducing a
surjection on tangent spaces), you might hope that the tangent spaces to the fibers
at each point p ∈ X might fit together to form a vector bundle. This is the relative
tangent bundle (of π), and its dual is ΩX/Y (see Figure 21.1). Even if you are not
geometrically minded, you will find this useful. (For an arithmetic example, see
Exercise 21.2.F.)

21.2 Definitions and first properties

21.2.1. The affine case: three definitions.
We first study the affine case. Suppose A is a B-algebra, so we have a mor-

phism of rings ϕ : B → A and a morphism of schemes SpecA → SpecB. I will
define an A-module ΩA/B in three ways. This is called the module of relative
differentials or the module of Kähler differentials. The module of differentials
will be defined to be this module, as well as a map d : A → ΩA/B satisfying three
properties. (Caution: although d sends an A-module to an A-module, it is not in
general A-linear. A priori we take it as a homomorphism of abelian groups, but
we will momentarily make it a homomorphism of B-modules, Exercise 21.2.A.)

(i) additivity: da+ da ′ = d(a+ a ′).
(ii) Leibniz: d(aa ′) = a da ′ + a ′ da.

(iii) triviality on pullbacks: db = 0 for b ∈ ϕ(B).
These properties will not be surprising if you have seen differentials in any other
context.

21.2.A. TRIVIAL EXERCISE. Show that d is B-linear.

21.2.B. EXERCISE. Prove the quotient rule: if a ′ = as, then s2da = s da ′ − a ′ ds.
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21.2.C. EXERCISE. State and prove the chain rule for d(f(g)) where f is a polyno-
mial with B-coefficients, and g ∈ A. (As motivation, think of the case B = k. So for
example, dan = nan−1da, and more generally, if f is a polynomial in one variable,
df(a) = f ′(a) da, where f ′ is defined formally: if f =

∑
cix

i then f ′ =
∑
ciix

i−1.)

We will now see three definitions of the module of Kähler differentials, which
will soon “sheafify” to the sheaf of relative differentials. The first definition is a
concrete hands-on definition. The second is by universal property. And the third
will globalize well, and will allow us to defineΩX/Y conveniently in general.

21.2.2. First definition of differentials: explicit description. We define ΩA/B
to be finite A-linear combinations of symbols “da” for a ∈ A, subject to the three
rules (i)–(iii) above. For example, take A = k[x, y], B = k. Then a sample differen-
tial is 3x2 dy+4 dx ∈ ΩA/B. We have identities such as d(3xy2) = 3y2 dx+6xy dy.

21.2.3. Key fact. Note that if A is generated over B (as an algebra) by xi ∈
A (where i lies in some index set, possibly infinite), subject to some relations rj
(where j lies in some index set, and each is a polynomial in the xi), then the A-
module ΩA/B is generated by the dxi, subject to the relations drj = 0. In short,
we needn’t take every single element of A; we can take a generating set. And we
needn’t take every single relation among these generating elements; we can take
generators of the relations.

21.2.D. EXERCISE. Verify Key fact 21.2.3. (If you wish, use the affine conormal ex-
act sequence, Theorem 21.2.12, to verify it; different people prefer to work through
the theory in different orders. Just take care not to make circular arguments.)

In particular:

21.2.4. Proposition. — If A is a finitely generated B-algebra, thenΩA/B is a finite type
(i.e., finitely generated) A-module. If A is a finitely presented B-algebra, then ΩA/B is a
finitely presented A-module.

Recall (§7.3.17) that a ring A is finitely presented over another ring B if it can be
expressed with finite number of generators and finite number of relations:

A = B[x1, . . . , xn]/(r1(x1, . . . , xn), . . . , rj(x1, . . . , xn)).

If A is Noetherian, then finitely presented is the same as finite type, as the “finite
number of relations” comes for free, so most of you will not care.

Let’s now see some examples. Among these examples are three particularly
important building blocks for ring maps: adding free variables; localizing; and
taking quotients. If we know how to deal with these, we know (at least in theory)
how to deal with any ring map. (They were similarly useful in understanding the
fibered product in practice, in §9.2.)

21.2.5. Example: taking a quotient. If A = B/I, then ΩA/B = 0: da = 0 for all
a ∈ A, as each such a is the image of an element of B. This should be believable;
in this case, there are no “vertical tangent vectors”.

21.2.6. Example: adding variables. If A = B[x1, . . . , xn], then ΩA/B = Adx1 ⊕
· · · ⊕Adxn. (Note that this argument applies even if we add an arbitrarily infinite
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number of indeterminates.) The intuitive geometry behind this makes the answer
very reasonable. The cotangent bundle of affine n-space should indeed be free of
rank n.

21.2.7. Explicit example: an affine plane curve. Consider the plane curve y2 =
x3 − x in A2k, where the characteristic of k is not 2. Let A = k[x, y]/(y2 − x3 + x)
and B = k. By Key fact 21.2.3, the module of differentialsΩA/B is generated by dx
and dy, subject to the relation

2y dy = (3x2 − 1) dx.

Thus in the locus where y ̸= 0, dx is a generator (as dy can be expressed in terms of
dx). We conclude that where y ̸= 0, Ω̃A/B is isomorphic to the trivial line bundle
(invertible sheaf). Similarly, in the locus where 3x2−1 ̸= 0, dy is a generator. These
two loci cover the entire curve, as solving y = 0 gives x3 − x = 0, i.e., x = 0 or ±1,
and in each of these cases 3x2 − 1 ̸= 0. We have shown that Ω̃A/B is an invertible
sheaf.

We can interpret dx and dy geometrically. Where does the differential dx van-
ish? The previous paragraph shows that it doesn’t vanish on the patch where 2y ̸=
0. On the patch where 3x2−1 ̸= 0, where dy is a generator, dx = (2y/(3x2−1)) dy
from which we see that dx vanishes precisely where y = 0. You should find this
believable from the picture. We have shown that dx = 0 precisely where the curve
has a vertical tangent vector (see Figure 19.7 for a picture). Once we can pull back
differentials (Exercise 21.2.K(a) or Theorem 21.2.27), we can interpret dx as the
pullback of a differential on the x-axis to SpecA (pulling back along the projection
to the x-axis). When we do that, using the fact that dx doesn’t vanish on the x-axis,
we can interpret the locus where dx = 0 as the locus where the projection map
branches. (Can you compute where dy = 0, and interpret it geometrically?)

This discussion applies to plane curves more generally. SupposeA = k[x, y]/f(x, y),
where for convenience k = k. Then the same argument as the one given above
shows that Ω̃A/k is free of rank 1 on the open setD(∂f/∂x), and also onD(∂f/∂y).
If SpecA is a regular curve, then these two sets cover all of SpecA. (Exercise 12.2.E
— basically the Jacobian criterion — gives regularity at the closed points. Further-
more, the curve must be reduced, or else as the nonreduced locus is closed, it
would be nonreduced at a closed point, contradicting regularity. Finally, reduced-
ness at a generic point is equivalent to regularity — a scheme whose underlying
set is a point is reduced if and only if it is regular. Alternatively, we could invoke
a big result, Fact 12.8.2, to get regularity at the generic point from regularity at the
closed points.)

If, on the other hand, the plane curve is singular, then Ω is not locally free of
rank one. For example, consider the plane curve SpecA where A = C[x, y]/(y2 −
x3), so

ΩA/C = (A dx⊕A dy)/(2y dy− 3x2 dx).

Then the fiber of ΩA/C over the origin (computed by setting x = y = 0) is rank 2,
as it is generated by dx and dy, with no relation.

Implicit in the above discussion is the following exercise, showing that Ω can
be computed using the Jacobian matrix.
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21.2.E. IMPORTANT BUT EASY EXERCISE (JACOBIAN DESCRIPTION OFΩA/B). Sup-
pose A = B[x1, . . . , xn]/(f1, . . . , fr). Then ΩA/B = {⊕iAdxi}/{dfj = 0} may be
interpreted as the cokernel of the Jacobian matrix (12.1.6.1)

J : A⊕r → A⊕n.

21.2.8. Example: localization. If T is a multiplicative subset of B, and A = T−1B,
then ΩA/B = 0. Reason: by the quotient rule (Exercise 21.2.B), if a = b/t, then
da = (t db − b dt)/t2 = 0. If A = Bf, this is intuitively believable; then SpecA is
an open subset of SpecB, so there should be no vertical (co)tangent vectors.

21.2.F. IMPORTANT EXERCISE (FIELD EXTENSIONS). This notion of relative differ-
entials is interesting even for finite extensions of fields. In other words, even when
you map a reduced point to a reduced point, something interesting can happen
with differentials.
(a) Suppose K/k is a separable algebraic extension. Show that ΩK/k = 0. Do not
assume that K/k is a finite extension! (Hint: for any α ∈ K, there is a polynomial
f(x) such that f(α) = 0 and f ′(α) ̸= 0.)
(b) Suppose k is a field of characteristic p, K = k(tp), L = k(t). Compute ΩL/K
(where K ↪→ L is the “obvious” inclusion).

We now delve a little deeper, and discuss two useful and geometrically moti-
vated exact sequences.

21.2.9. Theorem (relative cotangent sequence, affine version). — Suppose C →
B→ A are ring morphisms. Then there is a natural exact sequence of A-modules

A⊗B ΩB/C
a⊗db7→a db // ΩA/C

da7→da // ΩA/B // 0.

FIGURE 21.2. A sketch of the geometry behind the relative cotan-
gent sequence
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The proof will be quite straightforward algebraically, but the statement comes
fundamentally from geometry, and that is how best to remember it. Figure 21.2 is a
sketch of a map π : X→ Y. HereX should be interpreted as SpecA, Y as SpecB, and
SpecC is a point. (If you would like a picture with a higher-dimensional SpecC,
just “take the product of Figure 21.2 with a curve”.) In the Figure, Y is “smooth”,
and X is “smooth over Y” — which means roughly that all the fibers are smooth.
Suppose p is a point of X. Then the tangent space of the fiber of π at p is certainly a
subspace of the tangent space of the total space of X at p. The cokernel is naturally
the pullback of the tangent space of Y at π(p). This short exact sequence for each
p should be part of a short exact sequence of “relative tangent sheaves”

0→ TX/Y → TX/Z → π∗TY/Z → 0

on X. (We will formally define “relative tangent sheaf” in §21.2.20.) Dualizing this
yields

0→ π∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

This is precisely the statement of Theorem 21.2.9, except we also have left-
exactness. This discrepancy is because the statement of the theorem is more gen-
eral; we will see in Exercise 21.2.S that in the “smooth” case, we indeed have left-
exactness.

21.2.10. Intriguing Remark. As always, whenever you see something right-exact,
you should suspect that there should be some sort of (co)homology theory so that
this is the end of a long exact sequence. This is indeed the case, and this exact
sequence involves André-Quillen homology (see [E, p. 386] for more). You should
expect that the next term to the left should be the first homology corresponding
to A/B, and in particular shouldn’t involve C. So if you already suspect that you
have exactness on the left in the case where A/B and B/C are “smooth” (whatever
that means), and the intuition of Figure 21.2 applies, then you should expect fur-
ther that all that is necessary is that A/B be “smooth”, and that this would imply
that the first André-Quillen homology should be zero. Even though you wouldn’t
precisely know what all the words meant, you would be completely correct! You
would also be developing a vague inkling about the cotangent complex. We will see
examples when left-exactness holds in a sufficiently “smooth” situation in Propo-
sition 21.7.2 and Exercise 21.2.S. For a more general statement, see [Stacks, tag
06B6]. See also [Liu, Cor. 6.3.22] and [Liu, Prop. 6.3.11] for clean discussions of the
next two terms in the sequence: “relative cotangent sequence”, “relative conormal
sequence”, . . . .

21.2.11. Proof of Theorem 21.2.9 (the relative cotangent sequence, affine version). First,
note that surjectivity of ΩA/C → ΩA/B is clear, as this map is given by da 7→ da

(where a ∈ A).
Next, the composition over the middle term is clearly 0, as this composition is

given by a⊗ db 7→ adb 7→ 0.
Finally, we wish to identify ΩA/B as the cokernel of A ⊗B ΩB/C → ΩA/C.

Now ΩA/B is exactly the same as ΩA/C, except we have extra relations: db = 0

for b ∈ B. These are precisely the images of 1⊗ db on the left. □

21.2.12. Theorem (conormal exact sequence, affine version). — Suppose B is a
C-algebra, I is an ideal of B, and A = B/I. Then there is a natural exact sequence of
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A-modules

I/I2
δ // A⊗B ΩB/C

a⊗db 7→a db // ΩA/C // 0.

Here δ is, informally, i 7→ 1⊗ di, or more formally, 1⊗ d : B/I⊗B I→ B/I⊗B ΩB/C.

(You will recognize the map A⊗B ΩB/C → ΩA/C from the relative cotangent
sequence, Theorem 21.2.9.) The proof is algebraic, so the geometric discussion
thereafter may help clarify how you should really think of it.

Proof. We will identify the cokernel of δ : I/I2 → A⊗BΩB/C withΩA/C. Consider
A ⊗B ΩB/C. As an A-module, it is generated by db (where b ∈ B), subject to
three types of relations: dc = 0 for c ∈ ϕ(C) (where ϕ : C → B describes B as
a C-algebra), additivity, and the Leibniz rule. Given any relation in B, d of that
relation is 0.

Now ΩA/C is defined similarly, except there are more relations in A; these
are precisely the elements of I ⊂ B. Thus we obtain ΩA/C by starting out with
A⊗BΩB/C, and adding the additional relations diwhere i ∈ I. But this is precisely
the image of δ! (Be sure that you see how the identification of the cokernel of δwith
ΩA/C is precisely via the map a⊗ db 7→ a db.) □

We now give a geometric interpretation of the conormal exact sequence, and
in particular define conormal modules/sheaves/bundles.

As with the relative cotangent sequence (Theorem 21.2.9), the conormal exact
sequence is fundamentally about geometry. To motivate it, consider the sketch
of Figure 21.3. In the sketch, everything is “smooth”, X is one-dimensional, Y is
two-dimensional, j is the inclusion j : X ↪→ Y, and Z is a point. Then at a point
p ∈ X, the tangent space TX|p clearly injects into the tangent space of j(p) in Y,
and the cokernel is the normal vector space to X in Y at p. This should give an
exact sequence of bundles on X:

0→ TX → j∗TY → NX/Y → 0.

Dualizing this should give

0→ N ∨
X/Y → j∗ΩY/Z → ΩX/Z → 0.

This is precisely what appears in the statement of the Theorem, except (i) the exact
sequence in algebraic geometry is not necessarily exact on the left, and (ii) we see
I/I2 instead of N ∨

SpecA/ SpecB.

21.2.13. We resolve the first issue (i) by expecting that the sequence of Theo-
rem 21.2.12 is exact on the left in appropriately “smooth” situations, and this
is indeed the case, see Theorem 21.3.7 and Remark 21.3.8. (If you enjoyed Re-
mark 21.2.10, you might correctly guess several things. The next term on the left
should be the first André-Quillen homology of A/C, so we should only need that
A/C is smooth, and B should be irrelevant. Also, if A = B/I, then we should
expect that I/I2 is the first André-Quillen homology of A/B.)

21.2.14. Conormal modules and conormal sheaves. We resolve the second issue (ii) by
declaring I/I2 to be the conormal module, and in Definition 21.2.15 we will define
the obvious analog as the conormal sheaf.
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Z

X

Y

FIGURE 21.3. A sketch of the geometry behind the conormal ex-
act sequence

Here is some geometric intuition as to why we might want to call (the sheaf
associated to) I/I2 the conormal sheaf, which will likely confuse you, but may of-
fer some enlightenment. First, if SpecA is a closed point of SpecB, we expect the
conormal space to be precisely the cotangent space. And indeed if A = B/m, the
Zariski cotangent space is m/m2. (We made this subtle connection in §12.1.) In
particular, at some point you will develop a sense of why the conormal (=cotan-
gent) space to the origin in A2k = Spec k[x, y] is naturally the space of linear forms
αx + βy. But then consider the z-axis in Spec k[x, y, z] = A3k, cut out by I = (x, y).
Elements of I/I2 may be written as α(z)x + β(z)y, where α(z) and β(z) are poly-
nomial. This reasonably should be the conormal space to the z-axis: as z varies,
the coefficients of x and y vary. More generally, the same idea suggests that the
conormal module/sheaf to any coordinate k-plane inside n-space corresponds to
I/I2. Now consider a k-dimensional (smooth or differentiable) real manifold X
inside an n-dimensional manifold Y, with the classical topology. We can apply
the same construction: if I is the ideal sheaf of X in Y, then I /I 2 can be iden-
tified with the conormal sheaf (essentially the conormal vector bundle), because
analytically locally X ↪→ Y can be identified with Rk ↪→ Rn. For this reason, you
might hope that in algebraic geometry, if SpecA ↪→ SpecB is an inclusion of some-
thing “smooth” in something “smooth”, I/I2 should be the conormal module (or,
after applying the functor ∼, the conormal sheaf). Motivated by this, we define the
conormal module as I/I2 always, and then notice that it has good properties (such
as Theorem 21.2.12), but take care to learn what unexpected behavior it might have
when we are not in the “smooth” situation, by working out examples such as that
of §21.2.7.

21.2.15. Definition. Suppose i : X ↪→ Y is a closed embedding of schemes cut out
by ideal sheaf I . Define the conormal sheaf for a closed embedding by I /I 2,
denoted by N ∨

X/Y . (The product of quasicoherent ideal sheaves was defined in
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Exercise 14.3.E.) Important: We interpret N ∨
X/Y as a quasicoherent sheaf on X, not

(just) Y — be sure you understand why we may do so. (Exercise 17.1.E is one
reason, but it may confuse the issue more than help.)

Define the normal sheaf as its dual NX/Y := Hom(N ∨
X/Y ,OX). This is imperfect

notation, because it suggests that the dual of N is always N ∨. This is not always
true, as for A-modules, the natural morphism from a module to its double-dual is
not always an isomorphism. (Modules for which this is true are called reflexive,
but we won’t use this notion.)

If the normal sheaf is locally free, then we call the associated vector bundle the
normal bundle of X in Y.

21.2.G. EASY EXERCISE. Define the conormal sheaf N ∨
X/Y (and hence the normal

sheaf NX/Y) for a locally closed embedding i : X ↪→ Y of schemes, a quasicoherent
sheaf on X. (Make sure your definition is well-defined!)

In the good situation of a regular embedding, the conormal sheaf (and hence
the normal sheaf) is locally free (or more informally, a vector bundle). In partic-
ular, the dual of N is indeed N ∨. As a warm-up we deal with the important
codimension 1 case.

21.2.H. EXERCISE: NORMAL BUNDLES TO EFFECTIVE CARTIER DIVISORS. Sup-
pose D ⊂ X is an effective Cartier divisor (§8.4.1). Show that the conormal sheaf
N ∨
D/X is O(−D)|D (and in particular is an invertible sheaf), and hence that the

normal sheaf is O(D)|D. It may be surprising that the normal sheaf should be lo-
cally free if X ∼= A2 and D is the union of the two axes (and more generally if X
is regular but D is singular), because you may be used to thinking that a “tubular
neighborhood” is isomorphic to the normal bundle.

We now treat the general case.

21.2.16. Proposition. —
(a) Suppose A is Noetherian. If I is generated by a regular sequence x1, . . . , xr, then the
map γ : (A/I)⊕r → I/I2 given by (a1, . . . , ar) 7→ a1x1 + · · ·+ arxr describes I/I2 as a
free module of rank r over A/I with basis x1, . . . , xr.
(b) The (co)normal sheaf of a codimension r regular embedding is locally free of rank r.

Proof. (a) Clearly γ is surjective. We now show that it is injective. It suffices to show
that it is injective upon localization to all points of SpecA/I, because injectivity
is a stalk-local condition. Then in such a localization, the regular sequence in A
remains regular (Exercise 8.4.D, plus the fact that the strict inclusion (x1, . . . , xr) ⊊
A remains strict upon localization at a prime containing I). We are thus reduced
to the local question. (Caution: Make sure you see why (I/I2)m = Im/(Im)

2.)
Consider the ai’s instead as elements of A. Suppose now that (a1, . . . , ar) ∈

kerγ; we will show that each ai is in I. Now because xr is not a zerodivisor on
A/(x1, . . . , xr−1), since arxr = 0 inA/(x1, . . . , xr−1), we have ar ∈ (x1, . . . , xr−1) ⊂
I. Because the roles of the ai’s are symmetric by Theorem 8.4.6, we are done.

(b) follows immediately from (a). □
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We will soon meet a related but harder fact, that if I is the ideal sheaf of a
regular embedding of codimension r, then I n/I n+1 is locally free, because it is
Symn(I /I 2) (see Theorem 22.3.8).

21.2.17. Second definition: universal property. Here is a second definition that
is important philosophically, by universal property. Of course, it is a characteriza-
tion rather than a definition: by universal property nonsense, it shows that if the
module exists (with the d map), then it is unique up to unique isomorphism, and
then one still has to construct it to make sure that it exists.

Suppose A is a B-algebra, and M is a A-module. A B-linear derivation of
A into M is a map d : A → M of B-modules (not necessarily a map of A-modules)
satisfying the Leibniz rule: d(fg) = f dg + g df. As an example, suppose B = k,
and A = k[x], and M = A. Then d/dx is a k-linear derivation. As a second
example, if B = k, A = k[x], and M = k, then (d/dx)|0 (the operator “evaluate the
derivative at 0”) is a k-linear derivation.

A third example is d : A→ ΩA/B, and indeed d : A→ ΩA/B is the universal B-
linear derivation of A. Precisely, the map d : A → ΩA/B is defined by the following
universal property: any other B-linear derivation d ′ : A → M factors uniquely
through d:

A

d ""E
EE

EE
EE

EE
d ′

//M

ΩA/B

f

<<yyyyyyyyy

Here f is a map of A-modules. (Note again that d and d ′ are not necessarily maps
of A-modules — they are only B-linear.) By universal property nonsense, if it
exists, it is unique up to unique isomorphism. The map d : A → ΩA/B clearly
satisfies this universal property, essentially by definition.

The next result connects the cotangent moduleΩA/B to the cotangent space at
a (rational) point.

21.2.18. Proposition (the fiber of Ω at a rational point is the cotangent space). —
Suppose B is a k-algebra, and m ⊂ B is a maximal ideal with residue field k. Then there is
an isomorphism of k-vector spaces δ : m/m2 → ΩB/k ⊗B k (where the k on the right is a
B-module via the isomorphism k ∼= B/m).

Corollary 21.3.9 will give a quite different proof, and generalize it to the case
where B/m is a separable extension of k.

Proof. We instead show an isomorphism of dual vector spaces

Homk(ΩB/k ⊗B k, k)→ Homk(m/m
2, k).

We have (canonical) isomorphisms

Homk(ΩB/k ⊗B k, k) = HomB(ΩB/k ⊗B k, k)
= HomB(ΩB/k,HomB(k, k))

= HomB(ΩB/k,Homk(k, k))

= HomB(ΩB/k, k),
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where in the right argument of HomB(ΩB/k, k), k is a B-module via its manifesta-
tion as B/m. By the universal property of ΩB/k (§21.2.17), HomB(ΩB/k, k) corre-
sponds to the k-derivations of B into B/m ∼= k.

21.2.I. EXERCISE. Show that these are precisely the elements of Homk(m/m
2, k).

(The algebra involved is essentially the same as that of Exercise 12.1.A.)
□

You can verify that this δ is the one appearing in the conormal exact sequence,
Theorem 21.2.12, with I = m and A = C = k. In fact, from the conormal exact
sequence, we can immediately see that δ is a surjection, asΩk/k = 0.

21.2.19. Remark. Proposition 21.2.18, in combination with the Jacobian exer-
cise 21.2.E above, gives a second proof of Exercise 12.1.G, the Jacobian method for
computing the Zariski tangent space at a k-valued point of a finite type k-scheme.
Corollary 21.3.9 will extend this to the case of a separable closed point.

21.2.J. EXERCISE. Suppose X is a finite type scheme over an algebraically closed
field. Show that the function from the closed points of X to Z≥0 given by p 7→
dim TpX is upper semicontinuous in the Zariski topology. (Be clear on what the
Zariski topology is on the set of closed points.) Corollary 21.3.9 will allow you to
extend this to all fields of characteristic 0 and all finite fields.

Depending on how your brain works, you may prefer using the first (construc-
tive) or second (universal property) definition to do the next two exercises.

21.2.K. EXERCISE.
(a) (pullback of differentials) If

A ′ Aoo

B ′

OO

B

OO

oo

is a commutative diagram, describe a natural homomorphism ofA ′-modulesA ′⊗A
ΩA/B → ΩA ′/B ′ . An important special case is B = B ′.
(b) (differentials behave well with respect to base extension, affine case) If furthermore
the above diagram is a “tensor diagram” (i.e., A ′ ∼= B ′ ⊗B A, so the diagram is
“co-Cartesian”) then show that A ′ ⊗A ΩA/B → ΩA ′/B ′ is an isomorphism. (De-
pending on how your proceed, this may be trickier than you expect.)

21.2.L. EXERCISE: LOCALIZATION (STRONGER FORM; CF. EXAMPLE 21.2.8). Sup-
pose ϕ : B → A is a map of rings, S is a multiplicative subset of A, and T is a
multiplicative subset of B with ϕ(T) ⊂ S, so we have the following commutative
diagram.

S−1A Aoo

T−1B

OO

B

OO

oo

Show that the pullback of differentials S−1ΩA/B → ΩS−1A/T−1B of Exercise 21.2.K(a)
is an isomorphism. (This should be believable from the intuitive picture of “verti-
cal cotangent vectors”.) An important case is when T = {1}.
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21.2.M. EXERCISE (FIELD EXTENSIONS CONTINUED, CF. EXERCISE 21.2.F).
(a) ComputeΩk(t)/k. (Hint: §21.2.6 followed by Exercise 21.2.L.)
(b) If K/k is separably generated by t1, . . . , tn ∈ K (i.e., t1, . . . , tn form a tran-
scendence basis, and K/k(t1, . . . , tn) is algebraic and separable), show that ΩK/k
is a free K-module (i.e., vector space) with basis dt1, . . . , dtn. Hint: use the rel-
ative cotangent sequence (Theorem 21.2.9) for k ↪→ k(t1, . . . , tn) ↪→ K to show
that the dti span ΩK/k as a K-vector space. The tricky part is showing that the
dti are linearly independent. Do this by showing that there exists a unique map
ΩK/k → K sending dt1 to 1, and dti to 0 for i > 1. Do this first for the case where
K/k(t1, . . . , tn) is generated by one element; then where it is finitely generated;
then the general case by defining it on all finitely generated subextensions, and
using uniqueness to show that they “all agree”.

21.2.20. Third definition: global. We now want to globalize this definition for an
arbitrary morphism of schemes π : X→ Y. We could do this “affine by affine”; we
just need to make sure that the above notion behaves well with respect to “change
of affine sets”. Thus a relative differential on X would be the data of, for every
affine U ⊂ X, a differential of the form

∑
ai dbi, and on the intersection of two

affine open sets U ∩ U ′, with representatives
∑
ai dbi on U and

∑
a ′
i db

′
i on the

second, an equality on the overlap. Instead, we take a different approach. I will
give the (seemingly unintuitive) definition, then tell you how to think about it, and
then get back to the definition.

Let π : X → Y be any morphism of schemes. Recall that δ : X → X ×Y X is a
locally closed embedding (Proposition 10.1.3). Define the relative cotangent sheaf
ΩX/Y (orΩπ) as the conormal sheaf N ∨

X/X×YX
of the diagonal (see §21.2.14 — and

if X → Y is separated you needn’t even worry about Exercise 21.2.G). (Now is
also as good a time as any to define the relative tangent sheaf TX/Y as the dual
Hom(ΩX/Y ,OX) to the relative cotangent sheaf. If we are working in the category
of k-schemes, then ΩX/k and TX/k are often called the cotangent sheaf and tan-
gent sheaf of X respectively.)

We now define d : OX → ΩX/Y . Let pr1 : X×Y X→ X and pr2 : X×Y X→ X be
the two projections. Then define d : OX → ΩX/Y on the open set U as follows:

df = pr∗2f− pr
∗
1f.

(Warning: this is not a morphism of quasicoherent sheaves on X, although it is
OY-linear in the only possible meaning of that phrase.) We will soon see that d is
indeed a derivation of the sheaf OX (in the only possible meaning of the phrase),
and at the same time see that our new notion of differentials agrees with our old
definition on affine open sets, and hence globalizes the definition. Note that for
any open subset U ⊂ X, d induces a map

(21.2.20.1) Γ(U,OX)→ Γ(U,ΩX/Y),

which we also call d, and interpret as “taking the derivative”.

21.2.21. Motivation. Before connecting this to our other definitions, let me try
to convince you that this is a reasonable definition to make. (This discussion is
informal and nonrigorous.) Say for example that Y is a point, and X a differentiable
manifold. Then the tangent bundle TX×X on X×X is pr∗1TX⊕pr∗2TX, where pr1 and
pr2 are the projections from X×X onto its two factors. Restrict this to the diagonal
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∆, and look at the normal bundle exact sequence:

0→ T∆ → TX×X|∆ → N∆/X → 0.

Now the left morphism sends v to (v, v), so the cokernel can be interpreted as
(v,−v). Thus N∆/X is isomorphic to TX. Thus we can turn this on its head: we
know how to find the normal bundle (or more precisely the conormal sheaf), and
we can use this to define the tangent bundle (or more precisely the cotangent
sheaf).

21.2.22. Testing this out in the affine case. Let’s now see how this works for the
special case SpecA → SpecB. Then the diagonal δ : SpecA ↪→ SpecA ⊗B A
corresponds to the ideal I of A⊗B A that is the kernel of the ring map

α :
∑

xi ⊗ yi →∑ xiyi.

21.2.23. The ideal I ofA⊗BA is generated by the elements of the form 1⊗a−a⊗1.
Reason: if α(

∑
xi ⊗ yi) = 0, i.e.,

∑
xiyi = 0, then∑

xi ⊗ yi =
∑

(xi ⊗ yi − xiyi ⊗ 1) =
∑

xi(1⊗ yi − yi ⊗ 1).

The derivation is d : A→ A⊗B A, a 7→ (1⊗ a− a⊗ 1) (an element of I, taken
modulo I2). (We shouldn’t really call this “d” until we have verified that it agrees
with our earlier definition, but we irresponsibly will anyway.)

Let’s check that d is indeed a derivation (§21.2.17). Clearly d is B-linear, so we
check the Leibniz rule:

d(aa ′) − a da ′ − a ′ da = 1⊗ aa ′ − aa ′ ⊗ 1− a⊗ a ′ + aa ′ ⊗ 1− a ′ ⊗ a+ a ′a⊗ 1
= −a⊗ a ′ − a ′ ⊗ a+ a ′a⊗ 1+ 1⊗ aa ′

= (1⊗ a− a⊗ 1)(1⊗ a ′ − a ′ ⊗ 1)
∈ I2.

Thus by the universal property of ΩA/B, we have a natural morphism ΩA/B →
I/I2 of A-modules.

21.2.24. Theorem. — The natural morphism f : ΩA/B → I/I2 induced by the universal
property ofΩA/B is an isomorphism.

Proof. We will show this as follows. (i) We will show that f is surjective, and (ii)
we will describe g : I/I2 → ΩA/B such that g ◦ f : ΩA/B → ΩA/B is the identity
(showing that f is injective).

(i) The map f sends da to 1⊗a−a⊗1, and such elements generate I (§21.2.23),
so f is surjective.

(ii) Consider the mapA⊗BA→ ΩA/B defined by x⊗y 7→ x dy. (This is a well-
defined map, by the universal property of ⊗, see §1.3.5.) Define g : I/I2 → ΩA/B
as the restriction of this map to I. We need to check that this is well-defined, i.e.,
that elements of I2 are sent to 0, i.e., we need that(∑

xi ⊗ yi
)(∑

x ′j ⊗ y ′
j

)
=
∑
i,j

xix
′
j ⊗ yiy ′

j 7→ 0
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when
∑
i xiyi =

∑
x ′jy

′
j = 0. But by the Leibniz rule,∑

i,j

xix
′
j d(yiy

′
j) =

∑
i,j

xix
′
jyi dy

′
j +
∑
i,j

xix
′
jy

′
j dyi

=

(∑
i

xiyi

)∑
j

x ′j dy
′
j

+

(∑
i

xi dyi

)∑
j

x ′jy
′
j


= 0.

Then g ◦ f is indeed the identity, as

da
� f // 1⊗ a− a⊗ 1 � g // 1 da− a d1 = da

as desired. □

21.2.N. EASY EXERCISE. Suppose π : X→ Y is a morphism of schemes, with open
subschemes SpecA ⊂ X and SpecB ⊂ Y, with SpecA ⊂ π−1(SpecB). Identify
ΩX/Y |SpecA with Ω̃A/B, and identify d : Γ(SpecA,OX) → Γ(SpecA,ΩX/Y) with
d : A→ ΩA/B. Thus the global construction indeed naturally “glues together” the
affine construction.

We can now use our understanding of how Ω works on affine open sets to
generalize previous statements to non-affine settings.

21.2.O. EXERCISE. If U ⊂ X is an open subset, show that the map (21.2.20.1) is a
derivation.

21.2.P. EXERCISE. Suppose π : X → Y is locally of finite type, and Y (and hence
X) is locally Noetherian. Show that ΩX/Y is a coherent sheaf on X. (Feel free to
weaken the Noetherian hypotheses for weaker conclusions.)

21.2.Q. EXERCISE. Suppose π : X → Y is smooth of relative dimension n. Prove
that ΩX/Y is locally free of rank n. Hint: the Jacobian description of Ω, Exer-
cise 21.2.E.

The relative cotangent exact sequence and the conormal exact sequence for
schemes now directly follow.

21.2.25. Theorem. —
(a) (relative cotangent exact sequence) Suppose X

π // Y
ρ // Z are morphisms of

schemes. Then there is an exact sequence of quasicoherent sheaves on X

π∗ΩY/Z // ΩX/Z // ΩX/Y // 0,

globalizing Theorem 21.2.9.
(b) (conormal exact sequence) Suppose ρ : Y → Z is a morphism of schemes, and i : X ↪→ Y

is a closed embedding, with conormal sheaf N ∨
X/Y . Then there is an exact sequence of

sheaves on X:

N ∨
X/Y

δ // i∗ΩY/Z // ΩX/Z // 0,

globalizing Theorem 21.2.12.
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21.2.R. EXERCISE. Prove Theorem 21.2.25. (What needs to be checked?)

You should expect these exact sequences to be left-exact as well in the presence
of appropriate smoothness (see Remark 21.2.10 and §21.2.13). The following is an
important special case for the relative cotangent sequence. (Theorem 21.3.7 will
give a similar statement for the conormal exact sequence, for smooth varieties.)

21.2.S. EXERCISE (LEFT-EXACTNESS OF THE RELATIVE COTANGENT SEQUENCE WHEN
π AND ρ ARE SMOOTH). Show that the relative cotangent exact sequence is exact
on the left if π and ρ are smooth. Hint: the (m + n)× (m + n) matrix you used in
Exercise 12.6.D is “block upper triangular”.

21.2.26. Pulling back relative differentials. Not surprisingly, the sheaf of relative
differentials pull back, and behave well under base change.

21.2.27. Theorem (pullback of differentials). —
(a) If

X ′ µ //

��

X

��
Y ′ // Y

is a commutative diagram of schemes, there is a natural homomorphism µ∗ΩX/Y →
ΩX ′/Y ′ of quasicoherent sheaves on X ′. An important special case is Y = Y ′.
(b) (Ω behaves well under base change) If furthermore the above diagram is a Cartesian
square (so X ′ ∼= X×Y Y ′) then µ∗ΩX/Y → ΩX ′/Y ′ is an isomorphism.

21.2.T. EXERCISE. Derive Theorem 21.2.27 from Exercise 21.2.K. (Why does the
construction of Exercise 21.2.K(a) “glue well”?)

As a particular case of Theorem 21.2.27(b), the fiber of the sheaf of relative
differentials is indeed the sheaf of differentials of the fiber. Thus the sheaf of dif-
ferentials notion indeed “glues together” the differentials on each fiber.

21.2.U. EXERCISE. Suppose α : X→ Z and β : Y → Z are two morphisms. Describe
an isomorphismΩX×ZY/Z

∼= α∗ΩX/Z ⊕ β∗ΩY/Z.

21.3 Smoothness of varieties revisited

Suppose k is a field. Since §12.2.5, we have used an awkward definition of
k-smoothness, and we now make our definition of k-smoothness more robust.

21.3.1. Redefinition. A k-scheme X is k-smooth of dimension n or smooth of
dimension n over k if it is locally of finite type, of pure dimension n, and ΩX/k
is locally free of rank n. The dimension n is often omitted, and one might (possi-
bly) want to call something smooth if it is the (scheme-theoretic) disjoint union of
things smooth of various dimensions.

21.3.A. EXERCISE. Verify that this definition is equivalent to the one given in
Definition 12.2.6.
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21.3.B. ⋆⋆ EXERCISE (FOR THOSE WITH BACKGROUND IN COMPLEX GEOMETRY).
Suppose X is a complex algebraic variety. Show that the analytification Xan of X
(defined in Exercise 5.3.G) is smooth (in the differential-geometric sense) if and
only if X is smooth (in the algebro-geometric sense, over C). In this case, show
that complex dimension of the complex manifold Xan (half the real dimension) is
dimX. Hint: the Jacobian criterion applies in both settings.

21.3.2. Important observation. As a consequence of our better definition of smooth-
ness, we see that it can be checked on any affine cover by using the Jacobian crite-
rion on each affine open set in the cover, as hinted in §12.2.7.

21.3.C. EXERCISE (SMOOTHNESS IS INSENSITIVE TO EXTENSION OF BASE FIELD).
Prove the converse to Exercise 12.2.G.

21.3.D. IMPORTANT EXERCISE. Suppose k is perfect, and X is a finite type k-
scheme. Show that X is smooth if and only if X is regular at all closed points. In
particular, Theorem 12.2.10(a) holds. Hint: let Xk := X ×k k. Explain why X is
smooth if and only if Xk is smooth if and only if Xk is regular at all closed points
if and only if X is regular at all closed points. See Exercise 12.2.O for the last step.

21.3.3. Remark: A short definition of smoothness of varieties. Exercise 21.3.D gives
another pithy characterization of smoothness of varieties: a finite type k-scheme is
smooth if it is geometrically regular.

21.3.4. Generic smoothness.
We can now verify something you may already have intuited. In positive

characteristic, this is a hard theorem, in that it uses a result from commutative
algebra that we have not proved.

21.3.5. Theorem (generic smoothness of varieties). — If X is an irreducible variety
over a perfect field k of dimension n, there is a dense open subset U of X such that U is
smooth of dimension n.

Hence, by Fact 12.8.2,U is regular.Theorem 25.3.1 will generalize this to smooth
morphisms, at the expense of restricting to characteristic 0.

Proof. The n = 0 case is immediate, so we assume n > 0.
We will show that the rank at the generic point is n. Then by upper semicon-

tinuity of the rank of a coherent sheaf (Exercise 13.7.J), it must be n in an open
neighborhood of the generic point, and we are done.

We thus have to check that if K is the fraction field of a dimension n integral
finite type k-scheme, i.e., (by Theorem 11.2.1) if K/k is a transcendence degree
n extension, then ΩK/k is an n-dimensional vector space. But every extension
of transcendence degree n > 1 is separably generated (see Exercise 21.2.M(b)): we
can find n algebraically independent elements of K over k, say x1, . . . , xn, such
that K/k(x1, . . . , xn) is separable. (In characteristic 0, this is automatic from tran-
scendence theory, see Exercise 11.2.A, as all finite extensions are separable. But it
also holds for perfect fields in positive characteristic, see [E, Cor. A1.7] or [Mat2,
Thm. 26.2].) ThenΩK/k is generated by dx1, . . . , dxn (by Exercise 21.2.M(b)). □
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21.3.6. Left-exactness of the conormal exact sequence for embeddings of smooth
varieties.

As described in §21.2.13, we expect the conormal exact sequence to be exact
on the left in appropriately “smooth” situations.

21.3.7. Theorem (conormal exact sequence for smooth varieties). — Suppose
i : X ↪→ Y is a closed embedding of smooth varieties over a field k, with conormal sheaf
N ∨
X/Y . Then the conormal exact sequence (Theorem 21.2.25(b)) is exact on the left:

0 // N ∨
X/Y

δ // i∗ΩY/k // ΩX/k // 0

is exact.

By dualizing, i.e., applying Hom(·,OX), we obtain the normal exact sequence

0→ TX/k → TY/k|X → NX/Y → 0

which is geometrically more intuitive (see Figure 21.3 and the discussion after the
proof of Theorem 21.2.12).

21.3.8. Remark. The conormal sequence is exact on the left in even more general
circumstances. Essentially all that is required is appropriate smoothness of i ◦
g : X→ Z, see [Stacks, tag 06B7], and [Stacks, tag 06BB] for related facts.

Proof. We use the fact that smooth k-varieties are regular at their closed points,
which we have only proved for perfect fields, but which we shall later prove fully
(see §12.2.9).

Let I be the ideal sheaf of i : X ↪→ Y. By Exercise 12.2.L(b), i is a regular
embedding in the open neighborhood of all closed points, and hence everywhere.
Thus by Proposition 21.2.16(b), I /I 2 is locally free of rank r. By Exercise 5.5.L,
the associated points of ker δ are a subset of the associated points of I /I 2, so
to show that ker δ = 0, it suffices to check this at the associated points of I /I 2,
which are precisely the associated points of X (as I /I 2 is locally free).

As stated above, X is regular at closed points, hence (by Theorem 12.2.13) re-
duced (the nonreduced locus is closed, §8.3.10, and hence if nonempty would nec-
essarily contain a closed point). Thus we need only check at the generic points of
(the irreducible components of) X (as X has no embedded points, Exercise 5.5.C).
But this involves checking the left-exactness of a right-exact sequence of vector
spaces, and as the dimension of the left (the codimension of X in Y by Proposi-
tion 21.2.16(b)) is precisely the difference of the other two, we are done. □

21.3.9. Important Corollary. — Suppose Y is a smooth k-variety, and q ∈ Y is a closed
point whose residue field κ(q) is separable over k. (This is automatic if chark = 0 or if
k is a finite field.) Then the conormal exact sequence for q ↪→ Y yields an isomorphism of
the Zariski cotangent space of Y at q with the fiber ofΩY/k at q.

Proof. Apply Theorem 21.3.7 with X = q. Note that q is indeed a smooth k-variety
(using separability of κ(q)/k!), and thatΩq/k = 0. □

21.3.10. Remark. This result generalizes Proposition 21.2.18 to separable closed
points. As described after the statement of Proposition 21.2.18, this has a number



578 The Rising Sea: Foundations of Algebraic Geometry

of consequences. For example, it extends the Jacobian description of the Zariski
tangent space to separable closed points.

21.3.E. EXERCISE (CF. §12.2.16). Suppose p is a closed point of a k-variety X, with
residue field κ(p) that is separable over k. Define π : Xk := X ×k k → X by base
change from Speck→ Spec k. Suppose q ∈ π−1(p). Show that Xk is regular at q if
and only if X is regular at p.

21.3.11. Proving Theorem 12.8.3, that the localization of regular local rings are
regular in the case of varieties over perfect fields. Theorems 21.3.5 and 21.3.7
allow us to prove Theorem 12.8.3 (an important case of Fact 12.8.2).

21.3.12. Proof of Theorem 12.8.3. Suppose Y is a variety over a perfect field k that is
regular at its closed points (so Y is smooth, by Exercise 21.3.D), and let η be a point
of Y. We will show that Y is regular at η. Let X = η. By Theorem 21.3.5, X contains
a dense (=nonempty) open subset of smooth points. By shrinking Y by discarding
the points of X outside that open subset, we may assume X is smooth.

Then Theorem 21.3.7 (exactness of the conormal exact sequence for smooth
varieties) implies that I /I 2 is a locally free sheaf of rank codimX/Y = dim OY,η.

21.3.F. EXERCISE. Let m be the maximal ideal of OY,η. Identify the stalk of I /I 2

at the generic point η of X with m/m2. Conclude the proof of Theorem 12.8.3. □

21.3.G. TRICKY EXERCISE (LOCALIZATION OF REGULAR LOCAL RINGS OF VARI-
ETIES ARE REGULAR, PROMISED JUST AFTER THEOREM 12.8.3). Suppose (A,m) is
a regular local ring that is the localization of a finitely generated k-algebra, where
k is perfect. Show that the localization of A at a prime is also a regular local ring.

21.4 Examples

The examples below are organized by topic, not by difficulty.

21.4.1. The geometric genus of a curve. A regular irreducible projective curve
C (over a field k) has geometric genus h0(C,ΩC/k). (This will be generalized
to higher dimension in §21.5.3.) This is always finite, as ΩC/k is coherent (Exer-
cise 21.2.P), and coherent sheaves on projective k-schemes have finite-dimensional
spaces of sections (Theorem 18.1.4(i)). (The geometric genus is also called the
first algebraic de Rham cohomology group, in analogy with de Rham cohomology
in the differentiable setting.) Sadly, this isn’t really a new invariant. We will
see in Exercise 21.5.C that this agrees with our earlier definition of genus, i.e.,
h0(C,ΩC/k) = h

1(C,OC).

Now let’s compute some differentials!

21.4.2. The projective line. As an important first example, consider P1k, with
the usual projective coordinates x0 and x1. As usual, the first patch corresponds
to x0 ̸= 0, and is of the form Spec k[x1/0] where x1/0 = x1/x0. The second patch
corresponds to x1 ̸= 0, and is of the form Spec k[x0/1] where x0/1 = x0/x1.
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Both patches are isomorphic to A1k, andΩA1
k

∼= OA1
k

. (More precisely,Ωk[x]/k =

k[x] dx.) ThusΩP1
k

is an invertible sheaf (a line bundle). The invertible sheaves on
P1k are of the form O(m). So which invertible sheaf isΩP1/k?

Let’s take a section, dx1/0 on the first patch. It has no zeros or poles there, so
let’s check what happens on the other patch. As x1/0 = 1/x0/1, we have dx1/0 =

−(1/x20/1) dx0/1. Thus this section has a double pole where x0/1 = 0. Hence
ΩP1

k
/k

∼= O(−2).
Note that the above argument works equally well if kwere replaced by Z: our

theory of Weil divisors and line bundles of Chapter 14 applies (P1Z is factorial),
so the previous argument essentially without change shows that ΩP1

Z/Z
∼= O(−2).

And because Ω behaves well with respect to base change (Theorem 21.2.27(b)),
and any scheme maps to SpecZ, this implies that ΩP1

B
/B

∼= OP1
B
(−2) for any base

scheme B.
(Also, as suggested by §18.5.2, this shows thatΩP1/k is the dualizing sheaf for

P1k; see also Example 18.5.4. But given that we haven’t yet proved Serre duality,
this isn’t so meaningful.)

Side Remark: the fact that the degree of the tangent bundle is 2 is related to
the “Hairy Ball Theorem” (the dimension 2 case of [Hat, Thm. 2.28]).

21.4.3. Hyperelliptic curves. Throughout this discussion of hyperelliptic curves,
we suppose that k = k and char k ̸= 2, so we may apply the discussion of §19.5.
Consider a double cover π : C→ P1k by a regular projective curveC, branched over
2g + 2 distinct points. We will use the explicit coordinate description of hyperel-
liptic curves of (19.5.2.1). By Theorem 19.5.1, C has genus g.

21.4.A. EXERCISE: DIFFERENTIALS ON HYPERELLIPTIC CURVES. What is the de-
gree of the invertible sheaf ΩC/k? (Hint: let x be a coordinate on one of the co-
ordinate patches of P1k. Consider π∗dx on C, and count poles and zeros. Use the
explicit coordinates of §19.5. You should find that π∗dx has 2g + 2 zeros and 4
poles (counted with multiplicity), for a total of 2g− 2.) Doing this exercise will set
you up well for the Riemann-Hurwitz formula, in §21.7.

21.4.B. EXERCISE (“THE FIRST ALGEBRAIC DE RHAM COHOMOLOGY GROUP OF A
HYPERELLIPTIC CURVE”). Show that h0(C,ΩC/k) = g as follows.
(a) Show that dx

y
is a (regular) differential on Speck[x, y]/(y2 − f(x)) (i.e., an ele-

ment ofΩ(k[x,y]/(y2−f(x)))/k).
(b) Show that for 0 ≤ i < g, xi(dx)/y extends to a global differential ωi on C (i.e.,
with no poles).
(c) Show that the ωi (0 ≤ i < g) are linearly independent differentials. (Hint:
Show that the valuation ofωi at x = 0 is i. Ifω :=

∑g−1
j=i ajωj is a nontrivial linear

combination, with aj ∈ k, and ai ̸= 0, show that the valuation of ω at x = 0 is i,
and henceω ̸= 0.)
⋆ (d) Show that the ωi form a basis for the differentials. (Hint: consider the order
of zeros of theωi at π−1(∞).)

21.4.C. ⋆ EXERCISE (TOWARD SERRE DUALITY).
(a) Show that h1(C,ΩC/k) = 1. Interpret a generator ofH1(C,ΩC/k) as x−1dx. (In
particular, the pullback map H1(P1,ΩP1/k)→ H1(C,ΩC/k) is an isomorphism.)
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(b) Describe a natural perfect pairing

H0(C,ΩC/k)×H1(C,OC)→ H1(C,ΩC/k).

In terms of our explicit coordinates, you might interpret it as follows. Recall from
the proof of the hyperelliptic Riemann-Hurwitz formula (Theorem 19.5.1) that
H1(C,OC) can be interpreted as⟨y

x
,
y

x2
, . . . ,

y

xg

⟩
.

Then the pairing⟨
dx

y
,
x dx

y
, . . . , xg−1

dx

y

⟩
×
⟨y
x
,
y

x2
, . . . ,

y

xg

⟩→ ⟨
x−1dx

⟩
is basically “multiply and read off the x−1dx term”. Or in fancier terms: “multiply
and take the residue”. (You may want to compare this to Example 18.5.4.)

21.4.4. Discrete valuation rings. The following exercise is used in the proof of the
Riemann-Hurwitz formula, §21.7.

21.4.D. EXERCISE. Suppose that the discrete valuation ring (A,m, k) is a localiza-
tion of a finitely generated k-algebra. Let t be a uniformizer of A. Show that the
differentials are free of rank one and generated by dt, i.e.,ΩA/k = A dt, as follows.
(It is also possible to show this using the ideas from §21.5.)
(a) Show thatΩA/k is a finitely generated A-module.
(b) Show that ⟨dt⟩ = ΩA/k, i.e., that ×dt : A → ΩA/k is a surjection, as follows.
Let π be the projection A → A/m = k, so for a ∈ A, a − π(a) ∈ m. Define
σ(a) = (a − π(a))/t. Show that ΩA/k = ⟨dt⟩ + mΩA/k, using the fact that for
every a ∈ A,

da = σ(a) dt+ t dσ(a).

Apply Nakayama’s Lemma version 3 (Exercise 7.2.G) to ⟨dt⟩ ⊂ ΩA/k. (This argu-
ment, with essentially no change, can be used to show that if (A,m, k) is a localiza-
tion of a finitely generated algebra over k, and t1, . . . , tn generate m, then dt1, . . . ,
dtn generateΩA/k.)
(c) By part (b), ΩA/k is a principal A-module. Show that ×dt is an injection as
follows. By the classification of finite generated modules over discrete valuation
rings (Remark 12.5.14), it suffices to show that tm dt ̸= 0 for all m. The surjec-
tion A → A/(tN) induces a map ΩA/k → Ω(A/(tN))/k, so it suffices to show that
tm dt is nonzero in Ω(A/(tN))/k. Show that A/(tN) ∼= k[t]/(tN). The usual dif-
ferentiation rule for polynomials gives a map k[t]/(tN) → k[t]/(tN−1) which is a
derivation of k[t]/(tN) over k, and tm dt will not map to 0 so long as N is suf-
ficiently large. Put the pieces together and complete the proof. (An extension of
these ideas can show that if (A,m, k) is a localization of a finitely generated algebra
over k that is a regular local ring, thenΩA/k is free of rank dimA.)

21.4.5. Projective space and the Euler exact sequence. We next examine the
differentials of projective space Pnk , or more generally PnA where A is an arbitrary
ring. As projective space is covered by affine open sets of the form An, on which
the differentials form a rank n locally free sheaf,ΩPn

A
/A is also a rank n locally free

sheaf.
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21.4.6. Theorem (the Euler exact sequence). — The sheaf of differentials ΩPn
A
/A

satisfies the following exact sequence

0 // ΩPn
A
/A

// OPn
A
(−1)⊕(n+1) ϕ // OPn

A

// 0.

This is handy, because you can get a hold of ΩPn
A
/A in a concrete way. See

Exercise 21.5.Q for an application. By dualizing this exact sequence, we have an
exact sequence 0→ OPn

A
→ OPn

A
(1)⊕(n+1) → TPn

A
/A → 0.

21.4.7. ⋆ Proof of Theorem 21.4.6. (What is really going on in this proof is that we
consider those differentials on An+1A \ {0} that are pullbacks of differentials on PnA.
For a different explanation, in terms of the Koszul complex, see [E, §17.5].)

We first describe a map ϕ : O(−1)⊕(n+1) → O , and later identify the kernel
withΩX/Y . The map is given by

ϕ : (s0, s1, . . . , sn) 7→ x0s0 + x1s1 + · · ·+ xnsn.

(Do you see why?) You should think of this as a “degree 1” map, as each xi has
degree 1.

21.4.8. Remark. The dual ϕ∨ : O → O(1)⊕(n+1) of ϕ gives a map Pn → Pn via
Important Theorem 16.4.1 on maps to projective space. This map is the identity,
and this is one way of describing ϕ in a “natural” (coordinate-free) manner.

21.4.E. EASY EXERCISE. Show that ϕ is surjective, by checking on the open set
D(xi). (There is a one-line solution.)

Now we must identify the kernel of ϕ with the differentials, and we can do
this on eachD(xi), so long as we do it in a way that works simultaneously for each
open set. So we consider the open set U0, where x0 ̸= 0, and we have the usual
coordinates xj/0 = xj/x0 (1 ≤ j ≤ n). Given a differential

f1(x1/0, . . . , xn/0) dx1/0 + · · ·+ fn(x1/0, . . . , xn/0) dxn/0
we must produce n + 1 sections of O(−1). As motivation, we just look at the first
term, and pretend that the projective coordinates are actual coordinates.

f1 dx1/0 = f1 d(x1/x0)

= f1
x0 dx1 − x1 dx0

x20

= −
x1

x20
f1 dx0 +

f1

x0
dx1

Note that x0 times the “coefficient of dx0” plus x1 times the “coefficient of dx1” is
0, and also both coefficients are of homogeneous degree −1. Motivated by this, we
take:

(21.4.8.1) f1 dx1/0 + · · ·+ fn dxn/0 7→ (
−
x1

x20
f1 − · · ·− xn

x20
fn,

f1

x0
,
f2

x0
, . . . ,

fn

x0

)
Note that over U0, this indeed gives an injection of ΩPn

A
/A to O(−1)⊕(n+1) that

surjects onto the kernel of O(−1)⊕(n+1) → OX (if (g0, . . . , gn) is in the kernel, take
fi = x0gi for i > 0).
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Let’s make sure this construction, applied to two different coordinate patches
(say U0 and U1) gives the same answer. (This verification is best ignored on a first
reading.) Note that

f1 dx1/0 + f2 dx2/0 + · · · = f1 d
1

x0/1
+ f2 d

x2/1

x0/1
+ · · ·

= −
f1

x2
0/1

dx0/1 +
f2

x0/1
dx2/1 −

f2x2/1

x2
0/1

dx0/1 + · · ·

= −
f1 + f2x2/1 + · · ·

x2
0/1

dx0/1 +
f2x1

x0
dx2/1 + · · · .

Under this map, the dx2/1 term goes to the second factor (where the factors are
indexed 0 through n) in O(−1)⊕(n+1), and yields f2/x0 as desired (and similarly
for dxj/1 for j > 2). Also, the dx0/1 term goes to the “zero” factor, and yields(

n∑
i=1

fi(xi/x1)/(x0/x1)
2

)
/x1 = fixi/x

2
0

as desired. Finally, the “first” factor must be correct because the sum over i of xi
times the ith factor is 0.

21.4.F. EXERCISE. Finish the proof of Theorem 21.4.6, by verifying that this map
ΩPn

A
/A → OPn

A
(−1)⊕(n+1) identifiesΩPn

A
/A with kerϕ.

□

21.4.G. EXERCISE (PROMISED IN §18.5.7). Show that h1(P2k,ΩP2
k
/k) > 0. Show

that ΩP2
k
/k is not the direct sum of line bundles. Show that Theorem 18.5.6 (that

all finite rank vector bundles on P1 split into line bundles) cannot be extended to
rank 2 vector bundles on P2k.

21.4.9. Generalizations of the Euler exact sequence. Generalizations of the Euler exact
sequence are quite useful. We won’t use them later, so no proofs will be given.
First, the argument generalizes readily if SpecA is replaced by an arbitrary base
scheme. The Euler exact sequence generalizes further in a number of ways. As
a first step, suppose V is a rank n + 1 locally free sheaf (or vector bundle) on a
scheme X. ThenΩPV /X sits in an Euler exact sequence:

0→ ΩPV /X → O(−1)⊗ V ∨ → OX → 0

If π : PV → X, the map O(−1) ⊗ V ∨ → OX is induced by V ∨ ⊗ π∗O(1) ∼= (V ∨ ⊗
V )⊗OX → OX, where V ∨ ⊗V → OX is the trace map (§13.7.1). (You may wish to
compare this to Remark 21.4.8.)

It is not obvious that this is useful, but we have already implicitly seen it in
the case of P1-bundles over curves, in Exercise 20.2.J, where the normal bundle to
a section was identified in this way.

21.4.10. ⋆⋆ Generalization to the Grassmannian. For another generalization, fix a
base field k, and letG(m,n+1) be the space of sub-vector spaces of dimensionm in
an (n+1)-dimensional vector space V (the Grassmannian, §16.7). OverG(m,n+1)
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we have a short exact sequence of locally free sheaves

0→ S → OG(m,n+1) ⊗ V∨ → Q → 0

where OG(m,n+1) ⊗ V∨ is the “trivial bundle whose fibers are V∨” (do you under-
stand what that means?), and S is the “universal vector bundle” or “tautological
vector (sub)bundle”. Then there is a canonical isomorphism

(21.4.10.1) ΩG(m,n+1)/k
∼= Hom(Q,S ).

21.4.H. EXERCISE. Recall that in the case of projective space, i.e., m = 1, S =
O(−1) (Exercise 17.1.H). Verify (21.4.10.1) in this case using the Euler exact se-
quence (Theorem 21.4.6).

21.4.I. EXERCISE. Prove (21.4.10.1), and explain how it generalizes Exercise 20.2.I.
(The hint to Exercise 20.2.I may help.)

This Grassmannian fact generalizes further to Grassmannian bundles, and to
flag varieties, and to flag bundles.

21.5 Understanding smooth varieties using their cotangent
bundles

In this section, we construct birational invariants of varieties over algebraically
closed fields (such as the geometric genus), motivate the notion of an unramified
morphism, show that varieties are “smooth almost everywhere”, and get a first
glimpse of Hodge theory.

21.5.1. The geometric genus, and other birational invariants from i-formsΩiX/Y .
Suppose X is a projective scheme over k. Then for each i, hi(X,ΩX/k) is an

invariant of X, which can be useful. The first useful fact is that it, and related
invariants, are birational invariants if X is smooth, as shown in the following Exer-
cise 21.5.A. We first define the sheaf of (relative) i-forms ΩiX/Y := ∧iΩX/Y . Sec-
tions of ΩiX/Y (over some open set) are called (relative) i-forms (over that open
set).

21.5.2. Joke. Old Macdonald had a form; ei ∧ ei = 0.

21.5.A. EXERCISE (h0(X,ΩiX/k) ARE BIRATIONAL INVARIANTS). Suppose X and
X ′ are birational irreducible smooth projective k-varieties. Show (for each i) that
H0(X,ΩiX/k)

∼= H0(X ′,ΩiX ′/k). Hint: fix a birational map ϕ : X 99K X ′. By Exer-
cise 16.5.B, the complement of the domain of definition U of ϕ is codimension at
least 2. By pulling back i-forms from X ′ to U, we get a map ϕ∗ : H0(X ′,ΩiX ′/k) →
H0(U,ΩiX/k). Use Algebraic Hartogs’s Lemma 11.3.11 and the fact that Ωi is lo-
cally free to show the map extends to a map ϕ∗ : H0(X ′,ΩiX ′/k)→ H0(X,ΩiX/k). If
ψ : X ′ 99K X is the inverse rational map, we similarly get a mapψ∗ : H0(X,ΩiX/k)→
H0(X ′,ΩiX ′/k). Show that ϕ∗ and ψ∗ are inverses by showing that each composi-
tion is the identity on a dense open subset of X or X ′.
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21.5.3. The canonical bundle KX and the geometric genus pg(X). If X is a dimension
n smooth k-variety, the invertible sheaf (or line bundle) detΩX/k = ΩnX/k (the
sheaf of “algebraic volume forms”) has particular importance, and is called the
canonical (invertible) sheaf, or the canonical (line) bundle. It is denoted KX (or
KX/k). As mentioned in §18.5.2, if X is projective, then KX is the dualizing sheaf
ωX appearing in the statement of Serre duality, something we will establish in
§30.4 (see Desideratum 30.1.1).

21.5.B. EXERCISE (THE ADJUNCTION FORMULA FOR KX). Suppose X is a smooth
variety, and and Z is a smooth subvariety of X. Show that

KZ
∼= KX|Z ⊗ det NZ/X.

(Hint: apply Exercise 13.5.H to Theorem 21.3.7.) In particular, by Exercise 21.2.H,
if Z is codimension 1, then

KZ
∼= (KX ⊗ OX(Z)) |Z,

which is more commonly and compactly written as KX(Z)|Z. The adjunction for-
mula is often used inductively, for complete intersections; see Exercise 21.5.H for
an example. (And see Exercise 20.2.B(a) and §30.4 for other versions of the adjunc-
tion formula.)

21.5.4. Definition. If X is a projective (or even proper) smooth k-variety, the bira-
tional invariant h0(X,KX) = h0(X,ΩnX/k) has particular importance. It is called
the geometric genus, and is denoted pg(X). We saw this in the case of curves in
§21.4.1. If X is an irreducible variety that is not smooth or projective, the phrase
geometric genus refers to h0(X ′,KX ′) for some smooth projective X ′ birational to
X. (By Exercise 21.5.A, this is independent of the choice of X ′.) For example, if X
is an irreducible reduced projective curve over k, the geometric genus is the geo-
metric genus of the normalization of X. (But in higher dimension, it is not clear
if there exists such an X ′. It is a nontrivial fact that this is true in characteristic 0
— Hironaka’s Theorem on resolution of singularities — and it is not yet known in
positive characteristic; see Remark 22.4.6.)

It is a miracle that for a complex curve the geometric genus is the same as the
topological genus and the arithmetic genus. We will connect the geometric genus
to the topological genus in our discussion of the Riemann-Hurwitz formula soon
(Exercise 21.7.I). We connect the geometric genus to the arithmetic genus in the
following exercise.

21.5.C. EASY EXERCISE. Assuming Miracle 18.5.2 (that the canonical bundle is
Serre-dualizing), show that the geometric genus of an irreducible smooth projec-
tive curve over k = k equals its arithmetic genus.

21.5.D. EXERCISE. Suppose Z is a regular degree d surface in P3
k

. Compute the
geometric genus pg(Z) of Z. Show that no regular quartic surface in P3

k
is rational

(i.e., birational to P2
k

, Definition 6.5.4). (Such quartic surfaces are examples of K3
surfaces, see Exercise 21.5.I.)

21.5.5. Important classes of varieties: Fano, Calabi-Yau, general type.
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Suppose X is a smooth projective k-variety. Then X is said to be Fano if K ∨
X

is ample, and Calabi-Yau if KX
∼= OX. (Caution: there are other definitions of

Calabi-Yau.)

21.5.E. EXERCISE. For all j ≥ 0, the jth plurigenus of a smooth projective k-variety
is h0(X,K ⊗j

X ). Show that the jth plurigenus is a birational invariant.

(By contrast, h0(X,K ⊗j) is not a birational invariant if j < 0. For example,
you can show that h0(X,K ∨) differs for X = P2k and X = Blp P2k.)

The Kodaira dimension of X, denoted κ(X), tracks the rate of growth of the
plurigenera. It is the smallest k such that h0(X,K ⊗j

X )/jk is bounded (as j varies
through the positive integers), except that if all the plurigenera h0(X,K ⊗j

X ) are 0,
we say κ(X) = −1. It is a nontrivial fact that the Kodaira dimension always exists,
and that it is the maximum of the dimensions of images of the jth “pluricanonical
rational maps”. The latter fact implies that the Kodaira dimension is an integer be-
tween −1 and dimX inclusive. Exercise 21.5.E shows that the Kodaira dimension
is a birational invariant. If κ(X) = dimX, we say that X is of general type. (For
more information on the Kodaira dimension, see [Ii, §10.5].)

21.5.F. EXERCISE. Show that if KX is ample then X is of general type.

21.5.G. EXERCISE. Show that a smooth geometrically irreducible projective curve
(over a field k) is Fano (resp. Calabi-Yau, general type) if its genus is 0 (resp. 1,
greater than 1).

The “trichotomy” of Exercise 21.5.G is morally the reason that curves behave
differently depending on which of the three classes they lie in (see §19.6.1). In some
sense, important aspects of this trichotomy extend to higher dimension, which is
part of the reason for making these definitions. We now explore this trichotomy in
the case of complete intersections.

21.5.H. EXERCISE. Suppose X is a smooth complete intersection in PNk of hyper-
surfaces of degree d1, . . . , dn, where k is algebraically closed.
(a) Show that KX

∼= O(−N− 1+ d1 + · · ·+ dn)|X.
(b) Show that −N − 1 + d1 + · · · + dn is negative (resp. zero, positive) then X is
Fano (resp. Calabi-Yau, general type).
(c) Find all possible values ofN and d1, . . . , dn where X is Calabi-Yau of dimension
at most 3. Notice how small this list is.

21.5.I. EXERCISE. A K3 surface over a field k is a proper smooth geometrically
connected Calabi-Yau surface X over k such that H1(X,OX) = 0. (Weil has written
that K3 surfaces were named in honor of Kummer, Kähler, and Kodaira, and the
mountain K2, [BPV, p. 288].) Prove that the dimension 2 (smooth) Calabi-Yau
complete intersections of Exercise 21.5.H(c) are all K3 surfaces.

21.5.6. Tantalizing side remark. If you compare the degrees of the hypersurfaces cut-
ting out complete intersection K3 surfaces (in Exercise 21.5.H(c)), with the degrees
of hypersurfaces cutting out complete intersection canonical curves (see §19.8.2
and Exercise 19.8.G), you will notice a remarkable coincidence. Of course this is
not a coincidence at all.
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21.5.J. EXERCISE (NOT EVERYTHING FITS INTO THIS TRICHOTOMY). Suppose C is
a smooth projective irreducible complex curve of genus greater than 1. Show that
C×C P1C is neither Fano, nor Calabi-Yau, nor general type. Hint: Exercise 21.2.U.

21.5.7. ⋆ Kodaira vanishing.
The Kodaira vanishing theorem is an important result that is an important

tool in a number of different areas of algebraic geometry. We state it for the sake
of culture, but do not prove it (and hence will not use it).

21.5.8. The Kodaira Vanishing Theorem. — Suppose k is a field of characteristic 0,
and X is a smooth projective k-variety. Then for any ample invertible sheaf L ,Hi(X,K ⊗
L ) = 0 for i > 0.

21.5.9. The restriction on characteristic is necessary; Raynaud gave an example
where Kodaira vanishing fails in positive characteristic, [Ra]. The original proof is
by proving the complex-analytic version, and then transferring it into a complex
algebraic statement using Serre’s GAGA Theorem [Se3]. The general characteristic
0 case can be reduced to C — any reduction of this sort is often called (somewhat
vaguely) an application of the Lefschetz principle. (For a precise formulation of the
Lefschetz principle, with a short proof which applies in any characteristic see [Ek].
See [FR] for a generalization. See [MO90551] for more context.) Raynaud later
gave a dramatic algebraic proof of Kodaira vanishing using positive characteristic
(!), see [DeI] or [Il].

21.5.K. EXERCISE. Prove the Kodaira Vanishing Theorem in the case dimX = 1,
and for Pnk . (Neither case requires the characteristic 0 hypothesis.)

21.5.10. ⋆ A first glimpse of Hodge theory.
The invariant hj(X,ΩiX/k) is called the Hodge number hi,j(X). By Exercise 21.5.A,

hi,0 are birational invariants. We will soon see (in Exercise 21.5.O) that this isn’t
true for all hi,j.

21.5.L. EXERCISE. Suppose X is a smooth projective variety over k = k. Assum-
ing Miracle 18.5.2 (that the canonical bundle is Serre-dualizing), show that Hodge
numbers satisfy the symmetry hp,q = hn−p,n−q. (Exercise 13.5.G will be useful.)

21.5.M. EXERCISE (THE HODGE NUMBERS OF PROJECTIVE SPACE). Show that
hp,q(Pnk ) = 1 if 0 ≤ p = q ≤ n and hp,q(Pnk ) = 0 otherwise. Hint: use the Euler
exact sequence (Theorem 21.4.6) and apply Exercise 13.5.F.

21.5.11. Remark: The Hodge diamond. Over k = C, further miracles occur. If X is
an irreducible smooth projective complex variety, then it turns out that there is a
direct sum decomposition

(21.5.11.1) Hm(X,C) = ⊕i+j=mHj(X,ΩiX/C),

from which hm(X,C) =
∑
i+j=m h

i,j, so the Hodge numbers (purely algebraic
objects) yield the Betti numbers (a priori topological information). Moreover, com-
plex conjugation interchanges Hj(X,ΩiX/C) with Hi(X,Ωj

X/C), from which

(21.5.11.2) hi,j = hj,i.
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(Aside: This additional symmetry holds in characteristic 0 in general, but can fail
in positive characteristic, see for example [Ig, p. 966], [Mu1, §II], [Se4, Prop. 16].)
This is the beginning of the vast and rich subject of Hodge theory (see [GH1, §0.6]
for more, or [Vo] for much more).

If we write the Hodge numbers in a diamond, with hi,j the ith entry in the
(i+ j)th row, then the diamond has the two symmetries coming from Serre duality
and complex conjugation. For example, the Hodge diamond of an irreducible
smooth projective complex surface will be of the following form:

1

q q

pg h1,1 pg
q q

1

where pg is the geometric genus of the surface, and q = h0,1 = h1,0 = h2,1 = h1,2

is called the irregularity of the surface. As another example, by Exercise 21.5.M,
the Hodge diamond of Pn is all 0 except for 1’s down the vertical axis of symmetry.

You won’t need the unproved statements (21.5.11.1) or (21.5.11.2) to solve the
following problems.

21.5.N. EXERCISE. Assuming Miracle 18.5.2 (that the canonical bundle is Serre-
dualizing), show that the Hodge diamond of a smooth projective geometrically
irreducible genus g curve over a field k is the following.

1

g g

1

21.5.O. EXERCISE. Show that the Hodge diamond of P1k × P1k is the following.

1

0 0

0 2 0

0 0

1

By comparing your answer to the Hodge diamond of P2k (Exercise 21.5.M), show
that h1,1 is not a birational invariant.

Notice that in both cases, h1,1 is the Picard number ρ (defined in §18.4.10). In
general, ρ ≤ h1,1 (see [GH1, §3.5, p. 456-7]).

21.5.12. ⋆ Aside: Infinitesimal deformations and automorphisms.
It is beyond the scope of this book to make this precise, but if X is a va-

riety, H0(X,TX) parametrizes infinitesimal automorphisms of X, and H1(X,TX)
parametrizes infinitesimal deformations. As an example if X = P1 (over a field),
TP1

∼= O(2) (§21.4.2), so h0(P1,TP1) = 3, which is precisely the dimension of the
automorphism group of P1 (Exercise 16.4.B).

21.5.P. EXERCISE. Compute h0(Pnk ,TPn
k
) using the Euler exact sequence (Theo-

rem 21.4.6). Compare this to the dimension of the automorphism group of Pnk
(Exercise 16.4.B).
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21.5.Q. EXERCISE. Show that H1(PnA,TPn
A
) = 0. (Thus projective space can’t

deform, and is “rigid”.)

21.5.R. EXERCISE. Assuming Miracle 18.5.2 (that the canonical bundle is Serre-
dualizing), compute hi(C,TC) for a genus g smooth projective geometrically irre-
ducible curve over k, for i = 0 and 1. You should notice that h1(C,TC) for genus
0, 1, and g > 1 is 0, 1, and 3g− 3 respectively; after doing this, re-read §19.8.3.

21.6 Unramified morphisms

Suppose π : X → Y is a morphism of schemes. The support of the quasicoher-
ent sheafΩπ = ΩX/Y is called the ramification locus, and the image of its support,
π(SuppΩX/Y), is called the branch locus. If Ωπ = 0, we say that π is formally
unramified, and if π is also furthermore locally of finite type, we say π is unram-
ified. (Caution: there is some lack of consensus in the definition of “unramified”;
“locally of finite type” is sometimes replaced by “locally of finite presentation”,
which was the definition originally used in [Gr-EGA].)

21.6.A. EASY EXERCISE (EXAMPLES OF UNRAMIFIED MORPHISMS).
(a) Show that locally closed embeddings are unramified.
(b) Show that if S is a multiplicative subset of the ring B, then SpecS−1B→ SpecB
is formally unramified. (Thus if η is the generic point of an integral scheme Y, then
Spec OY,η → Y is formally unramified.)
(c) Show that finite separable field extensions (or more correctly, the corresponding
maps of schemes) are unramified.

21.6.B. EXERCISE (PRACTICE WITH THE CONCEPT).
(a) Show that the normalization of the node in Exercise 9.7.E (see Figure 7.4) is
unramified.
(b) Show that the normalization of the cusp in Exercise 9.7.F (see Figure 9.4) is not
unramified.

21.6.C. EASY EXERCISE (UNRAMIFIED MORPHISMS ARE PRESERVED BY COMPOSI-
TION). Suppose π : X → Y and ρ : Y → Z are unramified. Show that ρ ◦ π is
unramified.

21.6.D. EXERCISE (CHARACTERIZATIONS OF UNRAMIFIED MORPHISMS BY THEIR
FIBERS). Suppose π : X→ Y is locally of finite type.
(a) Show that π is unramified if and only if for each q ∈ Y, π−1(q) is the (scheme-
theoretic) disjoint union of schemes of the form SpecK, where K is a finite separa-
ble extension of κ(q).
(b) Show that π is unramified if and only if for each geometric point q, π−1(q) :=
q×Y X is the (scheme-theoretic) disjoint union of copies of q.

21.6.E. UNIMPORTANT EXERCISE (FOR NUMBER THEORISTS). Supposeϕ : (A,m)→
(B, n) is a local homomorphism of local rings. In algebraic number theory, such a
ring morphism is said to be unramified if B/ϕ(m)B is a finite separable extension of
A/m. Show that if ϕ is finite type, this agrees with our definition.
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21.6.F. EXERCISE (FOR USE IN EXERCISE 21.6.G(B) AND EXERCISE 25.2.G).
(a) Suppose π : X → Y is a locally finite type morphism of locally Noetherian
schemes. Show that π is unramified if and only if δπ : X→ X×YX is an open embed-
ding. Hint: Show the following. If ϕ : X→ Z is a closed embedding of Noetherian
schemes, and the ideal sheaf I of ϕ satisfies I = I 2, then ϕ is also an open em-
bedding. For that, show that if (A,m) is a Noetherian local ring, and I is a proper
ideal of A satisfying I = I2, then I = 0. For that in turn, use Nakayama version 2
(Lemma 7.2.9). Also use the fact that Supp I is closed (using Exercise 13.7.D), so
its complement is open.
⋆ (b) Adapt your proof of (a) to drop the locally Noetherian hypothesis. Hint:
show that if π is locally of finite type, then δπ is locally finitely presented.

21.6.G. EASY EXERCISE. Suppose π : X→ Y and ρ : Y → Z are locally of finite type.
Let τ = ρ ◦ π:

X
π //

τ
��?

??
??

??
? Y

ρ
����
��
��
��

Z

(a) Show that if τ is unramified, then so is π.
(b) Show that if ρ is unramified, and τ is smooth of relative dimension n (e.g., étale
if n = 0), then π is smooth of relative dimension n.
(Does this agree with your geometric intuition?)

21.6.H. EXERCISE. Suppose π : X→ Y is locally of finite type. Show that the locus
in X where π is unramified is open.

21.6.I. EXERCISE (THE MEANING OF UNRAMIFIEDNESS IN “VERY GEOMETRIC” SET-
TINGS). Show that a morphism π : X → Y of finite type schemes over an al-
gebraically closed field is unramified if and only if π is injective on tangent vec-
tors at closed points. (This was mentioned in the remark immediately after Theo-
rem 19.1.1.)

21.6.1. Arithmetic side remark: the different and discriminant. If B is the ring of
integers in a number field (§9.7.1), the different ideal of B is the annihilator of
ΩB/Z. It measures how “ramified” SpecB → SpecZ is, and is a ring-theoretic
version of the ramification locus. The discriminant ideal can be interpreted as the
ideal of Z corresponding to effective divisor on SpecZ that is the “push forward”
(not defined here, but defined as you might expect) of the divisor corresponding
to the different. It is a ring-theoretic version of the branch locus. If B/A is an
extension of rings of integers of number fields, the relative different ideal (of B)
and relative discriminant ideal (of A) are defined similarly. (We won’t use these
ideas.)

21.7 The Riemann-Hurwitz Formula

The Riemann-Hurwitz formula generalizes our calculation of the genus g of
a double cover of P1 branched at 2g + 2 points, Theorem 19.5.1, to higher degree
covers, and to higher genus target curves.
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21.7.1. Definition. A finite morphism between integral schemes X→ Y is said to be
separable if it is dominant, and the induced extension of function fields K(X)/K(Y)
is a separable extension. Similarly, a generically finite morphism is generically
separable if it is dominant, and the induced extension of function fields is a sepa-
rable extension. Note that finite morphisms of integral schemes are automatically
separable in characteristic 0.

21.7.2. Proposition. — If π : X → Y is a generically separable morphism of irreducible
smooth varieties of the same dimension n, then the relative cotangent sequence (Theo-
rem 21.2.25) is exact on the left as well:

(21.7.2.1) 0 // π∗ΩY/k
ϕ // ΩX/k // ΩX/Y // 0.

This is an example of left-exactness of the relative cotangent sequence in the
presence of appropriate “smoothness”, see Remark 21.2.10.

Proof. We must check that ϕ is injective. NowΩY/k is a rank n locally free sheaf on
Y, so π∗ΩY/k is a rank n locally free sheaf on X. A locally free sheaf on an integral
scheme (such as π∗ΩY/k) is torsion-free (any section over any open set is nonzero
at the generic point, see §13.5.5), so if a subsheaf of it (such as kerϕ) is nonzero,
it is nonzero at the generic point. Thus to show the injectivity of ϕ, we need only
check that ϕ is an inclusion at the generic point. We thus tensor with Oη where
η is the generic point of X. Tensoring with Oη is an exact functor (localization is
exact, Exercise 1.6.F), and Oη⊗ΩX/Y = 0 (as K(X)/K(Y) is a separable extension by
hypothesis, and Ω for separable field extensions is 0 by Exercise 21.2.F(a)). Also,
Oη ⊗ π∗ΩY/k and Oη ⊗ΩX/k are both n-dimensional Oη-vector spaces (they are
the stalks of rank n locally free sheaves at the generic point). Thus by considering

Oη ⊗ π∗ΩY/k → Oη ⊗ΩX/k → Oη ⊗ΩX/Y → 0

(which is O⊕n
η → O⊕n

η → 0 → 0) we see that Oη ⊗ π∗ΩY/k → Oη ⊗ ΩX/k is
injective, and thus that π∗ΩY/k → ΩX/k is injective. □

People not confined to characteristic 0 should note what goes wrong for non-
separable morphisms. For example, suppose k is a field of characteristic p, and
consider the map π : A1k = Speck[t] → A1k = Spec k[u] given by u = tp. Then
Ωπ is the trivial invertible sheaf generated by dt. As another (similar but differ-
ent) example, if K = k(x) and K ′ = k(xp), then the inclusion K ′ ↪→ K induces
π : SpecK[t] → SpecK ′[t]. Once again, Ωπ is an invertible sheaf, generated by dx
(which in this case is pulled back fromΩK/K ′ on SpecK). In both of these cases, we
have maps from one affine line to another, and there are vertical tangent vectors.

21.7.A. EXERCISE. If X and Y are smooth varieties of dimension n, and π : X→ Y is
generically separable, show that the ramification locus is pure codimension 1, and
has a natural interpretation as an effective divisor, as follows. Interpretϕ as an n×
n Jacobian matrix (12.1.6.1) in appropriate local coordinates, and hence interpret
the locus where ϕ is not an isomorphism as (locally) the vanishing scheme of the
determinant of an n× n matrix. Hence the branch locus is also pure codimension
1. Hence we use the terms ramification divisor and branch divisor.
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Before getting down to our case of interest, dimension 1, we begin with some-
thing (literally) small but fun. Suppose π : X→ Y is a surjective k-morphism from
a smooth k-scheme that contracts a subset of codimension greater than 1. More
precisely, suppose π is an isomorphism over an open subset of Y, from an open
subset U of X whose complement has codimension greater than 1. Then by Exer-
cise 21.7.A, Y cannot be smooth. (Small resolutions, to be defined in Exercise 22.4.N,
are examples of such π. In particular, you can find an example there.)

Suppose now that X and Y are dimension 1. Then the ramification locus is a
finite set (ramification points) of X, and the branch locus is a finite set (branch
points) of Y. (Figure 21.4 shows a morphism with two ramification points and one
branch point.) Now assume that k = k. We examineΩX/Y near a point p ∈ X.

FIGURE 21.4. An example where the branch divisor appears with
multiplicity 2 (see Exercise 21.7.C)

As motivation for what we will see, we note that in complex geometry, noncon-
stant maps from (complex) curves to curves may be written in appropriate local
coordinates as x 7→ xm = y, from which we see that dy pulls back tomxm−1dx, so
ΩX/Y locally looks like functions times dxmodulo multiples ofmxm−1dx.

Consider now our map π : X → Y, and fix p ∈ X, and q = π(p). Because the
construction of Ω behaves well under base change (Theorem 21.2.27(b)), we may
replace Y with Spec of the local ring OY,q at q, i.e., we may assume Y = SpecB,
where B is a discrete valuation ring (as Y is a regular curve), with residue field
k = k corresponding to q. Then as π is finite, X is affine too. Similarly, as the
construction of Ω behaves well with respect to localization (Exercise 21.2.8), we
may replace X by Spec OX,p, and thus assume X = SpecA, where A is a discrete
valuation ring, and π corresponds to B→ A, inducing an isomorphism of residue
fields (with k).

Suppose their uniformizers are s and t respectively, with t 7→ usn where u is
an invertible element of A.

X

��

A usn

Y B

OO

t
_

OO
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Recall that the differentials of a discrete valuation ring over k are generated by d
of the uniformizer (Exercise 21.4.D). Then

dt = d(usn) = unsn−1 ds+ sn du.

This differential on SpecA vanishes to order at least n − 1, and precisely n − 1 if
n is not divisible by the characteristic. The former case is called tame ramification,
and the latter is called wild ramification. We call this order the ramification order
at this point of X.

21.7.B. EXERCISE. Show that the degree of ΩX/Y at p ∈ X is precisely the ram-
ification order of π at p. (The degree of a coherent sheaf on a curve was defined
in §18.4.4. To do this exercise, you will have to explain why a coherent sheaf F
supported on a finite set of points has a “degree” at each of these points, which
sum to the total degree of F .)

21.7.C. EXERCISE: INTERPRETING THE RAMIFICATION DIVISOR IN TERMS OF NUM-
BER OF PREIMAGES. For this exercise, we take the base field k to be algebraically
closed. Suppose all the ramification above q ∈ Y is tame (which is always true in
characteristic 0). Show that the degree of the branch divisor at q is degπ− |π−1(q)|.
Thus the multiplicity of the branch divisor counts the extent to which the number
of preimages is less than the degree (see Figure 21.4).

21.7.3. Theorem (the Riemann-Hurwitz formula). — Suppose π : X → Y is a finite
separable morphism of projective regular curves, of pure degree n. Let R be the ramification
divisor. Then

(21.7.3.1) 2g(X) − 2 = n(2g(Y) − 2) + degR.

21.7.D. EXERCISE. Prove the Riemann-Hurwitz formula. Hint: Apply the fact
that degree is additive in exact sequences (Exercise 18.4.I) to (21.7.2.1). Recall that
degrees of line bundles pull back well under finite morphisms of integral projec-
tive curves, Exercise 18.4.F. A torsion coherent sheaf on a reduced curve (such as
Ωπ) is supported in dimension 0 (Exercise 13.7.G(b)), so χ(Ωπ) = h0(Ωπ). Show
that the degree of R as a divisor is the same as its degree in the sense of h0.

Here are some applications of the Riemann-Hurwitz formula.

21.7.4. Example. The degree of R is always even: any cover of a curve must be
branched over an even number of points (counted with appropriate multiplicity).

21.7.E. EASY EXERCISE. Show that there is no nonconstant map from a smooth
projective irreducible genus 2 curve to a smooth projective irreducible genus 3
curve. (Hint: degR ≥ 0.)

21.7.5. Example (“P1
k

is simply connected”). If k = k, the only connected unbranched
finite separable cover of P1k is the isomorphism, for the following reason. Suppose
X is connected and X → P1k is unramified. Then X is a curve, and regular by
Exercise 25.2.E(a). Applying the Riemann-Hurwitz theorem, using that the ramifi-
cation divisor is 0, we have 2−2gX = 2dwith d ≥ 1 and gX ≥ 0, from which d = 1
and gX = 0.
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21.7.F. EXERCISE (“IN CHARACTERISTIC 0, A1
k

IS SIMPLY CONNECTED”. Show
that if k = k has characteristic 0, the only connected unbranched cover of A1k is
itself. (Aside: in characteristic p, this needn’t hold; Speck[x, y]/(yp − y − x) →
Spec k[x] is such a map, as you can show yourself. Once the theory of the algebraic
fundamental group is developed, this translates to: “A1 is not simply connected
in characteristic p.” This cover is an example of an Artin-Schreier cover. Fun fact:
the group Z/p acts on this cover via the map y 7→ y + 1. This is an example of a
Galois cover; you can check that the extension of function fields is Galois.)

21.7.G. UNIMPORTANT EXERCISE. Extend Example 21.7.5 and Exercise 21.7.F,
by removing the k = k hypothesis, and changing “connected” to “geometrically
connected”.

21.7.6. Example: Lüroth’s Theorem. Continuing the notation of Theorem 21.7.3, sup-
pose g(X) = 0. Then from the Riemann-Hurwitz formula (21.7.3.1), g(Y) = 0.
(Otherwise, if g(Y) were at least 1, then the right side of the Riemann-Hurwitz
formula would be non-negative, and thus couldn’t be −2, which is the left side.)
Informally: the only maps from a genus 0 curve to a curve of positive genus are
the constant maps. This has a nonobvious algebraic consequence, by our identifi-
cation of covers of curves with field extensions (Theorem 17.4.3): all subfields of
k(x) containing k are of the form k(y) where y = f(x) for some f ∈ k(x).

k(x) P1

��
K(C)
?�

OO

C = P1

(It turns out that the hypotheses chark = 0 and k = k are not necessary.) This is
Lüroth’s Theorem.

21.7.H. EXERCISE. Use Lüroth’s Theorem to give new geometric solutions to Ex-
ercises 6.5.J and 6.5.L. (These arguments will be less ad hoc, and more suitable for
generalization, than the algebraic solutions suggested in the hints to those exer-
cises.)

21.7.I. ⋆ EXERCISE (GEOMETRIC GENUS EQUALS TOPOLOGICAL GENUS). This
exercise is intended for those with some complex background, who know that
the Riemann-Hurwitz formula holds in the complex analytic category. Suppose
C is an irreducible regular projective complex curve. Show that there is an alge-
braic nonconstant map π : C → P1C. Describe the corresponding map of Riemann
surfaces. Use the Riemann-Hurwitz formula to show that the algebraic notion
of genus (as computed using the branched cover π) agrees with the topological
notion of genus (using the same branched cover). (Recall that assuming Mira-
cle 18.5.2 — that the canonical bundle is Serre-dualizing — we know that the geo-
metric genus equals the arithmetic genus, Exercise 21.5.C.)

21.7.J. UNIMPORTANT EXERCISE. Suppose π : X → Y is a dominant morphism of
regular curves, and R is the ramification divisor of π. Show thatΩX(−R) ∼= π∗ΩY .
(This exercise is geometrically pleasant, but we won’t use it.) Hint: This says that
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we can interpret the invertible sheaf π∗ΩY over an open set U of X as precisely
those differentials on U vanishing along the ramification divisor.

21.7.7. Informal example: The degree of the discriminant of degree d polynomials in one
variable. You may be aware that there is a degree 2d − 2 polynomial in the coeffi-
cients ad, . . . , a0 of the degree d polynomial

f(x) = adx
d + ad−1x

d−1 + · · ·+ a0 = 0

that vanishes precisely when f(x) has a multiple root. For example, when d = 2,
the discriminant is a21 − 4a0a2. We can “compute” this degree 2d − 2 using the
Riemann-Hurwitz formula as follows. (You should try to make sense of the fol-
lowing informal and imprecise discussion.) We work over an algebraically closed
field k of characteristic 0 for the sake of simplicity. If we take two general degree d
polynomials, g(x) and h(x), the degree of the discriminant “should be” the num-
ber of λ ∈ k for which g(x) − λh(x) has a double root. Consider the morphism
P1 → P1 given by x 7→ [g(x), h(x)]. (Here we use “affine coordinates” on the
source P1: by x we mean [x, 1].) Then this morphism has degree d. A ramification
point a mapping to the branch point [λ, 1] in the target P1 corresponds to a being
a double root of g(x) − λh(x). Thus the number of branch points should be the
desired degree of the discriminant. By the Riemann-Hurwitz formula there are
2d− 2 branch points (admittedly, with multiplicity). It is possible to turn this into
a proof, and it is interesting to do so.

21.7.8. Bounds on automorphism groups of curves.
It is a nontrivial fact that irreducible smooth projective curves of genus g ≥ 2

have finite automorphism groups. (See [FK, §5.1] for a proof over C. See [Schm]
for the first proof in arbitrary characteristic, although better approaches are now
available.) Granting this fact, we can show that in characteristic 0, the automor-
phism group has order at most 84(g − 1) (Hurwitz’s Automorphisms Theorem), as
follows.

Suppose C is an irreducible smooth projective curve over an algebraically
closed field k = k of characteristic 0, of genus g ≥ 2. Suppose that G is a finite
group of automorphisms of C. We now show that |G| ≤ 84(g−1). (The case where
k is not algebraically closed is quickly dispatched by base-changing to k.)

21.7.K. EXERCISE.
(a) Let C ′ be the smooth projective curve corresponding to the field extension
K(C)G of k (via Theorem 17.4.3). (K(C)G means the G-invariants of K(C).) De-
scribe a morphism π : C→ C ′ of degree |G|, as well as a faithful G-action on C that
commutes with π.
(b) Show that above each branch point of π, the preimages are all ramified to the
same order (as G acts transitively on them). Suppose there are n branch points
and the ith one has ramification ri (each |G|/ri times).
(c) Use the Riemann-Hurwitz formula to show that

(2g− 2) = |G|

(
2g(C ′) − 2+

n∑
i=1

ri − 1

ri

)
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To maximize |G|, we wish to minimize

(21.7.8.1) 2g(C ′) − 2+

n∑
i=1

ri − 1

ri

subject to (21.7.8.1) being positive. Note that 1/42 is possible: take g(C ′) = 0,
n = 3, and (r1, r2, r3) = (2, 3, 7).

21.7.L. EXERCISE. Show that you can’t do better than 1/42 by considering the
following cases separately:

(a) g(C ′) > 1,
(b) g(C ′) = 1,
(c) g(C ′) = 0 and n ≥ 5,
(d) g(C ′) = 0 and n = 4, and
(e) g(C ′) = 0 and n = 3.

21.7.M. EXERCISE. Use the fact that (21.7.8.1) is at least 1/42 to prove the result.

21.7.9. Remark. In positive characteristic, there can be many more automorphisms.
For example, [Stic], in characteristic p, if pn is a prime power that is not 2, then
the completion of the affine curve yp

n

= x + xp
n+1 has genus g = pn(pn − 1)/2

and automorphism group of order p3n(p3n + 1)(p2n − 1).





CHAPTER 22

⋆ Blowing up

We next discuss an important construction in algebraic geometry, the blow-up
of a scheme along a closed subscheme (cut out by a finite type ideal sheaf). The
theory could mostly be developed immediately after Chapter 17, but the interpre-
tation in terms of the conormal cone/bundle/sheaf of many classical examples
makes it natural to discuss blowing up after differentials.

We won’t use blowing up much in later chapters, so feel free to skip this topic
for now. But it is an important tool. For example, one can use it to resolve singular-
ities, and more generally, indeterminacy of rational maps. In particular, blow-ups
can be used to relate birational varieties to each other.

We will start with a motivational example that will give you a picture of the
construction in a particularly important (and the historically earliest) case, in §22.1.
We will then see a formal definition, in terms of a universal property, §22.2. The
definition won’t immediately have a clear connection to the motivational example.
We will deduce some consequences of the definition (assuming that the blow-up
actually exists). We then prove that the blow-up exists, by describing it quite ex-
plicitly, in §22.3. As a consequence, we will find that the blow-up morphism is
projective, and we will deduce more consequences from this. In §22.4, we will do
a number of explicit computations, to see various sorts of applications, and to see
that many things can be computed by hand.

22.1 Motivating example: blowing up the origin in the plane

We will generalize the following notion, which will correspond to “blowing up”
the origin of A2k (Exercise 9.3.F). Our discussion will be informal. Consider the
subset of A2×P1 corresponding to the following. We interpret P1 as parametrizing
the lines through the origin. Consider the subvariety

Bl(0,0) A2 :=
{
(p ∈ A2, [ℓ] ∈ P1) : p ∈ ℓ)

}
,

which is the data of a point p in the plane, and a line ℓ containing both p and
the origin. Algebraically: let x and y be coordinates on A2, and X and Y be
projective coordinates on P1 (“corresponding” to x and y); we will consider the
subset Bl(0,0) A2 of A2 × P1 corresponding to xY − yX = 0. We have the useful
diagram

Bl(0,0) A2
� � //

β
&&LL

LLL
LLL

LLL
A2 × P1

��

// P1

A2

597
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You can verify that it is smooth over k (Definition 12.2.6 or 21.3.1) directly (you
can now make the paragraph after Exercise 9.3.F precise), but here is an informal
argument, using the projection Bl(0,0) A2 → P1. The projective line P1 is smooth,
and for each point [ℓ] in P1, we have a smooth choice of points on the line ℓ. Thus
we are verifying smoothness by way of a fibration over P1.

We next consider the projection to A2, β : Bl(0,0) A2 → A2. This is an iso-
morphism away from the origin. Loosely speaking, if p is not the origin, there is
precisely one line containing p and the origin. On the other hand, if p is the origin,
then there is a full P1 of lines containing p and the origin. Thus the preimage of
(0, 0) is a curve, and hence a divisor (an effective Cartier divisor, as the blown-up
surface is regular). This is called the exceptional divisor of the blow-up.

If we have some curve C ⊂ A2 singular at the origin, it can be potentially
partially desingularized, using the blow-up, by taking the closure of C \ {(0, 0)}
in Bl(0,0) A2. (A desingularization or a resolution of singularities of a variety
X is a proper birational morphism X̃ → X from a regular scheme.) For example,
consider the curve y2 = x3 + x2, which is regular except for a node at the origin.
We can take the preimage of the curve minus the origin, and take the closure of
this locus in the blow-up, and we will obtain a regular curve; the two branches of
the node downstairs are separated upstairs. (You can check this in Exercise 22.4.B
once we have defined things properly. The result will be called the proper trans-
form (or strict transform) of the curve.) We are interested in desingularizations for
many reasons. Because we understand regular curves quite well, we could hope to
understand other curves through their desingularizations. This philosophy holds
true in higher dimension as well.

More generally, we can blow up An at the origin (or more informally, “blow
up the origin”), getting a subvariety of An × Pn−1. Algebraically, If x1, . . . , xn
are coordinates on An, and X1, . . . , Xn are projective coordinates on Pn−1, then
the blow-up Bl

0⃗
An is given by the equations xiXj − xjXi = 0. Once again, this is

smooth: Pn−1 is smooth, and for each point [ℓ] ∈ Pn−1, we have a smooth choice
of p ∈ ℓ.

We can extend this further, by blowing up An+m along a coordinate m-plane
Am by adding m more variables xn+1, . . . , xn+m to the previous example; we get
a subset of An+m × Pn−1.

Because in complex geometry, submanifolds of manifolds locally “look like”
coordinate m-planes in n-space, you might imagine that we could extend this to
blowing up a regular subvariety of a regular variety. In the course of making this
precise, we will accidentally generalize this notion greatly, defining the blow-up of
any finite type quasicoherent sheaf of ideals in a scheme. In general, blowing up
may not have such an intuitive description as in the case of blowing up something
regular inside something regular — it can do great violence to the scheme — but
even then, it is very useful.

Our description will depend only on the closed subscheme being blown up,
and not on coordinates. That remedies a defect was already present in the first
example, of blowing up the plane at the origin. It is not obvious that if we picked
different coordinates for the plane (preserving the origin as a closed subscheme)
that we wouldn’t have two different resulting blow-ups.

As is often the case, there are two ways of understanding the notion of blowing
up, and each is useful in different circumstances. The first is by universal property,
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which lets you show some things without any work. The second is an explicit
construction, which lets you get your hands dirty and compute things (and implies
for example that the blow-up morphism is projective).

The motivating example here may seem like a very special case, but if you
understand the blow-up of the origin in n-space well enough, you will understand
blowing up in general.

22.2 Blowing up, by universal property

We now define the blow-up by a universal property. The disadvantage of starting
here is that this definition won’t obviously be the same as (or even related to) the
examples of §22.1.

Suppose X ↪→ Y is a closed subscheme corresponding to a finite type quasico-
herent sheaf of ideals. (If Y is locally Noetherian, the “finite type” hypothesis is
automatic, so Noetherian readers can ignore it.)

The blow-up of X ↪→ Y is a Cartesian diagram

(22.2.0.1) EXY
� � //

��

BlX Y

β

��
X
� � // Y

such that EXY (the scheme-theoretic pullback of X by β) is an effective Cartier
divisor (defined in §8.4.1) on BlX Y, such that any other such Cartesian diagram

(22.2.0.2) D
� � //

��

W

��
X
� � // Y,

where D is an effective Cartier divisor onW, factors uniquely through it:

D
� � //

��

W

��
EXY

� � //

��

BlX Y

��
X
� � // Y.

We call BlX Y the blow-up (of Y along X, or of Y with center X). (Other somewhat
archaic terms for this are monoidal transformation, σ-process, and quadratic transfor-
mation, and dilation.) We call EXY the exceptional divisor of the blow-up. (Bl and
β stand for “blow-up”, and E stands for “exceptional”.)

By a typical universal property argument, if the blow-up exists, it is unique up
to unique isomorphism. (We can even recast this more explicitly in the language of
Yoneda’s Lemma: consider the category of diagrams of the form (22.2.0.2), where
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morphisms are diagrams of the form

D
� � //

((PP
PPP

PPP
PPP

PPP
P

��0
00
00
00
00
00
00
0 W

((QQ
QQQ

QQQ
QQQ

QQQ
Q

��1
11
11
11
11
11
11
11

D ′ � � //

}}||
||
||
||

W ′

}}{{
{{
{{
{{

X
� � // Y.

Then the blow-up is a final object in this category, if one exists.)
If Z ↪→ Y is any closed subscheme of Y, then the (scheme-theoretic) pullback

β−1Z is called the total transform of Z. We will soon see that β is an isomorphism
away from X (Observation 22.2.2). β−1(Z− X) is called the proper transform or
strict transform of Z. (We will use the first terminology. We will also define it in a
more general situation.) We will soon see (in the Blow-up Closure Lemma 22.2.6)
that the proper transform is naturally isomorphic to BlZ∩X Z, where Z ∩ X is the
scheme-theoretic intersection.

We will soon show that the blow-up always exists, and describe it explicitly.
We first make a series of observations, assuming that the blow up exists.

22.2.1. Observation. If X is the empty set, then BlX Y = Y. More generally, if
X is an effective Cartier divisor, then the blow-up is an isomorphism. (Reason:
idY : Y → Y satisfies the universal property.)

22.2.A. EXERCISE. If U is an open subset of Y, then BlU∩XU ∼= β−1(U), where
β : BlX Y → Y is the blow-up.

Thus “we can compute the blow-up locally.”

22.2.B. EXERCISE. Show that if Yα is an open cover of Y (as α runs over some
index set), and the blow-up of Yα along X∩ Yα exists, then the blow-up of Y along
X exists.

22.2.2. Observation. Combining Observation 22.2.1 and Exercise 22.2.A, we see
that the blow-up is an isomorphism away from the locus you are blowing up:

β|BlX Y−EXY : BlX Y − EXY → Y − X

is an isomorphism.

22.2.3. Observation. If X = Y, then the blow-up is the empty set: the only map
W → Y such that the pullback of X is an effective Cartier divisor is ∅ ↪→ Y. In this
case we have “blown Y out of existence”!

22.2.C. EXERCISE (BLOW-UP PRESERVES IRREDUCIBILITY AND REDUCEDNESS). Show
that if Y is irreducible, and X doesn’t contain the generic point of Y, then BlX Y is
irreducible. Show that if Y is reduced, then BlX Y is reduced.

22.2.4. Existence in a first nontrivial case: blowing up a locally principal closed
subscheme.

We next see why BlX Y exists if X ↪→ Y is locally cut out by one equation. As the
question is local on Y (Exercise 22.2.B), we reduce to the affine case SpecA/(t) ↪→
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SpecA. (A good example to think through is A = k[x, y]/(xy) and t = x.) Let

I = ker(A→ At) = {a ∈ A : tna = 0 for some n > 0},

and let ϕ : A→ A/I be the projection.

22.2.D. EXERCISE. Show that ϕ(t) is not a zerodivisor in A/I.

22.2.E. EXERCISE. Show that β : SpecA/I → SpecA is the blow up of SpecA
along SpecA/t. In other words, show that

SpecA/(t, I) //

��

SpecA/I

β

��
SpecA/t // SpecA

is a “blow up diagram” (22.2.0.1). Hint: In checking the universal property reduce
to the case whereW (in (22.2.0.2)) is affine. Then solve the resulting problem about
rings. Depending on how you proceed, you might find Exercise 10.2.G, about the
uniqueness of extension of maps over effective Cartier divisors, helpful.

22.2.F. EXERCISE. Show that SpecA/I is the scheme-theoretic closure of D(t) in
SpecA.

Thus you might geometrically interpret SpecA/I → SpecA as “shaving off
any fuzz supported in V(t)”. In the Noetherian case, this can be interpreted as
removing those associated points lying in V(t). This is intended to be vague, and
you should think about how to make it precise only if you want to.

22.2.5. The Blow-up Closure Lemma.
Suppose we have a fibered diagram

W
� � cl. emb. //

��

Z

��
X
� � cl. emb. // Y

where the bottom closed embedding corresponds to a finite type ideal sheaf (and
hence the upper closed embedding does too). The first time you read this, it may
be helpful to consider only the special case where Z→ Y is a closed embedding.

Then take the fibered product of this square by the blow-up β : BlX Y → Y, to
obtain the Cartesian diagram

W ×Y EXY �
� //

��

Z×Y BlX Y

��
EXY

� � Cartier // BlX Y.

(Why is the top row the base change of the bottom as claimed?) The bottom closed
embedding is locally cut out by one equation, and thus the same is true of the top
closed embedding as well. However, the local equation on Z×YBlX Y need not be a
non-zerodivisor, and thus the top closed embedding is not necessarily an effective
Cartier divisor.
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Let Z be the scheme-theoretic closure of

(Z×Y BlX Y) \ (W ×Y BlX Y)

inZ×YBlX Y. (AsW×YBlX Y is locally principal, we are in precisely the situation of
§22.2.4, so the scheme-theoretic closure is not mysterious.) Note that in the special
case where Z → Y is a closed embedding, Z is the proper transform, as defined
in §22.2. For this reason, it is reasonable to call Z the proper transform of Z even if
Z isn’t a closed embedding. Similarly, it is reasonable to call Z ×Y BlX Y the total
transform of Z even if Z isn’t a closed embedding.

Define EZ ↪→ Z as the pullback of EXY to Z, i.e., by the fibered diagram

EZ
� � //
� _

cl. emb.
��

Z� _

cl. emb.
��

proper transform

W ×Y EXY �
�loc. prin.//

��

Z×Y BlX Y

��

total transform

EXY
� � Cartier // BlX Y.

Note that EZ is an effective Cartier divisor on Z. (It is locally cut out by one equa-
tion, pulled back from a local equation of EXY on BlX Y. Can you see why this is
locally not a zerodivisor?) It can be helpful to note that the top square of the dia-
gram above is a blow-up square, by Exercises 22.2.E and 22.2.F (and the fact that
blow-ups can be computed affine-locally).

22.2.6. Blow-up Closure Lemma. — (BlW Z, EWZ) is canonically isomorphic to
(Z, EZ). More precisely: if the blow-up BlX Y exists, then (Z, EZ) is the blow-up of Z
alongW.

This will be very useful. We make a few initial comments. The first three apply
to the special case where Z → Y is a closed embedding, and the fourth comment
basically tells us we shouldn’t have concentrated on this special case.

(1) First, note that if Z → Y is a closed embedding, then the Blow-Up Closure
Lemma states that the proper transform (as defined in §22.2) is the blow-up of Z
along the scheme-theoretic intersectionW = X ∩ Z.

(2) In particular, the Blow-Up Closure Lemma lets you actually compute blow-
ups, and we will do lots of examples soon. For example, suppose C is a plane
curve, singular at a point p, and we want to blow up C at p. Then we could
instead blow up the plane at p (which we have already described how to do, even
if we haven’t yet proved that it satisfies the universal property of blowing up), and
then take the scheme-theoretic closure of C \ {p} in the blow-up.

(3) More generally, ifW is some nasty subscheme of Z that we wanted to blow-
up, and Z were a finite type k-scheme, then the same trick would work. We could
work locally (Exercise 22.2.A), so we may assume that Z is affine. If W is cut
out by r equations f1, . . . , fr ∈ Γ(Z,OZ), then complete the f’s to a generating set
f1, . . . , fn of Γ(Z,OZ). This gives a closed embedding Y ↪→ An such that W is the
scheme-theoretic intersection of Y with a coordinate linear space An−r.

22.2.7. (4) Most generally still, this reduces the existence of the blow-up to a spe-
cific special case. (If you prefer to work over a fixed field k, feel free to replace Z by
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k in this discussion.) Suppose that for each n, Bl(x1,...,xn) SpecZ[x1, . . . , xn] exists.
Then I claim that the blow-up always exists. Here’s why. We may assume that Y is
affine, say SpecB, and X = SpecB/(f1, . . . , fn). Then we have a morphism Y → AnZ
given by xi 7→ fi, such that X is the scheme-theoretic pullback of the origin. Hence
by the blow-up closure lemma, BlX Y exists.

22.2.G. ⋆ TRICKY EXERCISE. Prove the Blow-up Closure Lemma 22.2.6. Hint:
obviously, construct maps in both directions, using the universal property. Con-
structing the following diagram may or may not help.

EZ
� � eff. Cartier //

vvmmm
mmm

mmm
mmm

mmm
m 
 m

��9
99

99
99

99
99

99
99

99
Z 
 m

��8
88

88
88

88
88

88
88

88

ttiiii
iiii

iiii
iiii

iiii
ii

EWZ

��2
22
22
22
22
22
22
22

++WWWW
WWWWW

WWWWW
WWWWW

WWWWW
W
� � eff. Cartier // BlW Z

��:
::

::
::

::
::

::
::

::

,,XXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
X

Z×Y EXY

ttjjjj
jjjj

jjjj
jjjj

jj

��9
99

99
99

99
99

99
99

9
� � loc. prin. // Z×Y BlX Y

ttiiii
iiii

iiii
iiii

iiii

��;
;;

;;
;;

;;
;;

;;
;;

;;

W

��4
44
44

44
44
44

44
44

4
� � // Z

��9
99

99
99

99
99

99
99

99

EXY

ttiiii
iiii

iiii
iiii

iiii
iii

� � eff. Cartier // BlX Y

tthhhh
hhhh

hhhh
hhhh

hhhh
hhh

X
� � // Y

Hooked arrows indicate closed embeddings; and when morphisms are further-
more locally principal or even effective Cartier, they are so indicated. Exercise 10.2.G,
on the uniqueness of extension of maps over effective Cartier divisors, may or may
not help as well. Note that if Z → Y is actually a closed embedding, then so is
Z×Y BlX Y → BlX Y and hence also Z→ BlX Y.

22.3 The blow-up exists, and is projective

22.3.1. It is now time to show that the blow-up always exists. We will see two
arguments, which are enlightening in different ways. Both will imply that the
blow-up morphism is projective, and hence quasicompact, proper, finite type, and
separated. In particular, if Y → Z is quasicompact (resp. proper, finite type, sepa-
rated), so is BlX Y → Z. (And if Y → Z is projective, and Z is quasicompact, then
BlX Y → Z is projective. See the solution to Exercise 17.3.B for the reason for this an-
noying extra hypothesis.) The blow-up of a k-variety is a k-variety (using the fact
that reducedness is preserved, Exercise 22.2.C), and the blow-up of an irreducible
k-variety is a irreducible k-variety (using the fact that irreducibility is preserved,
also Exercise 22.2.C).
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Approach 1. As explained in §22.2.7, it suffices to show that BlV(x1,...,xn) SpecZ[x1, . . . , xn]
exists. But we know what it is supposed to be: the locus in SpecZ[x1, . . . , xn] ×
ProjZ[X1, . . . , Xn] cut out by the equations xiXj − xjXi = 0. We will show this by
the end of the section.

Approach 2. We can describe the blow-up all at once as a Proj .

22.3.2. Theorem (Proj description of the blow-up). — Suppose X ↪→ Y is a closed
subscheme cut out by a finite type quasicoherent sheaf of ideals I ↪→ OY . Then

Proj
Y

(
OY ⊕ I ⊕ I 2 ⊕ I 3 ⊕ · · ·

)→ Y

satisfies the universal property of blowing up.

(We made sense of products of ideal sheaves, and hence I n, in Exercise 14.3.E.)
We will prove Theorem 22.3.2 soon (§22.3.3), after seeing what it tells us. Be-

cause I is finite type, the graded sheaf of algebras has degree 1 piece that is finite
type. The graded sheaf of algebras is also clearly generated in degree 1. Thus the
sheaf of algebras satisfy Hypotheses 17.2.1 (“finite generation in degree 1”).

But first, we should make sure that the preimage of X is indeed an effective
Cartier divisor. We can work affine-locally (Exercise 22.2.A), so we may assume
that Y = SpecB, and X is cut out by the finitely generated ideal I. Then

BlX Y = Proj
B

(
B⊕ I⊕ I2 ⊕ · · ·

)
.

(You may recall that the ring B ⊕ I ⊕ · · · is called the Rees algebra of the ideal I in
B, §12.9.1.) We are slightly abusing notation by using the notation BlX Y, as we
haven’t yet shown that this satisfies the universal property.

The preimage of X isn’t just any effective Cartier divisor; it corresponds to the
invertible sheaf O(1) on this Proj . Indeed, O(1) corresponds to taking our graded
ring, chopping off the bottom piece, and sliding all the graded pieces to the left by
1 (§15.2); it is the invertible sheaf corresponding to the graded module

I⊕ I2 ⊕ I3 ⊕ · · ·
(where that first summand I has grading 0). But this can be interpreted as the
scheme-theoretic pullback of X, which corresponds to the ideal I of B:

I
(
B⊕ I⊕ I2 ⊕ · · ·

)
↪→ B⊕ I⊕ I2 ⊕ · · · .

Thus the scheme-theoretic pullback of X ↪→ Y to Proj (OY ⊕I ⊕I 2⊕ · · · ), the
invertible sheaf corresponding to I ⊕I 2⊕I 3⊕· · · , is an effective Cartier divisor
in class O(1). Once we have verified that this construction is indeed the blow-up,
this divisor will be our exceptional divisor EXY.

Moreover, we see that the exceptional divisor can be described beautifully as
a Proj over X:

(22.3.2.1) EXY = Proj
X

(
OY/I ⊕ I /I 2 ⊕ I 2/I 3 ⊕ · · ·

)
.

We will later see that in good circumstances (if X is a regular embedding in Y), this
is a projectivization of a vector bundle (the “projectivized normal bundle”), see
Exercise 22.3.D(a).

22.3.3. Proof of the universal property, Theorem 22.3.2. Let’s prove that this Proj
construction satisfies the universal property. Then Approach 1 will also follow, as
a special case of Approach 2.
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22.3.4. Aside: why Approach 1?. Before we begin, you may be wondering why
we bothered with Approach 1. One reason is that you may find it more comfort-
able to work with this one nice ring, and the picture may be geometrically clearer
to you (in the same way that thinking about the Blow-up Closure Lemma 22.2.6
in the case where Z → Y is a closed embedding is more intuitive). Another rea-
son is that, as you will find in the exercises, you will see some facts more easily
in this explicit example, and you can then pull them back to more general exam-
ples. Perhaps most important, Approach 1 lets you actually compute blow-ups
by working affine-locally: if f1, . . . , fn are elements of a ring A, cutting a sub-
scheme X = SpecA/(f1, . . . , fn) of Y = SpecA, then BlX Y can be interpreted as
a closed subscheme of Pn−1A , by pulling back from BlV(x1,...,xn) SpecZ[x1, . . . , xn],
and taking the closure of the locus “above X” as dictated by the Blow-up Closure
Lemma 22.2.6.

Proof. Reduce to the case of affine target SpecR with ideal I ⊂ R. Reduce to the
case of affine source, with principal effective Cartier divisor t. (A principal effec-
tive Cartier divisor is locally cut out by a single non-zerodivisor.) Thus we have re-
duced to the case SpecS → SpecR, corresponding to f : R → S. Say (x1, . . . , xn) =
I, with (f(x1), . . . , f(xn)) = (t). We will describe one map Spec S → ProjR[I] that
will extend the map on the open set SpecSt → SpecR. It is then unique, by Ex-
ercise 10.2.G. We map R[I] to S as follows: the degree one part is f : R → S, and
f(Xi) (where Xi corresponds to xi, except it is in degree 1) goes to f(xi)/t. Hence
an element X of degree d goes to X/(td). On the open set D+(X1), we get the map
R[X2/X1, . . . , Xn/X1]/(x2−X2/X1x1, . . . , xiXj−xjXi, . . . )→ S (where there may be
many relations) which agrees with f away from V(t). Thus this map does extend
over V(I). □

Here are some applications and observations arising from this construction of
the blow-up. First, we can verify that our initial motivational examples are indeed
blow-ups. For example, blowing up A2 (with coordinates x and y) at the origin
yields: B = k[x, y], I = (x, y), and Proj(B ⊕ I ⊕ I2 ⊕ · · · ) = ProjB[X, Y] where the
elements of B have degree 0, and X and Y are degree 1 and “correspond to” x and
y respectively.

22.3.5. Normal bundles to exceptional divisors. The normal bundle to an effective
Cartier divisor D is the (space associated to the) invertible sheaf O(D)|D, the in-
vertible sheaf corresponding to the D on the total space, then restricted to D (Ex-
ercise 21.2.H). Thus in the case of the blow-up of a point in the plane, the excep-
tional divisor has normal bundle O(−1). (As an aside: Castelnuovo’s Criterion,
Theorem 29.7.1, states that conversely given a smooth surface containing E ∼= P1
with normal bundle O(−1), E can be blown-down to a point on another smooth
surface.) In the case of the blow-up of a regular subvariety of a regular variety,
the blow up turns out to be regular (see Theorem 22.3.10), the exceptional divisor
is a projective bundle over X, and the normal bundle to the exceptional divisor
restricts to O(−1) (Exercise 22.3.D).

22.3.A. HARDER BUT ENLIGHTENING EXERCISE. If i : X ↪→ Pn is a projective
scheme, identify the exceptional divisor of the blow up of the affine cone over X
(§8.2.12) at the origin with X itself, and that its normal bundle (§22.3.5) is isomor-
phic to OX(−1) := i∗OPn(−1). (In the case X = P1, we recover the blow-up of



606 The Rising Sea: Foundations of Algebraic Geometry

the plane at a point. In particular, we recover the important fact that the normal
bundle to the exceptional divisor is O(−1).)

22.3.6. The normal cone. Motivated by (22.3.2.1), as well as Exercise 22.3.D below,
we make the following definition. If X is a closed subscheme of Y cut out by I ,
then the normal cone NXY of X in Y is defined as

(22.3.6.1) NXY := Spec
X

(
OY/I ⊕ I /I 2 ⊕ I 2/I 3 ⊕ · · ·

)
.

This can profitably be thought of as an algebro-geometric version of a “tubular
neighborhood”. But some cautions are in order. If Y is smooth, NXY may not
be smooth. (You can work out the example of Y = A2k and X = V(xy).) And
even if X and Y are smooth, then although NXY is smooth (as we will see shortly,
Exercise 22.3.D), it doesn’t “embed” in any way in Y (see Remark 22.3.9).

If X is a closed point p, then the normal cone is called the tangent cone to
Y at p. The projectivized tangent cone is the exceptional divisor EXY (the Proj
of the same graded sheaf of algebras). Following §8.2.13, the tangent cone and
the projectivized tangent cone can be put together in the projective completion
of the tangent cone, which contains the tangent cone as an open subset, and the
projectivized tangent cone as a complementary effective Cartier divisor.

In Exercise 22.3.D, we will see that at a regular point of Y, the tangent cone may
be identified with the tangent space, and the normal cone may often be identified
with the total space of the normal bundle.

22.3.B. EXERCISE. Suppose Y = Spec k[x, y]/(y2 − x2 − x3) (the nodal cubic, see
the bottom of Figure 7.4). Assume (to avoid distraction) that chark ̸= 2. Show that
the tangent cone to Y at the origin is isomorphic to Speck[x, y]/(y2− x2). Thus, in-
formally, the tangent cone “looks like” the original variety “infinitely magnified”.

22.3.C. EXERCISE. Suppose S• is a finitely generated graded algebra over a field
k. Exercise 22.3.A gives an isomorphism of ProjS• with the exceptional divisor to
the blow-up of SpecS• at the origin. Show that the tangent cone to SpecS• at the
origin is isomorphic to SpecS• itself. (Your geometric intuition should lead you to
find these facts believable.)

22.3.7. Blowing up regular embeddings.
The case of blow-ups of regular embeddings X ⊂ Y is particularly pleasant.

For example, the exceptional divisor is a projective bundle over X. The central
reason is the following result.

22.3.8. Theorem. — If I ⊂ A is generated by a regular sequence a1, . . . , ad, then the
natural map Symn

A
(I/I2)→ In/In+1 is an isomorphism.

Hence if a closed embedding i : X ↪→ Y is a regular embedding with ideal sheaf
I ⊂ OY , then the natural map Symn(I /I 2) → I n/I n+1 is an isomorphism.
Furthermore, in combination with Proposition 21.2.16, we see that I n/I n+1 is a
locally free sheaf.

Before starting the proof of Theorem 22.3.8 in §22.3.11, we show its utility.

22.3.D. EXERCISE (ASSUMING THEOREM 22.3.8).
(a) Suppose X → Y is a regular embedding with ideal sheaf I , identify the total
space (§17.1.4) of the normal sheaf (the “normal bundle”) with the normal cone



November 18, 2017 draft 607

NXY (22.3.6.1), and show that the exceptional divisor EXY is a projective bundle
(the “projectivized normal bundle”) over X.
(b) Show that the normal bundle to EXY in BlXY is O(−1) (for the projective bundle
over X).
(c) Assume further that X is a reduced closed point p. Show that p is a regular
point of Y. Identify the total space of the tangent space to p with the tangent cone
to Y at p.

22.3.9. Remark. We can now make sense of a comment made in §22.3.6, that
even if X and Y are smooth, then although NXY is smooth, it needn’t admit an
open embedding in Y. To do this, start with a smooth complex quartic surface Y
containing a line X. (Most smooth quartic surfaces don’t contain a line, by Exer-
cise 11.2.K, so you will have to construct one by hand.) ThenNXY is a line bundle
over X, and thus rational (i.e., birational to A2C, Definition 6.5.4). But NXY cannot
admit an open embedding into Y, as otherwise Y would be rational, contradicting
Exercise 21.5.D.

22.3.10. Theorem. — Suppose X ↪→ Y is a closed embedding of smooth varieties over k.
Then BlX Y is also smooth.

Proof. (We use the fact that smooth varieties are regular, the Smoothness-Regularity
Comparison Theorem 12.2.10(b), whose proof we still have to complete.)

We need only check smoothness of BlX Y at the points of EXY (by Observa-
tion 22.2.2). By Exercise 12.2.L(b), X ↪→ Y is a regular embedding. Then by Ex-
ercise 22.3.D(a), EXY is a projective bundle over X, and thus smooth, and hence
regular at its closed points. But EXY is an effective Cartier divisor on BlX Y. By the
slicing criterion for regularity (Exercise 12.2.C), it follows that BlX Y is regular at
the closed points of EXY, hence smooth at all points of EXY. □

22.3.11. ⋆ Proving Theorem 22.3.8.
The proof of Theorem 22.3.8 may reasonably be skipped on a first reading. We

prove Theorem 22.3.8 following [F, A.6.1], which in turn follows [Dav]. The proof
will be completed in §22.3.13. To begin, let α be the map of graded rings

α : (A/I)[X1, . . . , Xd]→ ⊕∞n=0In/In+1
which takes Xi to the image of ai in I/I2. Clearly α is surjective.

22.3.E. EXERCISE. Show that Theorem 22.3.8 would follow from the statement
that α is an isomorphism.

Because a1 is a non-zerodivisor, we can interpretA[a2/a1, . . . , ad/a1] as a sub-
ring of the total fraction ring (defined in §5.5.7). In particular, as A is a subring of
its total fraction ring, the map A→ A[a2/a1, . . . , ad/a1] is an injection. Define

β : A[T2, . . . , Td]→ A[a2/a1, . . . , ad/a1]

by Ti 7→ ai/a1. Clearly, the map β is surjective, and Li := a1Ti − ai lies in ker(β).

22.3.12. Lemma. — The kernel of β is (L2, . . . , Ld).

Proof. We prove the result by induction on d. We consider first the base case d = 2.
Suppose F[T2] ∈ kerβ, so F(a2/a1) = 0. Then applying the algorithm for the
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Remainder Theorem, dividing adeg F
1 F(T2) by a1T2 − a2 = L2,

(22.3.12.1) a
deg F
1 F(T2) = G(T2)(a1T2 − a2) + R

where G(T2) ∈ A[T2], and R ∈ A is the remainder. Substituting T2 = a2/a1 (and
using the fact that A → A[a2/a1] is injective), we have that R = 0. Then (a1T2 −

a2)G(T2) ≡ 0 (mod (a
deg F
1 )). Using the fact that a2 is a non-zerodivisor modulo

(a
deg F
1 ) (as adeg F

1 , a2 is a regular sequence by Exercise 8.4.E), a short induction
shows that the coefficients of G(T2) must all be divisible by adeg F

1 . Thus F(T2) is
divisible by a1T2 − a2 = L2, so the case d = 2 is proved.

We now consider the general case d > 2, assuming the result for all smaller d.
Let A ′ = A[a2/a1]. Then a1, a3, a4, . . . , ad is a regular sequence in A ′. Reason: a1
is a non-zerodivisor in A ′. A ′/(a1) = (A[T2]/(a1T2 − a2))/(a1) = A[T2]/(a1T2 −
a2, a1) = A[T2]/(a1, a2). Then a3 is a non-zerodivisor in this ring because it is
a nonzero divisor in A/(a1, a2), a4 is a non-zerodivisor in A[T2]/(a1, a2, a3) be-
cause it is a non-zerodivisor in A/(a1, a2, a3), and so forth. Condition (ii) of the
Definition 8.4.4 of regular sequence also holds, as

A ′/(a1, a3, a4, . . . , ad) = A[T2]/(a1, a2, . . . , ad) ̸= 0.

Consider the composition

A[T2, . . . , Td]→ A ′[T3, . . . , Td]→ A ′[a3/a1, . . . , ad/a1] = A[a2/a1, . . . , ad/a1].

By the case d = 2, the kernel of the first map is L2. By the inductive hypothesis,
the kernel of the second map is (L3, . . . , Ld). The result follows. □

22.3.13. Proof of Theorem 22.3.8. By Exercise 22.3.E, it suffices to prove that the
surjection α is an isomorphism. Suppose F ∈ ker(α); we wish to show that F =
0. We may assume that F is homogeneous, say of degree n. Consider the map
α ′ : A[X1, . . . , Xd]→ ⊕∞n=0In/In+1 lifting α. Lift F to A[X1, . . . , Xd], so F ∈ ker(α ′).
We wish to show that F ∈ IA[X1, . . . , Xd]. Suppose F(a1, . . . , ad) = x ∈ In+1. Then
we can write x as F ′(a1, . . . , ad), where F ′ is a homogeneous polynomial of the
same degree as F, with coefficients in I. Then by replacing F by F − F ′, we are
reduced to the following problem: suppose F ∈ A[X1, . . . , Xd] is homgeneous of
degree n, and F(a1, . . . , ad) = 0, we wish to show that F ∈ IA[X1, . . . , Xn]. But
if F(a1, . . . , ad) = 0, then F(1, a2/a1, . . . , ad/a1) = 0 in A[a2/a1, . . . , ad/a1]. But
Lemma 22.3.12 identifies the kernel of β, so

F(1, T2, T3, . . . , Td) ∈ (a1T2 − a2, a1T3 − a3, . . . , a1Td − ad).

Thus the coefficients of F are in (a1, . . . , ad) = I as desired. □

22.4 Examples and computations

In this section we will work through a number of explicit of examples, to get a
sense of how blow-ups behave, how they are useful, and how one can work with
them explicitly. Throughout we work over a field k, and we assume through-
out that chark = 0 to avoid distraction. The examples and exercises are loosely
arranged by topic, but not in order of importance.
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22.4.1. Example: Blowing up the plane along the origin.
Let’s first blow up the plane A2 along the origin, and see that the result agrees

with our discussion in §22.1. Let x and y be the coordinates on A2. The blow-up is
Projk[x, y, X, Y], where xY−yX = 0. (Here x and y have degree 0 and X and Y have
degree 1.) This is naturally a closed subscheme of A2 × P1, cut out (in terms of the
projective coordinates X and Y on P1) by xY − yX = 0. We consider the two usual
patches on P1: [X, Y] = [s, 1] and [1, t]. The first patch yields Spec k[x, y, s]/(sy−x),
and the second gives Speck[x, y, t]/(y− xt). Notice that both are smooth: the first
is Spec k[y, s] ∼= A2, and the second is Spec k[x, t] ∼= A2.

We now describe the exceptional divisor. We first consider the first (s) patch.
The ideal is generated by (x, y), which in our ys-coordinates is (ys, y) = (y), which
is indeed principal. Thus on this patch the exceptional divisor is generated by y.
Similarly, in the second patch, the exceptional divisor is cut out by x. (This can be
a little confusing, but there is no contradiction!) This explicit description will be
useful in working through some of the examples below.

22.4.A. EXERCISE. Let p be a k-valued point of P2. Exhibit an isomorphism be-
tween Blp P2 and the Hirzebruch surface F1 = PP1(OP1 ⊕OP1(1)) (Example 17.2.4).
(The map Blp P2 → P1 informally corresponds to taking a point to the line connect-
ing it to the origin. Do not be afraid: You can do this by explicitly working with
coordinates.)

22.4.2. Resolving singularities.

22.4.3. The proper transform of a nodal curve (Figure 22.1). (You may wish to flip to
Figure 7.4 while thinking through this exercise.) Consider next the curve y2 = x3+
x2 inside the plane A2 (the nodal cubic). Let’s blow up the origin, and compute the
total and proper transform of the curve. (By the Blow-up Closure Lemma 22.2.6,
the latter is the blow-up of the nodal curve at the origin.) In the first patch, we
get y2 − s2y2 − s3y3 = 0. This factors: we get the exceptional divisor y with
multiplicity two, and the curve 1 − s2 − s3y = 0. You can easily check that the
proper transform is regular. Also, notice that the proper transform C̃ meets the
exceptional divisor at two points, s = ±1. This corresponds to the two tangent
directions at the origin (as s = x/y).

22.4.B. EXERCISE (FIGURE 22.1). Describe both the total and proper transform of
the curve C given by y = x2 − x in Bl(0,0) A2. Show that the proper transform of
C is isomorphic to C. Interpret the intersection of the proper transform of C with
the exceptional divisor E as the slope of C at the origin.

22.4.C. EXERCISE: BLOWING UP A CUSPIDAL PLANE CURVE (CF. EXERCISE 9.7.F).
Describe the proper transform of the cuspidal curve C given by y2 = x3 in the
blown-up plane Bl(0,0) A2. Show that it is regular. Show that the proper transform
of Cmeets the exceptional divisor E at one point, and is tangent to E there.

The previous two exercises are the first in an important sequence of singulari-
ties, which we now discuss.
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22.4.C

C

E

C̃Bl(0,0) A2

A2
C

E

C̃C̃

E

C

22.4.3 22.4.B

FIGURE 22.1. Resolving curve singularities (§22.4.3, Exer-
cise 22.4.B, and Exercise 22.4.C)

22.4.D. EXERCISE: RESOLVING An CURVE SINGULARITIES. Resolve the singularity
y2 = xn+1 in A2, by first blowing up its singular point, then considering its proper
transform and deciding what to do next.

22.4.4. Toward a definition of An curve singularities. You will notice that your solu-
tion to Exercise 22.4.D depends only on the “power series expansion” of the singu-
larity at the origin, and not on the precise equation. For example, if you compare
your solution to Exercise 22.4.B with the n = 1 case of Exercise 22.4.D, you will see
that they are “basically the same”. We will make this precise in Definition 29.3.C.

22.4.E. EXERCISE (WARM-UP TO EXERCISE 22.4.F). Blow up the cone point z2 =
x2 + y2 (Figure 3.4) at the origin. Show that the resulting surface is regular. Show
that the exceptional divisor is isomorphic to P1. (Remark: You can check that the
normal bundle to this P1 is not O(−1), as is the case when you blow up a point on
a smooth surface, see §22.3.5; it is O(−2).)

22.4.F. EXERCISE (RESOLVING An SURFACE SINGULARITIES). Resolve the singu-
larity z2 = y2+xn+1 in A3 by first blowing up its singular point, then considering
its proper transform, and deciding what to do next. (A k-surface singularity ana-
lytically isomorphic to this is called an An surface singularity. For example, the
cone shown in Figure 3.4 is an A1 surface singularity. We make this precise in
Exercise 29.3.C.) This exercise is a bit time consuming, but is rewarding in that it
shows that you can really resolve singularities by hand.

22.4.5. Remark: ADE-surface singularities and Dynkin diagrams (see Figure 22.2). A
k-singularity analytically isomorphic to z2 = x2y + yn−1 (resp. z2 = x3 + y4,
z2 = x3 + xy3, z2 = x3 + y5) is a called a Dn surface singularity (resp. E6, E7,
E8 surface singularity). We will make this precise in Exercise 29.3.C, and you will
then be able to guess the definition of the corresponding curve singularity. If you
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(minimally) desingularize each of these surfaces by sequentially blowing up sin-
gular points as in Exercise 22.4.F, and look at the arrangement of exceptional di-
visors (the various exceptional divisors and how they meet), you will discover
the corresponding Dynkin diagram. More precisely, if you create a graph, where
the vertices correspond to exceptional divisors, and two vertices are joined by an
edge if the two divisors meet, you will find the underlying graph of the corre-
sponding Dynkin diagram. This is the start of several very beautiful stories; see
Remark 27.4.4 for a first glimpse of one of them.

· · ·An

E8

· · ·

FIGURE 22.2. The exceptional divisors for resolutions of some
ADE surface singularities, and their corresponding dual graphs
(see Remark 22.4.5)

22.4.6. Remark: Resolution of singularities. Hironaka’s Theorem on resolution of
singularities implies that this idea of trying to resolve singularities by blowing
up singular loci in general can succeed in characteristic 0. More precisely, if X is a
variety over a field of characteristic 0, thenX can be resolved by a sequence of blow-
ups, where the nth blow-up is along a regular subvariety that lies in the singular
locus of the variety produced after the (n − 1)st stage (see [Hir], and [Ko2]). (The
case of dimension 1 will be shown in §29.5.4, and the case of dimension 2 will be
discussed in §29.7.4.) It is not known if an analogous statement is true in positive
characteristic (except in dimension at most 2, by Lipman, see [Ar3]), but de Jong’s
Alteration Theorem [dJ] gives a result which is good enough for most applications.
Rather than producing a birational proper map X̃ → X from something regular, it
produces a proper map from something regular that is generically finite (and the
corresponding extension of function fields is separable).

Here are some other exercises related to resolution of singularities.

22.4.G. EXERCISE. Blowing up a nonreduced subscheme of a regular scheme can
give you something singular, as shown in this example. Describe the blow up
of the closed subscheme V(y, x2) in Speck[x, y] = A2. Show that you get an A1
surface singularity.

22.4.H. EXERCISE. Desingularize the tacnode (see Exercise 9.7.G and Defini-
tion 29.3.3) y2 = x4, not in two steps (as in Exercise 22.4.D), but in a single step by
blowing up (y, x2).

22.4.I. EXERCISE (RESOLVING A SINGULARITY BY AN UNEXPECTED BLOW-UP). Sup-
pose Y is the cone x2+y2 = z2, and X is the line cut out by x = 0, y = z on Y. Show
that BlX Y is regular. (In this case we are blowing up a codimension 1 locus that
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is not an effective Cartier divisor, see Problem 12.1.3. But it is an effective Cartier
divisor away from the cone point, so you should expect your answer to be an
isomorphism away from the cone point.)

22.4.7. Multiplicity of a function at a regular point. In order to pose Exercise 22.4.J,
we introduce a useful concept. If f is a function on a locally Noetherian scheme
X, its multiplicity at a regular point p is the largest m such that f lies in the mth
power of the maximal ideal in the local ring OX,p. For example, if f ̸= 0, V(f) is
singular at p if and only ifm > 1. (Do you see why?)

22.4.J. EXERCISE. Show that the multiplicity of the exceptional divisor in the total
transform of a subschemeZ of An when you blow up the origin is the smallest mul-
tiplicity (at the origin) of a defining equation of Z. (For example, in the case of the
nodal and cuspidal curves above, Example 22.4.3 and Exercise 22.4.C respectively,
the exceptional divisor appears with multiplicity 2.)

22.4.8. Resolving rational maps.

22.4.K. EXERCISE (UNDERSTANDING THE BIRATIONAL MAP P2 oo //___ P1 × P1 VIA

BLOW-UPS). Let p and q be two distinct k-points of P2, and let r be a k-point
of P1 × P1. Describe an isomorphism Bl{p,q} P2 ↔ Blr P1 × P1. (Possible hint:
Consider lines ℓ through p andm through q; the choice of such a pair corresponds
to the parametrized by P1 × P1. A point s of P2 not on line pq yields a pair of
lines (ps, qs) of P1 × P1. Conversely, a choice of lines (ℓ,m) such that neither ℓ
and m is line pq yields a point s = ℓ ∩m ∈ P2. This describes a birational map
P2 oo //___ P1 × P1 . Exercise 22.4.A is related.)

Exercise 22.4.K is an example of the general phenomenon explored in the next
two exercises.

22.4.L. HARDER BUT USEFUL EXERCISE (BLOW-UPS RESOLVE BASE LOCI OF RATIO-
NAL MAPS TO PROJECTIVE SPACE). Suppose we have a scheme Y, an invertible
sheaf L , and a number of sections s0, . . . , sn of L (a linear series, Definition 15.3.6).
Then away from the closed subscheme X cut out by s0 = · · · = sn = 0 (the base
locus of the linear series), these sections give a morphism to Pn. Show that this
morphism extends uniquely to a morphism BlX Y → Pn, where this morphism
corresponds to the invertible sheaf (β∗L )(−EXY), where β : BlX Y → Y is the
blow-up morphism. In other words, “blowing up the base scheme resolves this
rational map”. Hint: it suffices to consider an affine open subset of Y where L is
trivial. Uniqueness might use Exercise 10.2.G.

22.4.9. Remarks. (i) Exercise 22.4.L immediately implies that blow-ups can be used
to resolve rational maps to projective schemes Y 99K Z ↪→ Pn.

(ii) The following interpretation is enlightening. The linear series on Y pulls
back to a linear series on BlX Y, and the base locus of the linear series on Y pulls
back to the base locus on BlX Y. The base locus on BlX Y is EXY, an effective Cartier
divisor. Because EXY is not just locally principal, but also locally a non-zerodivisor,
it can be “divided out” from the β∗si (yielding a section of (β∗L )(−EXY), thereby
removing the base locus, and leaving a base-point-free linear series. (In a sense
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that can be made precise through the universal property, this is the smallest “mod-
ification” of Y that can remove the base locus.) If X is already Cartier (as for exam-
ple happens with any nontrivial linear system if Y is a regular pure-dimensional
curve), then we can remove a base locus by just “dividing out X”.

(iii) You may wish to revisit Exercise 19.7.B, and interpret it in terms of Exer-
cise 22.4.L.

22.4.10. Examples. (i) The rational map Pn 99K Pn−1 given by [x0, · · · , xn] 99K
[x1, · · · , xn], defined away from p = [1, 0, · · · , 0], is resolved by blowing up p.
Then by the Blow-up Closure Lemma 22.2.6, if Y is any locally closed subscheme of
Pn, we can project to Pn−1 once we blow up p in Y, and the invertible sheaf giving
the map to Pn−1 is (somewhat informally speaking) β∗(OPn(1))⊗ O(−EpY).

(ii) Consider two general cubic equations C1 and C2 in three variables, yield-
ing two cubic curves in P2. They are smooth (by Bertini’s Theorem 12.4.2, and
meet in 9 points p1, . . . , p9 (using our standing assumption that we work over an
algebraically closed field). Then [C1, C2] gives a rational map P2 99K P1. To re-
solve the rational map, we blow up p1, . . . , p9. The result is (generically) an elliptic
fibration Bl{p1,...,p9} P2 → P1. (This is by no means a complete argument.)

(iii) Fix six general points p1, . . . , p6 in P2. There is a four-dimensional vector
space of cubics vanishing at these points, and they vanish scheme-theoretically
precisely at these points. This yields a rational map P2 99K P3, which is resolved
by blowing up the six points. The resulting morphism turns out to be a closed
embedding, and the image in P3 is a (smooth) cubic surface. This is the famous
fact that the blow up of the plane at six general points may be represented as a
(smooth) cubic in P3. (Again, this argument is not intended to be complete.) See
27.4.2 for a more precise and more complete discussion.

In reasonable circumstances, Exercise 22.4.L has an interpretation in terms of
graphs of rational maps.

22.4.M. EXERCISE. Suppose s0, . . . , sn are sections of an invertible sheaf L
on an integral scheme X, not all 0. By Remark 16.4.3, these data give a rational
map ϕ : X 99K Pn. Give an isomorphism between the graph of ϕ (§10.2.4) and
BlV(s0,...,sn) X. (Your argument will not require working over a field k; it will
work in general.)

You may enjoy exploring the previous idea by working out how the Cremona
transformation P2 99K P2 (Exercise 6.5.I) can be interpreted in terms of the graph
of the rational map [x, y, z] 99K [1/x, 1/y, 1/z].

22.4.N. ⋆ EXERCISE. Resolve the rational map

Spec k[w, x, y, z]/(wz− xy)
[w,x] //______ P1

from the cone over the quadric surface to the projective line. Let X be the resulting
variety, and π : X→ Spec k[w, x, y, z]/(wz− xy) the projection to the cone over the
quadric surface. Show that π is an isomorphism away from the cone point, and
that the preimage of the cone point is isomorphic to P1 (and thus has codimension
2, and therefore is different from the resolution obtained by simply blowing up the
cone point). Possible hint: if Q is the quadric in P3 cut out by wz − xy = 0, then
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factor the rational map as Speck[w, x, y, z]/(wz− xy) \ {0}→ Q (cf. Exercise 8.2.P),
followed by the isomorphismQ→ P1×P1 (Example 9.6.2), followed by projection
onto one of the factors.

This is an example of a small resolution. (A small resolution X → Y is a
resolution where the space of points of Y where the fiber has dimension r is of
codimension greater than 2r. We will not use this notion again in any essential
way.) Notice that this resolution of the morphism involves blowing up the base
locusw = x = 0, which is a cone over one of the lines on the quadric surfacewz =
xy. We are blowing up an effective Weil divisor, which is necessarily not Cartier as
the blow-up is not an isomorphism. In Exercise 12.1.E, we saw that (w, x) was not
principal, while here we see that (w, x) is not even locally principal. Essentially by
Exercise 14.2.R, V(w, x) cannot even be the support of a locally principal divisor.

22.4.11. Remark: Non-isomorphic small resolutions. If you instead resolved the map
[w,y], you would obtain a similar looking small resolution

π ′ : X ′ → Speck[w, x, y, z]/(wz− xy)

(it is an isomorphism away from the origin, and the fiber over the origin is P1). But
it is different! More precisely, there is no morphism X→ X ′ making the following
the diagram commute.

X

π

((RR
RRR

RRR
RRR

RRR
R // X ′

π ′

vvlll
lll

lll
lll

lll

Speck[w, x, y, z]/(wz− xy)

The birational map X 99K X ′ is called the Atiyah flop, [At1].

22.4.12. Factorization of birational maps. We end our discussion of resolution of ra-
tional maps by noting that just as Hironaka’s Theorem states that one may resolve
all singularities of varieties in characteristic 0 by a sequence of blow-ups along
smooth subvarieties, the Weak Factorization Theorem (first proved by Włodarczyk)
states that any two birational varieties X and Y in characteristic 0 may be related
by blow-ups and blow-downs along smooth subvarieties. More precisely, there
are varieties X0, . . . , Xn, X01, . . . , X(n−1)n, with X0 = X and Xn = Y, with mor-
phisms Xi(i+1) → Xi and Xi(i+1) → Xi+1 (0 ≤ i < n) which are blow-ups of
smooth subvarieties.

22.4.13. Blow-ups and line bundles.

22.4.O. EXERCISE (GENERALIZING EXERCISE 20.2.D). Suppose X is a regular pro-
jective surface over k, and p is a k-valued point. Let β : Blp X→ X be the blow-up
morphism, and let E = EpX be the exceptional divisor. Consider the exact se-
quence

Z
γ : 1 7→[E] // Pic Blp X

α // Pic(Blp X \ E) // 0

(from (14.2.8.1)). Note that Blp X \ E = X \ p. Show that Pic(X \ p) = PicX. Show
that β∗ : PicX→ Pic Blp X gives a section to α. Use §22.3.5 to show that OX(E)|E ∼=
OE(−1) (so in the language of Chapter 20, E is a (−1)-curve, Definition 20.2.7), and
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from that show that γ is an injection. Conclude that Pic Blp X ∼= PicX⊕Z. Describe
how to find the intersection matrix on N1Q(Blp X) from that of N1Q(X).

22.4.P. EXERCISE. Suppose D is an effective Cartier divisor (a curve) on X. Let
multpD be the multiplicity of D at p (Exercise 22.4.J), and let Dpr be the proper
transform of D. Show that π∗D = Dpr + (multpD)E as effective Cartier divi-
sors. More precisely, show that the product of the local equation for Dpr and the
(multpD)th power of the local equation for E is the local equation for π∗D, and
hence that (i) π∗D is an effective Cartier divisor, and (ii) π∗OX(D) ∼= OBlp X(D

pr)⊗
OBlp X(E)

⊗(multpD). (A special case is the equation ℓ = e+m in Hint 20.2.6.)

22.4.14. Change of the canonical line bundle under blow-ups.
As motivation for how the canonical line bundle changes under blowing up,

consider π : Bl(0,0) A2 → A2. Let X = Bl(0,0) A2 and Y = A2 for convenience. We
use Exercise 21.7.A to relate π∗KY to KX.

We pick a generator for KY near (0, 0): dx∧ dy. (This is in fact a generator for
KY everywhere on A2, but for the sake of generalization, we point out that all that
matters is that is a generator at (0, 0), and hence near (0, 0) by geometric Nakayama,
Exercise 13.7.E.) When we pull it back to X, we can interpret it as a section of KX,
which will generate KX away from the exceptional divisor E, but may contain E
with some multiplicity µ. Recall that X can be interpreted as the data of a point in
A2 as well as the choice of a line through the origin. We consider the open subset
U where the line is not vertical, and thus can be written as y = mx. Here we
have natural coordinates: U = Spec k[x, y,m]/(y−mx), which we can interpret as
Spec k[x,m]. The exceptional divisor Emeets U, at x = 0 (in the coordinates on U),
so we can calculate µ on this open set. Pulling back dx∧ dy to U, we get

dx∧ dy = dx∧ d(xm) = m(dx∧ dx) + x(dx∧ dm) = x(dx∧ dm)

as dx∧ dx = 0. Thus π∗(dx∧ dy) vanishes to order 1 along E.

22.4.Q. EXERCISE (CF. UNIMPORTANT EXERCISE 21.7.J). Explain how this deter-
mines a canonical isomorphism KX

∼= (π∗KY)(E).

22.4.R. EXERCISE. Repeat the above calculation in dimension n. Show that the
exceptional divisor appears with multiplicity (n− 1).

22.4.S. ⋆ EXERCISE. Suppose k is perfect.
(a) Suppose Y is a surface over k, and p is a regular k-valued point, and let β : X→
Y be the blow-up of Y at p. Show that KX

∼= (β∗KY)(E). Hint: to find a generator
of KX near p, choose generators x and y of m/m2 (where m is the maximal ideal of
OY,p), and lift them to elements of OX,p. Why does dx∧ dy generate KX at p?
(b) Repeat part (a) in arbitrary dimension (following Exercise 22.4.R).
(c) SupposeZ is a smoothm-dimensional (closed) subvariety of a smoothn-dimensional
variety Y, and let β : X → Y be the blow-up of Y along Z. Show that KX

∼=
(β∗KY)((n−m− 1)E). (Recall from Theorem 22.3.10 that X = BlZ Y is smooth.)

22.4.15. ⋆ Dimensional cohomology vanishing for quasiprojective schemes (promised
in §18.2.7).

Using the theory of blowing up, Theorem 18.2.6 (dimensional cohomology
vanishing for quasicoherent sheaves on projective k-schemes) can be extended to
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quasiprojective k-schemes. Suppose X is a quasiprojective k-variety of dimension
n. We show that X may be covered by n+ 1 affine open subsets. As X is quasipro-
jective, there is some projective variety Y with an open embedding X ↪→ Y. By
replacing Y with the closure of X in Y, we may assume that dim Y = n. Put any
subscheme structure Z on the complement of X in Y (for example the reduced sub-
scheme structure, §8.3.9). Let Y ′ = BlZ Y. Then Y ′ is a projective variety (§22.3.1),
which can be covered by n + 1 affine open subsets. The complement of X in Y ′

is an effective Cartier divisor (EZY), so the restriction to X of each of these affine
open subsets of Y is also affine, by Exercise 7.3.F.

22.4.16. Remarks. (i) You might then hope that any dimension n variety can be
covered by n + 1 affine open subsets. This is not true. For each integer m, there
is a threefold that requires at least m affine open sets to cover it, see [RV, Ex. 4.9].
By the discussion above, this example is necessarily not quasiprojective. (ii) Here
is a fact useful in invariant theory, which can be proved in the same way. Suppose
p1, . . . , . . . , pn are closed points on a quasiprojective k-variety X. Then there is an
affine open subset of X containing all of them.

22.4.T. EXERCISE (DIMENSIONAL COHOMOLOGY VANISHING FOR QUASIPROJEC-
TIVE VARIETIES). Suppose X is a quasiprojective k-scheme of dimension d. Show
that for any quasicoherent sheaf F on X, Hi(X,F ) = 0 for i > d.

22.4.17. ⋆⋆ Deformation to the normal cone (Figure 22.3).
The following construction is key to the modern understanding of intersection

theory in algebraic geometry, as developed by Fulton and MacPherson, [F].

22.4.U. EXERCISE: DEFORMATION TO THE NORMAL CONE. Suppose Y is a k-
variety, and X ↪→ Y is a closed subscheme.
(a) Show that the exceptional divisor of β : BlX×0(Y ×A1)→ Y ×A1 is isomorphic
to the projective completion of the normal cone to X in Y.
(b) Let π : BlX×0(Y × A1) → A1 be the composition of β with the projection to A1.
Show that π∗(0) is the scheme-theoretic union of BlX Y with the projective comple-
tion of the normal cone to X in Y, and the intersection of these two subschemes
may be identified with EXY, which is a closed subscheme of BlX Y in the usual way
(as the exceptional divisor of the blow-up BlX Y → Y), and a closed subscheme of
the projective completion of the normal cone as described in Exercise 8.2.Q.

The map
BlX×0(Y × A1) \ BlX Y → A1

is called the deformation to the normal cone (short for deformation of Y to the normal
cone of X in Y). Notice that the fiber above every k-point away from 0 ∈ A1 is
canonically isomorphic to Y, and the fiber over 0 is the normal cone. Because this
family is “nice” (more precisely, flat, the topic of Chapter 24), we can prove things
about general Y (near X) by way of this degeneration. (We will see in §24.4.10
that the deformation to the normal cone is a flat morphism, which is useful in
intersection theory.)
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FIGURE 22.3. Deformation to the normal cone (§22.4.17)





Part VI
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CHAPTER 23

Derived functors

Ça me semble extrêmement plaisant de ficher comme ça beaucoup de choses, pas drôles
quand on les prend séparément, sous le grand chapeau des foncteurs dérivés.

I find it very agreeable to stick all sorts of things, which are not much fun when taken
individually, together under the heading of derived functors.

— A. Grothendieck, letter to J.-P. Serre, February 18, 1955 [GrS, p. 6]

In this chapter, we discuss derived functors, introduced by Grothendieck in
his celebrated “Tôhoku article” [Gr1], and their applications to sheaves. For qua-
sicoherent sheaves on quasicompact separated schemes, derived functor cohomol-
ogy will agree with Čech cohomology (§23.5). Čech cohomology will suffice for
most of our purposes, and is quite down to earth and computable, but derived
functor cohomology is worth seeing. First, it will apply much more generally in
algebraic geometry (e.g., étale cohomology) and elsewhere, although this is be-
yond the scope of this book. Second, it will easily provide us with some useful
notions, such as the Ext functors and the Leray spectral sequence. But derived
functors can be intimidating the first time you see them, so feel free to just skim
the main results, and to return to them later.

23.1 The Tor functors

We begin with a warm-up: the case of Tor. This is a hands-on example, but if
you understand it well, you will understand derived functors in general. Tor will
be useful to prove facts about flatness, which we will discuss in §24.3. Tor is short
for “torsion” (see Remark 24.3.1).

If you have never seen this notion before, you may want to just remember its
properties. But I will prove everything anyway — it is surprisingly easy.

The idea behind Tor is as follows. Whenever we see a right-exact functor, we
always hope that it is the end of a long exact sequence. Informally, given a short
exact sequence

(23.1.0.1) 0 // N ′ // N // N ′′ // 0,

621
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we hope M ⊗A N ′ → M ⊗A N → M ⊗A N ′′ → 0 will extend to a long exact
sequence
(23.1.0.2)

· · · // TorAi (M,N ′) // TorAi (M,N) // TorAi (M,N ′′) // · · ·

// TorA1 (M,N ′) // TorA1 (M,N) // TorA1 (M,N ′′)

//M⊗A N ′ //M⊗A N //M⊗A N ′′ // 0.

More precisely, we are hoping for covariant functors TorAi (M, ·) from A-modules to
A-modules (functoriality giving 2/3 of the morphisms in (23.1.0.2)), with TorA0 (M,N) ≡
M⊗AN, and natural connecting homomorphisms δ : TorAi+1(M,N ′′)→ TorAi (M,N ′)
for every short exact sequence (23.1.0.1) giving the long exact sequence (23.1.0.2).
(“Natural” means: given a morphism of short exact sequences, the natural square
you would write down involving the δ-morphism must commute.)

It turns out to be not too hard to make this work, and this will also motivate
derived functors. Let’s now define TorAi (M,N).

Take any resolution R of N by free modules:

· · · // A⊕n2 // A⊕n1 // A⊕n0 // N // 0.

More precisely, build this resolution from right to left. Start by choosing generators
of N as an A-module, giving us A⊕n0 → N → 0. Then choose generators of the
kernel, and so on. Note that we are not requiring the ni to be finite (although
we could, if N is a finitely generated module and A is Noetherian). Truncate the
resolution, by stripping off the last term N (replacing→ N → 0 with→ 0). Then
tensor with M (which does not preserve exactness). Note that M ⊗ (A⊕ni) =
M⊕ni , as tensoring withM commutes with arbitrary direct sums (Exercise 1.3.M).
Let TorAi (M,N)R be the homology of this complex at the ith stage (i ≥ 0). The
subscript R reminds us that our construction depends on the resolution, although
we will soon see that it is independent of R.

We make some quick observations.
• TorA0 (M,N)R ∼= M ⊗A N, canonically. Reason: as tensoring is right-exact,

and A⊕n1 → A⊕n0 → N → 0 is exact, we have that M⊕n1 → M⊕n0 → M ⊗A
N → 0 is exact, and hence that the homology of the truncated complex M⊕n1 →
M⊕n0 → 0 isM⊗A N.

• If M ⊗ · is exact (i.e., M is flat, §1.6.11), then TorAi (M,N)R = 0 for all i > 0.
(This characterizes flatness, see Exercise 23.1.D.)

Now given two modulesN andN ′ and resolutions R and R ′ ofN andN ′, we
can “lift” any morphism N→ N ′ to a morphism of the two resolutions:

· · · // A⊕ni //

��

· · · // A⊕n1 //

��

A⊕n0 //

��

N

��

// 0

· · · // A⊕n ′
i // · · · // A⊕n ′

1 // A⊕n ′
0 // N ′ // 0



November 18, 2017 draft 623

We do this inductively on i. Here we use the freeness of A⊕ni : if a1, . . . , ani
are

generators of A⊕ni , to lift the map b : A⊕ni → A⊕n ′
i−1 (the composition of the

differential A⊕ni → A⊕ni−1 with the previously constructed A⊕ni−1 → A⊕n ′
i−1 )

to c : A⊕ni → A⊕n ′
i , we arbitrarily lift b(aj) from A⊕n ′

i−1 to A⊕n ′
i , and declare

this to be c(aj). (Warning for people who care about such things: we are using the
Axiom of Choice here.)

Denote the choice of lifts by R → R ′. Now truncate both complexes (remove
column N → N ′) and tensor with M. Maps of complexes induce maps of homol-
ogy (Exercise 1.6.D), so we have described maps (a priori depending on R → R ′)

TorAi (M,N)R → TorAi (M,N
′)R ′ .

We say two maps of complexes f : C• → C ′
• and g : C• → C ′

• are homotopic if
there is a sequence of maps w : Ci → C ′

i+1 such that f− g = dw+wd.

23.1.A. EXERCISE. Show that two homotopic maps give the same map on homol-
ogy.

23.1.B. CRUCIAL EXERCISE. Show that any two lifts R → R ′ are homotopic.

We now pull these observations together. (Be sure to digest these completely!)
(1) We get a map ofA-modules TorAi (M,N)R → TorAi (M,N ′)R ′ , independent

of the lift R → R ′.
(2) Hence for any two resolutions R and R ′ of an A-module N, we get a

canonical isomorphism TorAi (M,N)R ∼= TorAi (M,N)R ′ . Here’s why. Choose lifts
R → R ′ and R ′ → R. The composition R → R ′ → R is homotopic to the iden-
tity (as it is a lift of the identity map N → N). Thus if fR→R ′ : TorAi (M,N)R →
TorAi (M,N)R ′ is the map induced by R → R ′, and similarly fR ′→R is the map
induced by R ′ → R, then fR ′→R ◦ fR→R ′ is the identity, and similarly fR→R ′ ◦
fR ′→R is the identity.

(3) Hence TorAi (M, ·) doesn’t depend on the choice of resolution. It is a covari-
ant functor ModA →ModA.

23.1.1. Remark. Note that ifN is a free module, then TorAi (M,N) = 0 for allM and
all i > 0, asN has the trivial resolution 0→ N→ N→ 0 (it is “its own resolution”).

Finally, we get long exact sequences:

23.1.2. Proposition. — For any short exact sequence (23.1.0.1) we get a long exact
sequence of Tor’s (23.1.0.2).
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Proof. Given a short exact sequence (23.1.0.1), choose resolutions of N ′ and N ′′.
Then use these to get a resolution for N as follows.

(23.1.2.1) 0

��

0

��

0

��
· · · // A⊕n ′

1

��

// A⊕n ′
0

��

// N ′

��

// 0

· · · // A⊕(n ′
1+n

′′
1 )

��

// A⊕(n ′
0+n

′′
0 )

��

// N

��

// 0

· · · // A⊕n ′′
1

��

// A⊕n ′′
0

��

// N ′′

��

// 0

0 0 0

The map A⊕(n ′
i+1+n

′′
i+1) → A⊕(n ′

i+n
′′
i ) is the composition A⊕n ′

i+1 → A⊕n ′
i ↪→

A⊕(n ′
i+n

′′
i ) along with a lift of A⊕n ′′

i+1 → A⊕n ′′
i to A⊕(n ′

i+n
′′
i ) ensuring that the

middle row is a complex.

23.1.C. EXERCISE. Verify that it is possible to choose such a lift ofA⊕n ′′
i+1 → A⊕n ′′

i

to A⊕(n ′
i+n

′′
i ).

Hence the middle row of (23.1.2.1) is exact (not just a complex), using the long
exact sequence in cohomology (Theorem 1.6.6), and the fact that the top and bot-
tom rows are exact. Thus the middle row is a resolution, and (23.1.2.1) is a short
exact sequence of resolutions. (This is sometimes called the horseshoe construction,
as the filling in of the middle row looks like filling in the middle of a horseshoe.)
It may be helpful to notice that the columns other than the “N-column” are all “di-
rect sum exact sequences”, and the horizontal maps in the middle row are “block
upper triangular”.

Then truncate (removing the right column 0 → N ′ → N → N ′′ → 0), tensor
with M (obtaining a short exact sequence of complexes) and take cohomology,
yielding the desired long exact sequence. □

23.1.D. EXERCISE. Show that the following are equivalent conditions on an A-
moduleM.

(i) M is flat.
(ii) TorAi (M,N) = 0 for all i > 0 and all A-modules N.

(iii) TorA1 (M,N) = 0 for all A-modules N.

23.1.3. Caution. Given that free modules are immediately seen to be flat, you
might think that Exercise 23.1.D implies Remark 23.1.1. This would follow if we
knew that TorAi (M,N) ∼= TorAi (N,M), which is clear for i = 0 (as ⊗ is symmetric),
but we won’t know this about Tori when i > 0 until Exercise 23.3.A.

23.1.E. EXERCISE. Show that the connecting homomorphism δ constructed above
is independent of all of choices (of resolutions, etc.). Try to do this with as little
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annoyance as possible. (Possible hint: given two sets of choices used to build
(23.1.2.1), build a map — a three-dimensional diagram — from one version of
(23.1.2.1) to the other version.)

23.1.F. UNIMPORTANT EXERCISE. Show that TorAi (M, ·) is an additive functor
(Definition 1.6.1). (We won’t use this later, so feel free to skip it.)

We have thus established the foundations of Tor.

23.2 Derived functors in general

23.2.1. Projective resolutions. We used very little about free modules in the above
construction of Tor — in fact we used only that free modules are projective, i.e.,
those modules P such that for any surjection M // // N , it is possible to lift any
morphism P → N to P →M:

(23.2.1.1) P

  A
AA

AA
AA

A

exists
���
�
�

M // // N

(As noted in §23.1, this uses the axiom of choice.) Equivalently, Hom(P, ·) is an
exact functor (recall that Hom(Q, ·) is always left-exact for any Q). More gener-
ally, the same idea yields the definition of a projective object in any abelian cate-
gory. Hence by following through our entire argument with projective modules
replacing free modules throughout, (i) we can compute TorAi (M,N) by taking any
projective resolution of N, and (ii) TorAi (M,N) = 0 for any projective A-module
N.

23.2.A. EXERCISE. Show that an object P is projective if and only if every short
exact sequence 0 → Q → R → P → 0 splits. Hence show that an A-module P is
projective if and only if P is a direct summand of a free module.

23.2.B. EXERCISE. Show that projective modules are flat. Hint: Exercise 23.2.A.
Be careful if you want to use Exercise 23.1.D; see Caution 23.1.3. (In fact, finitely
generated projective modules over local rings are even free, see Remark 24.4.6.)

23.2.2. Definition: Derived functors.
The above description was low-tech, but immediately generalizes drastically.

All we are using is thatM⊗A · is a right-exact functor, and that for any A-module
N, we can find a surjection P // // N from a projective module. In general, if F
is any right-exact covariant functor from the category of A-modules to any abelian
category, this construction will define a sequence of functors LiF such that L0F = F
and the LiF’s give a long exact sequence. We can make this more general still. We
say that an abelian category has enough projectives if for any object N there is a
surjection onto it from a projective object. Then if F is any right-exact covariant
functor from an abelian category with enough projectives to any abelian category,
then we can define the left derived functors to F, denoted LiF (i ≥ 0). You should
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reread §23.1 and see that throughout we only use the fact we have a projective
resolution (repeatedly lifting maps as in (23.2.1.1)), as well as the fact that F sends
products to products (a consequence of additivity of the functor, see Remark 1.6.2)
to show that F applied to (23.1.2.1) preserves the exactness of the columns.

23.2.C. EXERCISE. The notion of an injective object in an abelian category is dual
to the notion of a projective object.
(a) State precisely the definition of an injective object.
(b) Define derived functors for (i) covariant left-exact functors (these are called
right derived functors), (ii) contravariant left-exact functors (also called right de-
rived functors), and (iii) contravariant right-exact functors (these are called left
derived functors), making explicit the necessary assumptions of the category hav-
ing enough injectives or projectives.

23.2.3. Notation. Recall from Definition 23.2.2 that if F is a right-exact functor, its
(left) derived functors are denoted LiF (i ≥ 0, with L0F = F). Similarly, if F is a left-
exact functor, its (right-) derived functors are denoted RiF. The i is a superscript,
to indicate that the long exact sequence is “ascending in i”.

23.2.4. The Ext functors.

23.2.D. EASY EXERCISE (AND DEFINITION): Ext FUNCTORS FORA-MODULES, FIRST
VERSION. As Hom(·, N) is a contravariant left-exact functor in ModA, which
has enough projectives, define ExtiA(M,N) as the ith right derived functor of
Hom(·,N), applied to M. State the corresponding long exact sequence for Ext-
modules.

23.2.E. EASY EXERCISE (AND DEFINITION): Ext FUNCTORS FOR A-MODULES, SEC-
OND VERSION. The category ModA has enough injectives (see §23.2.5). As Hom(M, ·)
is a covariant left-exact functor in ModA, define ExtiA(M,N) as the ith right derived
functor of Hom(M, ·), applied to N. State the corresponding long exact sequence
for Ext-modules.

We seem to have a problem with the previous two exercises: we have defined
Exti(M,N) twice, and we have two different long exact sequences! Fortunately,
these two definitions of Ext agree (see Exercise 23.3.B), and two long exact se-
quences for Ext are better than one.

23.2.F. EASY EXERCISE. Use the definition of Ext in Exercise 23.2.D to show that
if A is a Noetherian ring, and M and N are finitely generated A-modules, then
ExtiA(M,N) is a finitely generated A-module.

Ext-functors (for sheaves) will play a key role in the proof of Serre duality, see
§30.2.

23.2.5. ⋆ The category of A-modules has enough injectives. We will need the
fact that ModA has enough injectives, but the details of the proof won’t come up
again, so feel free to skip this discussion.
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23.2.G. EXERCISE. Suppose Q is an A-module, such that for every ideal I ⊂ A,
every homomorphism I → Q extends to A → Q. Show that Q is an injective A-
module. Hint: suppose N ⊂ M is an inclusion of A-modules, and we are given
β : N → Q. We wish to show that β extends to M → Q. Use the Axiom of Choice
to show that among those A-modules N ′ with N ⊂ N ′ ⊂ M, such that β extends
toN ′, there is a maximal one. If thisN ′ is notM, give an extension of β toN ′+Am,
wherem ∈M \N ′, obtaining a contradiction.

23.2.H. EASY EXERCISE (USING THE AXIOM OF CHOICE, IN THE GUISE OF ZORN’S
LEMMA). Show that a Z-module (i.e., abelian group) Q is injective if and only if
it is divisible (i.e., for every q ∈ Q and n ∈ Z̸=0, there is q ′ ∈ Q with nq ′ = q).
Hence show that any quotient of an injective Z-module is also injective.

23.2.I. EXERCISE. Show that the category of Z-modules ModZ = Ab has enough
injectives. (Hint: if M is a Z-module, then write it as the quotient of a free Z-
module F by some K. Show thatM is contained in the divisible group (F⊗ZQ)/K.)

23.2.J. EXERCISE. Suppose Q is an injective Z-module, and A is a ring. Show that
HomZ(A,Q) is an injectiveA-module. Hint: First describe theA-module structure
on HomZ(A,Q). You will only use the fact that Z is a ring, and thatA is an algebra
over that ring.

23.2.K. EXERCISE. Show that ModA has enough injectives. Hint: suppose M is an
A-module. By Exercise 23.2.I, we can find an inclusion of Z-modulesM ↪→ Qwhere
Q is an injective Z-module. Describe a sequence of inclusions of A-modules

M ↪→ HomZ(A,M) ↪→ HomZ(A,Q).

(The A-module structure on HomZ(A,M) is via the A-action on the left argument
A, not via the A-action on the right argument M.) The right term is injective by
the previous Exercise 23.2.J.

23.2.6. ⋆ Universal δ-functors.
(This discussion is best skipped on a first reading; you should move directly

to §23.3.) We now describe a more general variant of derived functors, as you may
use them in the discussion of Serre duality in Chapter 30. The advantage of the
notion of universal δ-functor is that we can apply it even in cases where A does
not have enough injectives.

Abstracting key properties of derived functors, we define the data of a (coho-
mological) δ-functor, from an abelian category A to another abelian category B.
A δ-functor is a collection of additive functors T i : A → B (where T i is taken to
be 0 if i < 0), along with morphisms δi : T i(A ′′) → T i+1(A ′) for each short exact
sequence

(23.2.6.1) 0→ A ′ → A→ A ′′ → 0

in A , satisfying two properties:

(i) (short exact sequences yield long exact sequences) For each short exact se-
quence (23.2.6.1), the sequence

· · · // T i−1(A ′′)
δi−1

// T i(A ′) // T i(A) // T i(A ′′)
δi // T i+1(A ′) // · · ·
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(where the unlabeled maps come from the covariance of the T i) is exact.
In particular, T0 is left-exact.

(ii) (functoriality of (i)) For each morphism of short exact sequences in A

0 // a ′

��

// a //

��

a ′′

��

// 0

0 // A ′ // A // A ′′ // 0

(where the squares commute), the δi’s give a commutative diagram

T i(a ′′)
δi //

��

T i+1(a ′)

��
T i(A ′′)

δi // T i+1(A ′)

(where the vertical arrows come from the covariance of T i and T i+1).
Derived functor cohomology is clearly an example of a δ-functor; Čech coho-

mology of sheaves on quasicompact separated schemes is another. (You can make
these statements precise if you wish.)

23.2.L. EXERCISE. Figure out the right definition of morphism of δ-functors A →
B. (It should then be clear that the δ-functors from A to B form a category.)

23.2.7. Definition. A (cohomological) δ-functor (T i, δi) is universal if for any
other δ-functor (T ′i, δ ′i), and any natural transformation of functors α : T0 → T ′0,
there is a unique morphism of δ-functors (T i, δi) → (T ′i, δ ′i) extending α. By
universal property nonsense (and Exercise 23.2.L), given any covariant left-exact
functor F : A → B, there is at most one universal δ-functor (T i, δi) extending F
(i.e., with a natural isomorphism T0 ∼= F). The key fact about universal δ-functors
is the following.

23.2.8. Theorem. — Suppose (T i, δi) is a covariant δ-functor from A to B, and for all
A ∈ A , there exists a monomorphism A→ J with T iJ = 0 for all i > 0. Then (T i, δi) is
universal.

23.2.M. ⋆⋆ EXERCISE. Prove Theorem 23.2.8. Partial hint: motivated by Corol-
lary 23.2.10 below, follow our discussion of derived functors. Better hint (because
this exercise is hard): follow the hints in [Weib, Exercise 2.4.5], or follow the proof
of [Lan, Ch. XX, Thm. 7.1].

23.2.9. Remark. An additive functor F : A → B is said to be effaceable if for
every A ∈ A , there is a monomorphism A → J with F(J) = 0. The hypotheses
of Theorem 23.2.8 can be weakened to require only that T i is effaceable for each
i > 0, and you are welcome to prove that instead. (Indeed, [Weib, Exercise 2.4.5],
[Lan, Ch. XX, Thm. 7.1], and the original source [Gr1, II.2.2.1] deal with this case.)
We give the statement of Theorem 23.2.8 for simplicity, as we will only use this
version.

23.2.10. Corollary. — If A has enough injectives, and F is a left-exact covariant functor
A → B, then the RiF (with the δi that accompany them) form a universal δ-functor.
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Proof. Each element of A admits a monomorphism into an injective element; this is
just the definition of “enough injectives” (Exercise 23.2.C). Higher derived functors
of an injective elements I are always 0: just compute the higher derived functor by
taking the injective resolution of I “by itself”. □

23.3 Derived functors and spectral sequences

A number of useful facts can be easily proved using spectral sequences. By
doing these exercises, you will lose any fear of spectral sequence arguments in
similar situations, as you will realize they are all the same.

Before you read this section, you should read §1.7 on spectral sequences.

23.3.1. Symmetry of Tor.

23.3.A. EXERCISE (SYMMETRY OF Tor). Show that there is an isomorphism TorAi (M,N) ∼=

TorAi (N,M). (Hint: take a free resolution of M and a free resolution of N. Take
their “product” to somehow produce a double complex. Use both orientations of
the obvious spectral sequence and see what you get.)

On a related note:

23.3.B. EXERCISE. Show that the two definitions of Exti(M,N) given in Exer-
cises 23.2.D and 23.2.E agree.

23.3.2. Derived functors can be computed using acyclic resolutions. Suppose
F : A → B is a right-exact additive functor of abelian categories, and that A has
enough projectives. (In other words, the hypotheses ensure the existence of left
derived functors of F. Analogous facts will hold with the other types of derived
functors, Exercise 23.2.C(b).) We say that A ∈ A is F-acyclic (or just acyclic if the
F is clear from context) if LiF A = 0 for i > 0.

The following exercise is a good opportunity to learn a useful trick (Hint 23.3.3).

23.3.C. EXERCISE. Show that you can also compute the derived functors of an
objects B of A using acyclic resolutions (not just projective resolutions), i.e., by
taking a resolution

· · · // A2 // A1 // A0 // B // 0

by F-acyclic objectsAi, truncating, applying F, and taking homology. Hence Tori(M,N)
can be computed with a flat resolution ofM or N.
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23.3.3. Hint for Exercise 23.3.C (and a useful trick: building a “projective resolution of a
complex”). Show that you can construct a double complex

(23.3.3.1)
...

��

...

��

...

��

...

��
· · · // P2,1

��

// P1,1

��

// P0,1

��

// P1

��

// 0

· · · // P2,0

��

// P1,0

��

// P0,0

��

// P0

��

// 0

· · · // A2

��

// A1

��

// A0

��

// B

��

// 0

0 0 0 0

where the rows and columns are exact and the P?’s are projective. Do this by
constructing the P?’s inductively from the bottom right. Remove the bottom row,
and the right-most nonzero column, and then apply F, to obtain a new double
complex. Use a spectral sequence argument to show that (i) the double complex
has homology equal to LiF B, and (ii) the homology of the double complex agrees
with the construction given in the statement of the exercise. If this is too confusing,
read more about the Cartan-Eilenberg resolution below.

23.3.4. The Grothendieck composition-of-functors spectral sequence.
Suppose A , B, and C are abelian categories, F : A → B and G : B → C are a

left-exact additive covariant functors, and A and B have enough injectives. Thus
right derived functors of F, G, and G ◦ F exist. A reasonable question is: how are
they related?

23.3.5. Theorem (Grothendieck composition-of-functors spectral sequence). —
Suppose F : A → B and G : B → C are left-exact additive covariant functors, and
A and B have enough injectives. Suppose further that F sends injective elements of A
to G-acyclic elements of B. Then for each X ∈ A , there is a spectral sequence with
→Ep,q2 = RqG(RpF(X)) converging to Rp+q(G ◦ F)(X).

We will soon see the Leray spectral sequence as an application (Theorem 23.4.5).

There is more one might want to extract from the proof of Theorem 23.3.5. For
example, although E0 page of the spectral sequence will depend on some choices
(of injective resolutions), the E2 page will be independent of choice. For our appli-
cations, we won’t need this refinement.

We will have to work to establish Theorem 23.3.5, so the proof is possibly best
skipped on a first reading.

23.3.6. ⋆ Proving Theorem 23.3.5.
Before we give the proof (in §23.3.8), we begin with some preliminaries to mo-

tivate it. In order to discuss derived functors applied to X, we choose an injective
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resolution of X:

0 // X // I0 // I1 // · · · .

To compute the derived functors RpF(X), we apply F to the injective resolution I•:

0 // F(I0) // F(I1) // F(I2) // · · · .

Note that F(Ip) is G-acyclic, by hypothesis of Theorem 23.3.5. If we were to follow
our nose, we might take simultaneous injective resolutions I•,• of the terms in the
above complex F(I•) (the “dual” of Hint 23.3.3 — note that only the columns are
required to be exact), and apply G, and consider the resulting double complex:

(23.3.6.1)
...

...
...

0 // G(I0,2) //

OO

G(I1,2) //

OO

G(I2,2) //

OO

· · ·

0 // G(I0,1) //

OO

G(I1,1) //

OO

G(I2,1) //

OO

· · ·

0 // G(I0,0) //

OO

G(I1,0) //

OO

G(I2,0) //

OO

· · ·

0

OO

0

OO

0

OO

23.3.D. EXERCISE. Consider the spectral sequence with upward orientation, start-
ing with (23.3.6.1) as page E0. Show that Ep,q2 is Rp(G ◦ F)(X) if q = 0, and 0
otherwise.

We now see half of the terms in the conclusion of Theorem 23.3.5; we are
halfway there. To complete the proof, we would want to consider another spectral
sequence, with rightward orientation, but we need to know more about (23.3.6.1);
we will build it more carefully.

23.3.7. Cartan-Eilenberg resolutions.
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Suppose · · ·→ Cp−1 → Cp → Cp+1 → · · · is a complex in an abelian category
B. We will build an injective resolution of C•

(23.3.7.1)
...

...
...

0 // I0,2 //

OO

I1,2 //

OO

I2,2 //

OO

· · ·

0 // I0,1 //

OO

I1,1 //

OO

I2,1 //

OO

· · ·

0 // I0,0 //

OO

I1,0 //

OO

I2,0 //

OO

· · ·

0 // C0 //

OO

C1 //

OO

C2 //

OO

· · ·

0

OO

0

OO

0

OO

satisfying some further properties.
We first define some notation for functions on a complex.

• Let Zp(K•) be the kernel of the pth differential of a complex K•.
• Let Bp+1(K•) be the image of the pth differential of a complex K•. (The

superscript is chosen so that Bp+1(K•) ⊂ Kp+1.)
• As usual, let Hp(K•) be the homology at the pth step of a complex K•.

For each p, we have complexes

(23.3.7.2)
...

...
...

Zp(I•,1)

OO

Bp(I•,1)

OO

Hp(I•,1)

OO

Zp(I•,0)

OO

Bp(I•,0)

OO

Hp(I•,0)

OO

Zp(C•)

OO

Bp(C•)

OO

Hp(C•)

OO

0

OO

0

OO

0

OO

We will construct (23.3.7.1) so that the three complexes (23.3.7.2) are all injective
resolutions (of their first nonzero terms). We begin by choosing injective resolu-
tions Bp,∗ of Bp(C•) andHp,∗ ofHp(C•); these will eventually be the last two lines
of (23.3.7.2).
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23.3.E. EXERCISE. Describe an injective resolution Zp,∗ of Zp(C•) (the first line of
(23.3.7.2)) making the following diagram a short exact sequence of complexes.

(23.3.7.3)
...

...
...

0 // Bp,1 //

OO

Zp,1 //

OO

Hp,1 //

OO

0

0 // Bp,0 //

OO

Zp,0 //

OO

Hp,0 //

OO

0

0 // Bp(C•) //

OO

Zp(C•) //

OO

Hp(C•) //

OO

0

0

OO

0

OO

0

OO

Hint: the “dual” problem was solved in (23.1.2.1), by a “horseshoe construction”.

23.3.F. EXERCISE. Describe an injective resolution Ip,∗ of Cp making the following
diagram a short exact sequence of complexes.

(23.3.7.4)
...

...
...

0 // Zp,1 //

OO

Ip,1 //

OO

Bp+1,1 //

OO

0

0 // Zp,0 //

OO

Ip,0 //

OO

Bp+1,0 //

OO

0

0 // Zp(C•) //

OO

Cp //

OO

Bp+1(C•) //

OO

0

0

OO

0

OO

0

OO

(The hint for the previous problem applies again. We remark that the first nonzero
columns of (23.3.7.3) and (23.3.7.4) appeared in (1.6.5.3).)

23.3.G. EXERCISE/DEFINITION. Build an injective resolution (23.3.7.1) of C• such
that Zp,∗ = Zp(I•,∗), Bp,∗ = Bp(I•,∗), Hp,∗ = Hp(I•,∗), so the three complexes
(23.3.7.2) are injective resolutions. This is called a Cartan-Eilenberg resolution of
C•.

23.3.8. Proof of the Grothendieck spectral sequence, Theorem 23.3.5. We pick up where
we left off before our digression on Cartan-Eilenberg resolutions. Choose an injec-
tive resolution I• ofX. Apply the functor F, then take a Cartan-Eilenberg resolution
I•,• of FI•, and then apply G, to obtain (23.3.6.1).
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Exercise 23.3.D describes what happens when we take (23.3.6.1) as E0 in a
spectral sequence with upward orientation. So we now consider the rightward
orientation.

From our construction of the Cartan-Eilenberg resolution, we have injective
resolutions (23.3.7.2), and short exact sequences

(23.3.8.1) 0 // Bp(I•,q) // Zp(I•,q) // Hp(I•,q) // 0

(23.3.8.2) 0 // Zp(I•,q) // Ip,q // Bp+1(I•,q) // 0

of injective objects (from the columns of (23.3.7.3) and (23.3.7.4)). This means that
both are split exact sequences (the central term can be expressed as a direct sum of
the outer two terms), so upon application of G, both exact sequences remain exact.

Applying the left-exact functor G to

0 // Zp(I•,q) // Ip,q // Ip+1,q,

we find that GZp(I•,q) = ker(GIp,q → GIp+1,q). But this kernel is the definition
of Zp(GI•,q), so we have an induced isomorphism GZp(I•,q) = Zp(GI•,q) (“G
and Zp commute”). From the exactness of (23.3.8.2) upon application of G, we see
that GBp+1(I•,q) = Bp+1(GI•,q) (both are coker(GZp(I•,q) → GIp,q)). From the
exactness of (23.3.8.1) upon application of G, we see that GHp(I•,q) = Hp(GI•,q)
(both are coker(GBp(I•,q)→ GZp(I•,q)) — so “G and Hp commute”).

We return to considering the rightward-oriented spectral sequence with (23.3.6.1)
as E0. Taking cohomology in the rightward direction, we find Ep,q1 = Hp(GI•,q) =
GHp(I•,q) (as G and Hp commute). Now Hp(I•,q) is an injective resolution of
(RpF)(X) (the last resolution of (23.3.7.2)). Thus when we compute E2 by using the
vertical arrows, we find Ep,q2 = RqG(RpF(X)).

You should now verify yourself that this (combined with Exercise 23.3.D) con-
cludes the proof of Theorem 23.3.5. □

23.4 Derived functor cohomology of O-modules

We wish to apply the machinery of derived functors to define cohomology of
quasicoherent sheaves on a scheme X. Rather than working in the category QCohX,
for a number of reasons it is simpler to work in the larger category ModOX

(but see
Unimportant Remark 23.5.7).

23.4.1. Theorem. — Suppose (X,OX) is a ringed space. Then the category of OX-
modules ModOX

has enough injectives.

As a side benefit (of use to others more than us), taking OX = Z, we see that
the category of sheaves of abelian groups on a fixed topological space have enough
injectives.
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23.4.2. Proof. We prove Theorem 23.4.1 in a series of exercises, following Gode-
ment, [GrS, p. 27-28]. Suppose F is an OX-module. We will exhibit an injec-
tion F ↪→ Q ′ into an injective OX-module. For each p ∈ X, choose an inclu-
sion Fp ↪→ Qp into an injective OX,p-module (possible as the category of OX,p-
modules has enough injectives, Exercise 23.2.K).

23.4.A. EXERCISE. Show that the skyscraper sheaf Qp := ip,∗Qp, with module
Qp at point p ∈ X, is an injective OX-module. (You can cleverly do this by abstract
nonsense, using Exercise 23.5.B, but it is just as quick to do it by hand.)

23.4.B. EASY EXERCISE. Show that the direct product (possibly infinite) of injec-
tive objects in an abelian category is also injective.

By the previous two exercises, Q ′ :=
∏
p∈XQp is an injective OX-module.

23.4.C. EASY EXERCISE. By considering stalks, show that the natural map F →
Q ′ is an injection.

This completes the proof of Theorem 23.4.1. □
We can now make a number of definitions.

23.4.3. Definition. If (X,OX) is a ringed space, and F is an OX-module, define
Hi(X,F ) as RiΓ(X,F ). If furthermore π : (X,OX) → (Y,OY) is a map of ringed
spaces, we have higher pushforwards (or derived pushforwards) Riπ∗ : ModOX

→
ModOY

.
We have defined these notions earlier in special cases, for quasicoherent sheaves

on quasicompact separated schemes (for Hi), or for quasicompact separated mor-
phisms of schemes (for Riπ∗), in Chapter 18. We will soon (§23.5) show that these
older definitions agree with Definition 23.4.3. Thus the derived functor definition
applies much more generally than our Čech definition. But it is worthwhile to note
that almost everything we use will come out of the Čech definition. A notable ex-
ception is the Leray spectral sequence, which we now discuss.

23.4.4. The Leray spectral sequence.

23.4.5. Theorem (Leray spectral sequence). — Suppose π : (X,OX) → (Y,OY) is a
morphism of ringed spaces. Show that for any OX-module F , there is a spectral sequence
with E2 term given by Hq(Y, Rpπ∗F ) abutting to Hp+q(X,F ).

This is an immediate consequence of the Grothendieck composition-of-functors
spectral sequence (Theorem 23.3.5) once we prove that the pushforward of an in-
jective O-module is an acyclic O-module. We do this now.

23.4.6. Definition. We make an intermediate definition that is independently im-
portant. A sheaf F on a topological space is flasque (also sometimes called flabby)
if all restriction maps are surjective, i.e., if resU⊂V : F (V)→ F (U) is surjective for
all U ⊂ V .

23.4.D. EXERCISE. Suppose (X,OX) is a ringed space.
(a) Show that if

(23.4.6.1) 0→ F ′ → F → F ′′ → 0
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is an exact sequence of OX-modules, and F ′ is flasque, then (23.4.6.1) is exact on
sections over any open set U, i.e. 0→ F ′(U)→ F (U)→ F ′′(U)→ 0 is exact.
(b) Given an exact sequence (23.4.6.1), if F ′ is flasque, show that F is flasque if
and only if F ′′ is flasque.

23.4.E. EASY EXERCISE (PUSHFORWARD OF FLASQUES ARE FLASQUE).
(a) Suppose π : X→ Y is a continuous map of topological spaces, and F is a flasque
sheaf of sets on X. Show that π∗F is a flasque sheaf on Y.
(b) Suppose π : (X,OX) → (Y,OY) is a morphism of ringed spaces, and F is a
flasque OX-module. Show that π∗F is a flasque OY-module.

23.4.F. EXERCISE (INJECTIVE SHEAVES ARE FLASQUE). Suppose (X,OX) is a ringed
space, and Q is an injective OX-module. Show that Q is flasque. Hint: If U ⊂
V ⊂ X, then describe an injection of OX-modules 0 → (iV )!OV → (iU)!OU, where
iU : U ↪→ X and iV : V ↪→ X are the obvious open embeddings. Apply the exact
contravariant functor Hom(·,Q). (The morphisms (iV)! and (iU)! are extensions
by zero, see Exercise 2.7.G. Now might be a good time to do that Exercise.)

23.4.G. EXERCISE (FLASQUE IMPLIES Γ -ACYCLIC). Suppose F is a flasque OX-
module. Show that F is Γ -acyclic (that Hi(X,F ) = 0 for i > 0, §23.3.2) as follows.
As ModOX

has enough injectives, choose an inclusion of F into some injective I ,
and call its cokernel G :

0→ F → I → G → 0.

Then I is flasque by Exercise 23.4.F, so G is flasque by Exercise 23.4.D(b). Take the
long exact sequence in (derived functor) cohomology, and show thatH1(X,F ) = 0.
Your argument works for any flasque sheaf F , so H1(X,G ) = 0 as well. Show that
H2(X,F ) = 0. Turn this into an induction.

Thus if π : X → Y is a morphism of ringed spaces, and I is an injective OX-
module, then I is flasque (Exercise 23.4.F), so π∗I is flasque (Exercise 23.4.E(b)),
so π∗I is acyclic for the functor Γ (Exercise 23.4.G), so this completes the proof of
the Leray spectral sequence (Theorem 23.4.5). □

23.4.H. EXERCISE. Extend the Leray spectral sequence (Theorem 23.4.5) to deal
with a composition of higher pushforwards for

(X,OX)
π // (Y,OY)

ρ // (Z,OZ).

23.4.7. ⋆⋆ The category of OX-modules need not have enough projectives. In
contrast to Theorem 23.4.1, the category of OX-modules need not have enough
projectives. For example, let X be P1k with the Zariski-topology (in fact we will
need very little about X — only that it is not an Alexandrov space), but take OX to
be the constant sheaf Z. We will see that ModOX

— i.e., the category of sheaves of
abelian groups on X — does not have enough projectives. If ModOX

had enough
projectives, then there would be a surjection ψ : P → Z from a projective sheaf. Fix
a closed point q ∈ X. We will show that the map on stalksψq : Pq → Zq is the zero
map, contradicting the surjectivity ofψ. For each open subsetU ofX, denote by ZU
the extension to X of the constant sheaf associated to Z on U by 0 (Exercise 2.7.G
— ZU(V) = Z if V ⊂ U, and ZU(V) = 0 otherwise). For each open neighborhood



November 18, 2017 draft 637

V of q, let W be a strictly smaller open neighborhood. Consider the surjection
ZX−q ⊕ ZW → Z. By projectivity of P, the surjection ψ lifts to P → ZX−q ⊕ ZW .
The map P(V)→ Z(V) factors through ZX−q(V)⊕ ZW(V) = 0, and hence must be
the zero map. Thus the map ψq : Pq → Zq map is zero as well (do you see why?)
as desired.

23.5 Čech cohomology and derived functor cohomology agree

We next prove that Čech cohomology and derived functor cohomology agree,
where the former is defined.

23.5.1. Theorem. — Suppose X is a quasicompact separated scheme, and F is a quasico-
herent sheaf. Then the Čech cohomology of F agrees with the derived functor cohomology
of F .

This statement is not as precise as it should be. We would want to know that
this isomorphism is functorial in F , and that it respects long exact sequences (so
the connecting homomorphism defined for Čech cohomology agrees with that for
derived functor cohomology). There is also an important extension to higher push-
forwards. We leave these issues for the end of this section, §23.5.5

In case you are curious: so long as it is defined appropriately, Čech cohomol-
ogy agrees with derived functor cohomology in a wide variety of circumstances
outside of scheme theory (if the underlying topological space is paracompact), but
not always (see [Gr1, §3.8] for a counterexample). Remark 23.5.6 is also related.

The central idea in the proof (albeit with a twist) is a spectral sequence argu-
ment in the same style as those of §23.3, and uses two “cohomology-vanishing”
ingredients, one for each orientation of the spectral sequence.

(A) If (X,OX) is a ringed space, Q is an injective OX-module, and X = ∪iUi is
a finite open cover, then Q has no ith Čech cohomology with respect to this cover
for i > 0.

(B) IfX is an affine scheme, and F is a quasicoherent sheaf onX, then (RiΓ)(F ) =
0 for i > 0.

Translation: (A) says that building blocks of derived functor cohomology have
no Čech cohomology, and (B) says that building blocks of Čech cohomology have
no derived functor cohomology.

23.5.A. PRELIMINARY EXERCISE. Suppose (X,OX) is a ringed space, Q is an
injective O-module, and i : U ↪→ X is an open subset. Show that Q|U is injective
on U. Hint: use the fact that i−1 has an exact left adjoint i! (extension by zero), see
Exercise 2.7.G, and the following diagrams.

0 // A

��

// B

?}}

0 // i!A

��

// i!B

?||
Q|U Q

In the course of Exercise 23.5.A, you will have proved the following fact, which
we shall use again in Exercise 30.3.C. (You can also use it to solve Exercise 23.4.A.)
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23.5.B. EXERCISE (RIGHT ADJOINTS TO EXACT FUNCTORS PRESERVE INJECTIVES).
Show that if (F,G) is an adjoint pair of additive functors between abelian cate-
gories, and F is exact, then G sends injective elements to injective elements.

23.5.2. Proof of Theorem 23.5.1, assuming (A) and (B). As with the facts proved in
§23.3, we take the only approach that is reasonable: we choose an injective resolu-
tion 0→ F → Q• of F and a Čech cover of X, mix these two types of information
in a double complex, and toss it into our spectral sequence machine (§1.7). More
precisely, choose a finite affine open cover X = ∪iUi and an injective resolution

0→ F → Q0 → Q1 → · · · .

Consider the double complex

(23.5.2.1)
...

...
...

...

0

OO

// ⊕iQ2(Ui)

OO

// ⊕i,jQ2(Uij)

OO

// ⊕i,j,kQ2(Uijk)

OO

// · · ·

0

OO

// ⊕iQ1(Ui)

OO

// ⊕i,jQ1(Uij)

OO

// ⊕i,j,kQ1(Uijk)

OO

// · · ·

0

OO

// ⊕iQ0(Ui)

OO

// ⊕i,jQ0(Uij)

OO

// ⊕i,j,kQ0(Uijk)

OO

// · · ·

0 //

OO

0 //

OO

0 //

OO

0 //

OO

· · ·

We take this as the E0 term in a spectral sequence. First, we use the rightward
filtration. As higher Čech cohomology of injective O-modules is 0 (assumption
(A)), we get 0’s everywhere except in “column 0”, where we get Qi(X) in row i:

...
...

...
...

0

OO

Q2(X)

OO

0

OO

0

OO

· · ·

0

OO

Q1(X)

OO

0

OO

0

OO

· · ·

0

OO

Q0(X)

OO

0

OO

0

OO

· · ·

0

OO

0

OO

0

OO

0

OO
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Then we take cohomology in the vertical direction, and we get derived functor
cohomology of F on X on the E2 page:

...
...

...
...

0 R2Γ(X,F ) 0 0 · · ·

0 R1Γ(X,F ) 0 0 · · ·

0 Γ(X,F )

ZZ55555555555555555

0

ZZ55555555555555555

0

VV---------------

· · ·

0

ZZ55555555555555555

0

ZZ5555555555555555

0

VV---------------

We then start over on the E0 page, and this time use the filtration corresponding
to choosing the upward arrow first. By Proposition 23.5.A, Qi|UJ

is injective on
UJ, so we are computing the derived functor cohomology of F on UJ. Then the
higher derived functor cohomology of F onUJ is 0 (assumption (B)), so all entries
are 0 except possibly on row 0. Thus the E1 term is:
(23.5.2.2)

0 // 0 // 0 // 0 // · · ·

0 // 0 // 0 // 0 // · · ·

0 // ⊕iΓ(Ui,F ) // ⊕i,jΓ(Uij,F ) // ⊕i,j,kΓ(Uijk,F ) // · · ·

0 // 0 // 0 // 0 // · · ·

Row 0 is precisely the Čech complex of F , so the spectral sequence converges at
the E2 term, yielding the Čech cohomology. Since one orientation yields derived
functor cohomology and one yields Čech cohomology, we are done. □

So it remains to show (A) and (B).

23.5.3. Ingredient (A): injectives have no Čech cohomology.

23.5.C. EXERCISE. Suppose X = ∪jUj is a finite cover of X by open sets, and
F is a flasque sheaf (Definition 23.4.6) on X. Show that the Čech complex for F
with respect to ∪nj=1Uj has no cohomology in positive degree, i.e., that it is exact
except in degree 0 (where it has cohomology F (X), by the sheaf axioms). Hint:
use induction on n. Consider the short exact sequence of complexes (18.2.4.2) (see
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also (18.2.3.1)). The corresponding long exact sequence will immediately give the
desired result for i > 1, and flasqueness will be used for i = 1.

Thus flasque sheaves have no Čech cohomology, so injective O-modules in
particular (Exercise 23.4.F) have none. This is all we need for our algebro-geometric
applications, but to show you how general this machinery is, we give an entertain-
ing application.

23.5.D. UNIMPORTANT EXERCISE (PERVERSE PROOF OF INCLUSION-EXCLUSION
THROUGH COHOMOLOGY OF SHEAVES). The inclusion-exclusion principle is
(equivalent to) the following: suppose that X is a finite set, and Ui (1 ≤ i ≤ n)
are finite sets covering X. As usual, define UI = ∩i∈IUi for I ⊂ {1, . . . , n}. Then

|X| =
∑

|Ui|−
∑
|I|=2

|U|I||+
∑
|I|=3

|U|I||−
∑
|I|=4

|U|I||+ · · · .

Prove this by endowing X with the discrete topology, showing that the constant
sheaf Q is flasque, considering the Čech complex computing Hi(X,Q) using the
cover {Ui}, and using Exercise 1.6.B.

23.5.4. ⋆ Ingredient (B): quasicoherent sheaves on affine schemes have no de-
rived functor cohomology.

We show the following statement by induction on k. Suppose X is an affine
scheme, and F is a quasicoherent sheaf on X. Then RiΓ(X,F ) = 0 for 0 < i ≤ k.
The result is vacuously true for k = 0; so suppose we know the result for all
0 < k ′ < k (with X replaced by any affine scheme). Suppose α ∈ RkΓ(X,F ). We
wish to show that α = 0. Choose an injective resolution by OX-modules

...

Q1

d1

OO

Q0

d0

OO

F

OO

0

OO

Then α has a representative α ′ in Qk(X) = Γ(X,Qk), such that dα ′ = 0. Because
the injective resolution is exact, α ′ is locally a boundary. In other words, in the
open neighborhood of any point p ∈ X, there is an open set Vp such that α|Vp

=
dα ′ for some α ′ ∈ Qk−1(Vp). (Be sure you see why this is true! Recall that taking
cokernel of a map of sheaves requires sheafification, see Proposition 2.6.1.) By
shrinking Vp if necessary, we can assume Vp is affine. By the quasicompactness
of X, we can choose a finite number of the Vp’s that cover X. Rename these as Ui,
so we have an affine cover X. Consider the Čech cover of X with respect to this
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affine cover (not the affine cover you might have thought we would use — that of
X by itself — but instead an affine cover tailored for our particular α). Consider
the double complex (23.5.2.1), as the E0 term in a spectral sequence.

First consider the rightward orientation. As in the argument in §23.5.2, the
spectral sequence converges at E2, where we get 0 everywhere, except that the
derived functor cohomology appears in the 0th column.

Next, start over again, choosing the upward filtration. On the E1 page, row
0 is the Čech complex, as in (23.5.2.2). All the rows between 1 and k − 1 are 0
by our inductive hypothesis, but we don’t yet know anything about the higher
rows. Because we are interested in the kth derived functor, we focus on the kth
antidiagonal (Ep,k−p• ). The only possibly nonzero terms in this antidiagonal are
Ek,01 and E0,k1 . We look first at the term on the bottom row Ek,01 =

∏
|I|=k Γ(UI,F ),

which is part of the Čech complex:

· · ·→ ∏
|I|=k−1

Γ(UI,F )→ ∏
|I|=k

Γ(UI,F )→ ∏
|I|=k+1

Γ(UI,F )→ · · · .

But we have already verified that the Čech cohomology of a quasicoherent sheaf
on an affine scheme vanishes — this is the one spot where we use the quasicoher-
ence of F . Thus this term vanishes by the E2 page (i.e., Ek,0i = 0 for i ≥ 2).

So the only term of interest in the kth antidiagonal of E1 is E0,k1 , which is the
homology of

(23.5.4.1)
∏
i

Qk−1(Ui)→∏
i

Qk(Ui)→∏
i

Qk+1(Ui),

which is
∏
i R
kΓ(Ui,F ) (using Preliminary Exercise 23.5.A which stated that the

Qj|Ui
are injective on Ui, so they can be used to compute Rk(Γ(Ui,F )). So E0,k2 is

the homology of
0→∏

i

RkΓ(Ui,F )→∏
i,j

RkΓ(Uij,F )

and thereafter all differentials to and from the E0,k• terms will be 0, as the sources
and targets of those arrows will be 0. Consider now our lift of α ′ of our original
class α ∈ RkΓ(X,F ) to

∏
i R
kΓ(Ui,F ). Its image in the homology of (23.5.4.1) is

zero — this was how we chose our cover Ui to begin with! Thus α = 0 as desired,
completing our proof. □

23.5.E. ⋆⋆ EXERCISE. The proof is not quite complete. We have a class α ∈
RkΓ(X,F ), and we have interpreted RkΓ(X,F ) as

ker

∏
i

RkΓ(Ui,F )→∏
i,j

RkΓ(Uij,F )

 .
We have two maps RkΓ(X,F )→ RkΓ(Ui,F ), one coming from the natural restric-
tion (under which we can see that the image of α is zero), and one coming from the
actual spectral sequence machinery. Verify that they are the same map. (Possible
hint: with the filtration used, the E0,k∞ term is indeed the quotient of the homology
of the double complex, so the map goes the right way.)

23.5.5. ⋆ Tying up loose ends.
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23.5.F. IMPORTANT EXERCISE. State and prove the generalization of Theorem 23.5.1
to higher pushforwards Riπ∗, where π : X → Y is a quasicompact separated mor-
phism of schemes.

23.5.G. EXERCISE. Show that the isomorphism of Theorem 23.5.1 is functorial in
F , i.e., given a morphism F → G , the diagram

Hi(X,F ) oo //

��

RiΓ(X,F )

��
Hi(X,G ) oo // RiΓ(X,G )

commutes, where the horizontal arrows are the isomorphisms of Theorem 23.5.1,
and the vertical arrows come from functoriality of Hi and RiΓ . (Hint: “spectral
sequences are functorial in E0”, which can be easily seen from the construction,
although we haven’t said it explicitly. See Remark 1.7.8, on the functoriality of
spectral sequences.)

23.5.H. EXERCISE. Show that the isomorphisms of Theorem 23.5.1 induce isomor-
phisms of long exact sequences.

23.5.6. Remark. If you wish, you can use the above argument to prove the fol-
lowing theorem of Leray. Suppose we have a sheaf of abelian groups F on a
topological space X, and some covering {Ui} of X such that the (derived functor)
cohomology of F in positive degree vanishes on every finite intersection of theUi.
Then the cohomology of F can be calculated by the Čech cohomology of the cover
{Ui}; there is no need to pass to the inductive limit of all covers, as is the case for
Čech cohomology in general.

23.5.7. Unimportant Remark: Working in QCohX rather than ModOX
. In our definition

of derived functors of quasicoherent sheaves on X, we could have tried to work in
the category of quasicoherent sheaves QCohX itself, rather than in the larger cat-
egory ModOX

. There are several reasons why this would require more effort. It
is not hard to show that QCohX has enough injectives if X is Noetherian (see for
example [Ha1, Exer. III.3.6(a)]). Because we don’t have “extension by zero” (Exer-
cise 2.7.G) in QCoh, the proofs that injective quasicoherent sheaves on an open set
U restrict to injective quasicoherent sheaves on smaller open subsets V (the analog
of Exercise 23.5.A) and that injective quasicoherent sheaves are flasque (the analog
of Exercise 23.4.F) are harder. You can use this to show thatHi and Riπ∗ computed
in QCoh are the same as those computed in ModO (once you make the statements
precise). It is true that injective elements of QCohX (X Noetherian) are injective in
ModOX

, but this requires work (see [Mur, Prop. 68]).
It is true that QCohX has enough injectives for any scheme X, but this is much

harder, see [EE]. And as is clear from the previous paragraph, “enough injectives”
is only the beginning of what we want.

23.5.8. Unimportant Remark. Theorem 23.5.1 implies that if π : X→ Y is quasicom-
pact and separated, then Riπ∗ sends QCohX to QCohY (by showing an isomorphism
with Čech cohomology). IfX and Y are Noetherian, the hypothesis “separated” can
be relaxed to “quasiseparated”, using the ideas of Unimportant Remark 23.5.7. But
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because morphisms from a Noetherian scheme are automatically quasiseparated
(Easy Exercise 7.3.B(b)), we can then remove the redundant “quasiseparated” as-
sumption. This sounds exciting, but it is not nearly as useful as the separated case,
because without Čech cohomology, it is hard to compute anything.





CHAPTER 24

Flatness

The concept of flatness is a riddle that comes out of algebra, but which technically is
the answer to many prayers.

— D. Mumford [Mu7, III.10]

It is a riddle, wrapped in a mystery, inside an enigma; but perhaps there is a key.
— W. Churchill

24.1 Introduction

We come next to the important concept of flatness (first introduced in §16.3.8).
We could have discussed flatness at length as soon as we had discussed quasico-
herent sheaves and morphisms. But it is an unexpected idea, and the algebra and
geometry are not obviously connected, so we have left it for relatively late. “Ex-
act” seems more descriptive terminology than “flat” (so we would have “exact
modules” and “exact morphisms”), but this has not caught on.

Serre has stated that he introduced flatness purely for reasons of algebra in his
landmark “GAGA” paper [Se3], and that it was Grothendieck who recognized its
geometric significance.

A flat morphism π : X → Y is the right notion of a “nice”, or “nicely varying”
family over Y. For example, if π is a projective flat family over a connected Noe-
therian base (translation: π : X→ Y is a projective flat morphism, with Y connected
and Noetherian), we will see that various numerical invariants of fibers are con-
stant, including the dimension (§24.5.5), and numbers interpretable in terms of an
Euler characteristic (see §24.7):

(a) the Hilbert polynomial (Corollary 24.7.2),
(b) the degree (in projective space) (Exercise 24.7.B(a)),

(b’) (as a special case of (b)) if π is finite, the degree of π (recovering and
extending the fact that the degree of a projective map between regular
curves is constant, §17.4.4, see Exercise 24.4.G and §24.4.12),

(c) the arithmetic genus (Exercise 24.7.B(b)),
(d) the degree of a line bundle if the fiber is a curve (Corollary 24.7.3), and
(e) intersections of divisors and line bundles (Exercise 24.7.D).

One might think that the right hypothesis might be smoothness, or more gener-
ally some sort of equisingularity, but we only need something weaker. And this
is a good thing: branched covers are not fibrations in any traditional sense, yet
they still behave well — the double cover A1 → A1 given by y 7→ x2 has constant
degree 2 (§9.3.3, revisited in §17.4.9). Another key example is that of a family of
smooth curves degenerating to a nodal curve (Figure 24.1) — the topology of the

645
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(underlying analytic) curve changes, but the arithmetic genus remains constant.
One can prove things about regular curves by first proving them about a nodal
degeneration, and then showing that the result behaves well in flat families. De-
generation techniques such as this are ubiquitous in algebraic geometry.

FIGURE 24.1. A flat family of smooth curves degenerating to a
nodal curve: y2 = x3 + x2 + tx.

Given the cohomological nature of the constancy of Euler characteristic result,
you should not be surprised that the hypothesis needed (flatness) is cohomological
in nature — it can be characterized by vanishing of Tor (Exercise 23.1.D), which we
use to great effect in §24.3.

But flatness is important for other reasons too. As a start: as this is the right
notion of a “nice family”, it allows us to correctly define the notion of moduli space.
For example, the Hilbert scheme of Pn “parametrizes closed subschemes of Pn”.
Maps from a scheme B to the Hilbert scheme correspond to (finitely presented)
closed subschemes of PnB flat over B. By universal property nonsense, this defines
the Hilbert scheme up to unique isomorphism (although we of course must show
that it exists, which takes some effort — see Theorem 28.3.1 for more). The moduli
space of smooth projective curves is defined by the universal property that maps to
the moduli space correspond to projective flat (finitely presented) families whose
geometric fibers are smooth curves. (Sadly, this moduli space does not exist...) On
a related note, flatness is central in deformation theory: it is key to understanding
how schemes (and other geometric objects, such as vector bundles) can deform
(cf. §21.5.12). Finally, the notion of Galois descent generalizes to (faithfully) “flat
descent”, which allows us to “glue” in more exotic Grothendieck topologies in the
same way we do in the Zariski topology (or more classical topologies); but this is
beyond the scope of our current discussion.

Happy families are all alike; every unhappy family is unhappy in its own way. (See,
for example, Figure 24.2, and Exercises 24.2.G(d), 24.2.K, and 24.4.H.)

— L. Tolstoy, Anna Karenina, [To, l. 1]

24.1.1. Structure of the chapter.
Flatness has many aspects of different flavors, and it is easy to lose sight of

the forest for the trees. Because the algebra of flatness seems so unrelated to the
geometry, it can be nonintuitive. We will necessarily begin with algebraic founda-
tions, but you should focus on the following points: methods of showing things
are flat (both general criteria and explicit examples), and classification of flat mod-
ules over particular kinds of rings. You should try every exercise dealing with
explicit examples such as these.
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Here is an outline of the chapter, to help focus your attention.

• In §24.2, we discuss some of the easier facts, which are algebraic in nature.
• §24.3, §24.4, and §24.6 give ideal-theoretic criteria for flatness. §24.3 and
§24.4 should be read together. The first uses Tor to understand flatness,
and the second uses these insights to develop ideal-theoretic criteria for
flatness. §24.6, on local criteria for flatness, is harder.

• §24.5 is relatively free-standing, and could be read immediately after §24.2.
It deals with topological aspects of flatness, such as the fact that flat mor-
phisms are open in good situations.

• In §24.7, we explain fact that “the Euler characteristic of quasicoherent
sheaves is constant in flat families” (with appropriate hypotheses), and
its many happy consequences. This section is surprisingly easy given its
utility.

You should focus on what flatness implies and how to “picture” it, but also on
explicit criteria for flatness in different situations, such as for integral domains
(Observation 24.2.2), principal ideal domains (Exercise 24.4.B), discrete valuation
rings (Exercise 24.4.C), the dual numbers (Exercise 24.4.D), and local rings (Theo-
rem 24.4.5).

24.2 Easier facts

Many facts about flatness are easy or immediate, although a number are tricky.
As always, I will try to make clear which is which, to help you remember the easy
facts and the key ideas of proofs of the harder facts. We will pick the low-hanging
fruit first.

We recall the definition of a flat A-module (§1.6.11). If M ∈ ModA, M ⊗A · is
always right-exact (Exercise 1.3.H). We say that M is a flat A-module (or flat over
A or A-flat) ifM⊗A · is an exact functor. We say that a ring morphism B→ A is flat
if A is flat as a B-module. (In particular, the algebra structure of A is irrelevant.)

24.2.1. Two key examples.
(i) Free A-modules (even of infinite rank) are clearly flat. More generally, pro-

jective modules are flat (Exercise 23.2.B).
(ii) Localizations are flat: Suppose S is a multiplicative subset of B. Then B→

S−1B is a flat ring morphism because localization is exact (Exercise 1.6.F(a)).

24.2.A. EASY EXERCISE: FIRST EXAMPLES.
(a) (trick question) Classify flat modules over a field k.
(b) Show that A[x1, . . . , xn] is a flat A-module.
(c) Show that the ring morphism Q[x]→ Q[y], with x 7→ y2, is flat. (This will help
us understand Example 9.3.3 better, see §24.4.12.)

We make some quick but important observations.

24.2.2. Important Observation. If x is a non-zerodivisor of A, and M is a flat A-
module, then

M
×x //M
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is injective. (Reason: apply the exact functorM⊗A to the exact sequence 0 // A
×x // A .)

In particular, flat modules are torsion-free. (Torsion-freeness was defined in §13.5.5.)
This observation gives an easy way of recognizing when a module is not flat. We
will use it many times.

24.2.B. EXERCISE: ANOTHER EXAMPLE. Show that a finitely generated module
over a discrete valuation ring is flat if and only if it is torsion-free if and only if it is
free. Hint: Remark 12.5.14 classifies finitely generated modules over a discrete val-
uation ring. (Exercise 24.4.B sheds more light on flatness over a discrete valuation
ring. Proposition 13.7.3 is also related.)

24.2.C. EXERCISE (FLATNESS IS PRESERVED BY CHANGE OF BASE RING). Show
that if M is a flat B-module, B → A is a homomorphism, then M ⊗B A is a flat
A-module.

24.2.D. EXERCISE (TRANSITIVITY OF FLATNESS). Show that if A is a flat B-algebra,
andM is A-flat, thenM is also B-flat.

24.2.3. Proposition (flatness is a stalk/prime-local property). — An A-module M
is flat if and only ifMp is a flat Ap-module for all prime ideals p.

Proof. Suppose first that M is a flat A-module. Given any exact sequence of Ap-
modules

(24.2.3.1) 0→ N ′ → N→ N ′′ → 0,

0→M⊗A N ′ →M⊗A N→M⊗A N ′′ → 0

is exact too. ButM⊗AN is canonically isomorphic toMp⊗Ap
N (do you see why?),

soMp is a flat Ap-module.
Suppose next that Mp is a flat Ap-module for all p. Given any short exact

sequence (24.2.3.1), tensoring withM yields

(24.2.3.2) 0 // K //M⊗A N ′ //M⊗A N //M⊗A N ′′ // 0

(using right-exactness of ⊗, Exercise 1.3.H) where K is the kernel of M ⊗A N ′ →
M ⊗A N. We wish to show that K = 0. It suffices to show that Kp = 0 for ev-
ery prime p ⊂ A (see the comment after Exercise 4.3.F). Given any p, localizing
(24.2.3.1) at p and tensoring with the exact Ap-moduleMp yields

(24.2.3.3) 0 //Mp ⊗Ap
N ′

p
//Mp ⊗Ap

Np
//Mp ⊗Ap

N ′′
p

// 0.

But localizing (24.2.3.2) at p and using the isomorphismsMp⊗Ap
Np

∼= (M⊗AN)p,
we obtain the exact sequence

0 // Kp
//Mp ⊗Ap

N ′
p

//Mp ⊗Ap
Np

//Mp ⊗Ap
N ′′

p
// 0,

which is the same as the exact sequence (24.2.3.3) except for the Kp. Hence Kp = 0
as desired. □

24.2.4. Flatness for schemes.
Motivated by Proposition 24.2.3, the extension of the notion of flatness to

schemes is straightforward.
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24.2.5. Definition: flat quasicoherent sheaves. We say that a quasicoherent sheaf
F on a scheme X is flat at p ∈ X if Fp is a flat OX,p-module. We say that a
quasicoherent sheaf F on a scheme X is flat (over X) if it is flat at all p ∈ X. In light
of Proposition 24.2.3, we can check this notion on an affine open cover of X.

24.2.6. Definition: flat morphism. Similarly, we say that a morphism of schemes
π : X → Y is flat at p ∈ X if OX,p is a flat OY,π(p)-module. We say that a morphism
of schemes π : X→ Y is flat if it is flat at all p ∈ X. We can check flatness locally on
the source and target.

We can combine these two definitions into a single fancy definition.

24.2.7. Definition: flat quasicoherent sheaf over a base. Suppose π : X → Y is a mor-
phism of schemes, and F is a quasicoherent sheaf on X. We say that F is flat (over
Y) at p ∈ X if Fp is a flat OY,π(p)-module. We say that F is flat (over Y) if it is flat
at all p ∈ X.

Definitions 24.2.5 and 24.2.6 correspond to the cases X = Y and F = OX
respectively. (Definition 24.2.7 applies without change to the category of ringed
spaces, but we won’t use this.)

24.2.E. EASY EXERCISE (REALITY CHECK). Show that open embeddings are flat.

Our results about flatness over rings above carry over easily to schemes.

24.2.F. EXERCISE. Show that a map of rings B → A is flat if and only if the
corresponding morphism of schemes SpecA → SpecB is flat. More generally, if
B → A is a map of rings, and M is an A-module, show that M is B-flat if and
only if M̃ is flat over SpecB. (Be careful: this requires more than merely invoking
Proposition 24.2.3.)

Thus if π : X → Y is an affine morphism, and F is a quasicoherent sheaf on X,
then F is flat over Y if and only if π∗F is flat over Y.

24.2.G. EASY EXERCISE (EXAMPLES AND REALITY CHECKS).
(a) If X is a scheme, and p ∈ X, show that the natural morphism Spec OX,p → X is
flat. (Hint: localization is flat, §24.2.1.)
(b) Show that AnA → SpecA is flat.
(c) If F is a locally free sheaf on a scheme X, show that PF → X (Definition 17.2.3)
is flat.
(d) Show that Spec k→ Spec k[t]/(t2) is not flat. (Draw a picture to try to see what
is not “nice” about this morphism. Some more insight about flatness of the dual
numbers will be given in the criterion of Exercise 24.4.D.)

24.2.H. EXERCISE (TRANSITIVITY OF FLATNESS). Suppose π : X → Y and F is
a quasicoherent sheaf on X, flat over Y. Suppose also that ψ : Y → Z is a flat
morphism. Show that F is flat over Z.

24.2.I. EXERCISE (FLATNESS IS PRESERVED BY BASE CHANGE). Suppose π : X→ Y

is a morphism, and F is a quasicoherent sheaf on X, flat over Y. If ρ : Y ′ → Y is
any morphism, and ρ ′ : X×Y Y ′ → X is the induced morphism, show that (ρ ′)∗F
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is flat over Y ′.
(ρ ′)∗F F

X×Y Y ′

��

ρ ′
// X

π

��
Y ′ ρ // Y

In particular, using Exercise 24.2.A(a), if X and Y ′ are k-schemes, and F is any
quasicoherent sheaf on X, then (ρ ′)∗F is flat over Y ′. For example, X ×k Y ′ is
always flat over Y ′ — “products over a field are flat over their factors”. (Feel free to
immediately generalize this further; for example, F can be a quasicoherent sheaf
on a scheme Z over X, flat over Y.)

The following exercise is very useful for visualizing flatness and non-flatness
(see for example Figure 24.2).

24.2.J. EXERCISE (FLAT MAPS SEND ASSOCIATED POINTS TO ASSOCIATED POINTS).
Suppose π : X → Y is a flat morphism of locally Noetherian schemes. Show that
any associated point of X must map to an associated point of Y. (Feel free to im-
mediately generalize this to a coherent sheaf F on X, flat over Y, without π itself
needing to be flat.) Hint: suppose π♯ : (B, n) → (A,m) is a local morphism of Noe-
therian local rings (i.e., π♯(n) ⊂ m, §6.3.1). Suppose n is not an associated prime
of B. Show that there is an element f ∈ n not in any associated prime of B (per-
haps using prime avoidance, Proposition 11.2.13), and hence is a non-zerodivisor.
Show that π♯f ∈ m is a non-zerodivisor of A using Observation 24.2.2, and thus
show that m is not an associated prime of A.

24.2.K. EXERCISE. Use Exercise 24.2.J to show that the following morphisms are
not flat (see Figure 24.2):

(a) Spec k[x, y]/(xy)→ Speck[x],
(b) Spec k[x, y]/(y2, xy)→ Speck[x],
(c) Bl(0,0) A2k → A2k.

Hint for (c): first pull back to a line through the origin to obtain a something akin
to (a). (This foreshadows the statement and proof of Proposition 24.5.6, which says
that for flat morphisms “there is no jumping of fiber dimension”.)

24.2.L. EXERCISE. Show that π : X → Y is flat if and only if π∗ : QCohY → QCohX
is an exact functor. (Translation: the earlier definition of flat morphism in Re-
mark 16.3.8 agrees with Definition 24.2.6. But Definition 24.2.6 is “better”!)

24.2.8. Theorem (cohomology commutes with flat base change). — Suppose

X ′ ρ ′
//

π ′

��

X

π

��
Y ′ ρ // Y

is a Cartesian diagram, and π (and thus π ′) is quasicompact and separated (so higher
pushforwards of quasicoherent sheaves by π and π ′ exist, as described in §18.8). Suppose
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FIGURE 24.2. Morphisms that are not flat (Exercise 24.2.K)

also that ρ is flat, and F is a quasicoherent sheaf on X. Then the natural morphisms
(Exercise 18.8.B(a)) ρ∗(Riπ∗F )→ Riπ ′

∗(ρ
′∗F ) are isomorphisms.

24.2.M. EXERCISE. Prove Theorem 24.2.8. Hint: Exercise 18.8.B(b) is the special
case where ρ is affine.

A useful special case is where Y ′ is the generic point of a reduced component
of Y. In other words, in light of Exercise 24.2.G(a), the stalk of the higher pushfor-
ward of F at the generic point is the cohomology of F on the fiber over the generic
point. This is a first example of something important: understanding cohomology
of (quasicoherent sheaves on) fibers in terms of higher pushforwards. (We would
certainly hope that higher pushforwards would tell us something about higher co-
homology of fibers, but this is certainly not a priori clear!) In comparison to this
result, which shows that cohomology of any quasicoherent sheaf commutes with
flat base change, §24.7 and Chapter 28 deal with when and how cohomology of a
flat quasicoherent sheaf commutes with any base change.

24.2.9. Pulling back closed subschemes (and ideal sheaves) by flat morphisms.
Closed subschemes pull back particularly well under flat morphisms, and this

can be helpful to keep in mind. As pointed out in Remarks 16.3.8 and 16.3.9, in
the case of flat morphisms, pullback of ideal sheaves as quasicoherent sheaves agrees
with pullback in terms of the pullback of the corresponding closed subschemes.
In other words, closed subscheme exact sequences pull back (remain exact) un-
der flat pullbacks. This is in fact not just a necessary condition for flatness; it is
also sufficient, which can be shown using the ideal-theoretic criterion for flatness
(Theorem 24.4.1). There is an analogous fact about pulling ideal sheaves of flat
subschemes by arbitrary pullbacks, see §24.3.2.

24.2.N. EXERCISE.
(a) SupposeD is an effective Cartier divisor on Y and π : X→ Y is a flat morphism.
Show that the pullback of D to X (by π) is also an effective Cartier divisor.
(b) Use part (a) to show that under a flat morphism, regular embeddings pull back
to regular embeddings.
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24.2.O. UNIMPORTANT EXERCISE.
(a) Suppose π : X→ Y is a morphism, and Z ↪→ Y is a closed embedding cut out by
an ideal sheaf I ⊂ OY . Show that (π∗I )n = π∗(I n). (Products of quasicoherent
ideal sheaves were defined in Exercise 14.3.E.)
(b) Suppose further that π is flat, Y = Ank , and Z is the origin. Let J = π∗I be the
quasicoherent sheaf of algebras on X cutting out the pullback W of Z. Prove that
the graded sheaf of algebras ⊕n≥0J n/J n+1 (do you understand the multiplica-
tion?) is isomorphic to OW [x1, . . . , xn] (interpreted as a graded sheaf of algebras).
(Hint: first show that J n/J n+1 ∼= Symn(J /J 2).)

24.2.P. UNIMPORTANT EXERCISE.
(a) Show that blowing up commutes with flat base change. More precisely, if
π : X → Y is any flat morphism, and Z ↪→ Y is any closed embedding, give a
canonical isomorphism (BlZ Y) ×Y X ∼= BlZ×YX X. (You can proceed by universal
property, using Exercise 24.2.N(a), or by using the Proj construction of the blow
up and Exercise 24.2.O.)
(b) Give an example to show that blowing up does not commute with base change
in general.

24.3 Flatness through Tor

We defined the Tor (bi-)functor in §23.1: TorAi (M,N) is obtained by taking a
free resolution of N, removing the N, tensoring it with M, and taking homology.
Exercise 23.1.D characterized flatness in terms of Tor: M is A-flat if TorA1 (M,N) =
0 for all N. In this section, we reap the easier benefits of this characterization,
recalling key properties of Tor when needed. In §24.4, we work harder to extract
more from Tor.

It is sometimes possible to compute Tor from its definition, as shown in the
following exercise that we will use repeatedly.

24.3.A. EXERCISE. Define (M : x) as {m ∈M : xm = 0} ⊂M — it consists of the
elements ofM annihilated by x. If x is not a zerodivisor, show that

TorAi (M,A/(x)) =


M/xM if i = 0;
(M : x) if i = 1;
0 if i > 1.

Hint: use the resolution

0 // A
×x // A // A/(x) // 0

of A/(x).

24.3.1. Remark. As a corollary of Exercise 24.3.A, we see again that flat modules
over an integral domain are torsion-free (and more generally, Observation 24.2.2).
Also, Exercise 24.3.A gives the reason for the notation Tor — it is short for torsion.

24.3.B. EXERCISE. If B is A-flat, use the FHHF Theorem (Exercise 1.6.H(c)) to give
an isomorphism B⊗A TorAi (M,N) ∼= TorBi (B⊗M,B⊗N).
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Recall that the Tor functor is symmetric in its entries (there is an isomorphism
TorAi (M,N)↔ TorAi (N,M), Exercise 23.3.A). This gives us a quick but very useful
result.

24.3.C. EASY EXERCISE. If 0 → N ′ → N → N ′′ → 0 is an exact sequence of
A-modules, and N ′′ is flat (e.g., free), show that 0 → M ⊗A N ′ → M ⊗A N →
M⊗A N ′′ → 0 is exact for any A-moduleM.

We would have cared about this result long before seeing Tor, so it gives some
motivation for learning about Tor. (Unimportant side question: Can you prove
this without Tor, using a diagram chase?)

24.3.D. EXERCISE (IMPORTANT CONSEQUENCE OF EXERCISE 24.3.C). Suppose
0→ F ′ → F → F ′′ → 0 is a short exact sequence of quasicoherent sheaves on a
scheme Y, and F ′′ is flat (e.g., locally free). Show that if π : X→ Y is any morphism
of schemes, the pulled back sequence 0 → π∗F ′ → π∗F → π∗F ′′ → 0 remains
exact.

24.3.E. EXERCISE (CF. EXERCISE 13.5.B FOR THE ANALOGOUS FACTS ABOUT VEC-
TOR BUNDLES). Suppose 0 → M ′ → M → M ′′ → 0 is an exact sequence of
A-modules.
(a) If M and M ′′ are both flat, show that M ′ is too. (Hint: Recall the long ex-
act sequence for Tor, Proposition 23.1.2. Also, use that N is flat if and only if
Tori(N,N ′) = 0 for all i > 0 and all N ′, Exercise 23.1.D.)
(b) IfM ′ andM ′′ are both flat, show thatM is too. (Same hint.)
(c) IfM ′ andM are both flat, show thatM ′′ need not be flat.

24.3.F. EXERCISE. If 0→M0 →M1 → · · ·→Mn → 0 is an exact sequence of flat
A-modules, show that it remains exact upon tensoring with any other A-module.
(Hint: as always, break the exact sequence into short exact sequences.)

24.3.G. EASY EXERCISE. If 0→M0 →M1 → · · ·→Mn → 0 is an exact sequence,
and Mi is flat for i > 0, show that M0 is flat too. (Hint: as always, break the exact
sequence into short exact sequences.)

We will use the Exercises 24.3.F and 24.3.G later in this chapter.

24.3.2. Pulling back quasicoherent ideal sheaves of flat closed subschemes by
arbitrary morphisms (promised in §24.2.9). Suppose

W
α //

��

X

��
Y

β // Z

is a fibered product, and V ↪→ X is a closed subscheme. Then Y×ZV is a closed sub-
scheme ofW (§9.2.2). There are two possible senses in which IV/X can be “pulled
back” toW: as a quasicoherent sheaf α∗IV/X, and as the ideal of the “pulled back”
closed subscheme IY×ZV/W . As pointed out in Remark 16.3.9, these are not neces-
sarily the same, but they are the same if β is flat. We now give another important
case in which they are the same.
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24.3.H. EXERCISE. If V is flat over Z (with no hypotheses on β), show that
α∗IV/X ∼= IY×ZV/W . Hint: Easy Exercise 24.3.C.

24.4 Ideal-theoretic criteria for flatness

The following theorem will allow us to classify flat modules over a number of
rings. It is a refined version of Exercise 23.1.D, that M is a flat A-module if and
only if TorA1 (M,N) = 0 for all A-modules N.

24.4.1. Theorem (ideal-theoretic criterion for flatness). — The A-module M is flat
if and only if TorA1 (M,A/I) = 0 for every ideal I.

24.4.2. Remarks. Before getting to the proof, we make some side remarks that may
give some insight into how to think about flatness. Theorem 24.4.1 is profitably
stated without the theory of Tor. It is equivalent to the statement that M is flat if
and only if for all ideals I ⊂ A, I⊗AM→M is an injection, and you can reinterpret
the proof in this guise. Perhaps better, M is flat if and only if I ⊗AM → IM is an
isomorphism for every ideal I.

Flatness is often informally described as “continuously varying fibers”, and
this can be made more precise as follows. An A-module M is flat if and only if
it restricts nicely to closed subschemes of SpecA. More precisely, what we lose
in this restriction, the submodule IM of elements which “vanish on Z”, is easy
to understand: it consists of formal linear combinations of elements i ⊗m, with
no surprise relations among them — i.e., the tensor product I ⊗A M. This is the
content of the following exercise, in which you may use Theorem 24.4.1.

24.4.A. ⋆ EXERCISE (THE EQUATIONAL CRITERION FOR FLATNESS). Show that
an A-module M is flat if and only if for every relation

∑
aimi = 0 with ai ∈ A

and mi ∈ M, there exist m ′
j ∈ M and aij ∈ A such that

∑
j aijm

′
j = mi for all i

and
∑
i aiaij = 0 in A for all j. (Translation: whenever elements of M satisfy an

A-linear relation, this is “because” of linear equations holding in A.)

24.4.3. Unimportant remark. In the statement of Theorem 24.4.1, it suffices to check
only finitely generated ideals. This is essentially the content of the following state-
ment, which you can prove if you wish: Show that an A-module M is flat if and
only if for all finitely generated ideals I, the natural map I⊗AM→M is an injection.
Hint: if there is a counterexample for an ideal J that is not finitely generated, use
it to find another counterexample for an ideal I that is finitely generated.

24.4.4. Proof of the ideal-theoretic criterion for flatness, Theorem 24.4.1. By Exercise 23.1.D,
we need only show that TorA1 (M,A/I) = 0 for all I implies TorA1 (M,N) = 0 for all
A-modules N, and hence thatM is flat.

We first prove that TorA1 (M,N) = 0 for all finitely generated modules N, by
induction on the number n of generators a1, . . . , an of N. The base case (if n = 1,
so N ∼= A/Ann(a1)) is our assumption. If n > 1, then Aan ∼= A/Ann(an) is a
submodule of N, and the quotient Q is generated by the images of a1, . . . , an−1,
so the result follows by considering the Tor1 portion of the Tor long exact sequence
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for

0→ A/Ann(an)→ N→ Q→ 0.

We deal with the case of general N by abstract nonsense. Notice that N is the
union of its finitely generated submodules {Nα}. In fancy language, this union
is a filtered colimit — any two finitely generated submodules are contained in a
finitely generated submodule (specifically, the submodule they generate). Filtered
colimits of modules commute with cohomology (Exercise 1.6.L), so Tor1(M,N) is
the colimit over α of Tor1(M,Nα) = 0, and is thus 0. □

We now use Theorem 24.4.1 to get explicit characterizations of flat modules
over three (types of) rings: principal ideal domains, dual numbers, and some local
rings.

Recall Observation 24.2.2, that flatness implies torsion-free. The converse is
true for principal ideal domains:

24.4.B. EXERCISE (FLAT = TORSION-FREE FOR A PID). Show that a module over a
principal ideal domain is flat if and only if it is torsion-free.

24.4.C. EXERCISE (FLATNESS OVER A DVR). Suppose M is a module over a dis-
crete valuation ringAwith uniformizer t. Show thatM is flat if and only if t is not
a zerodivisor onM, i.e., (using the notation defined in Exercise 24.3.A) (M : t) = 0.
(See Exercise 24.2.B for the case of finitely generated modules.) This yields a sim-
ple and very important geometric interpretation of flatness over a regular curve,
which we discuss in §24.4.9.

24.4.D. EXERCISE (FLATNESS OVER THE DUAL NUMBERS). Show that M is flat
over k[t]/(t2) if and only if the “multiplication by t” map M/tM → tM is an
isomorphism. (This fact is important in deformation theory and elsewhere.) Hint:
k[t]/(t2) has only three ideals.

24.4.5. Important Theorem (flat = free = projective for finitely presented mod-
ules over local rings). — Suppose (A,m) is a local ring (not necessarily Noetherian),
and M is a finitely presented A-module. Then M is flat if and only if it is free if and only
if it is projective.

24.4.6. Remarks. Warning: modules over local rings can be flat without being free:
Q is a flat Z(p)-algebra (Z(p) is the localization of Z at p, not the p-adics), as all
localizations are flat (§24.2.1), but it is not free (do you see why?).

Also, non-Noetherian people may be pleased to know that with a little work,
“finitely presented” can be weakened to “finitely generated”: use [Mat2, Thm. 7.10]
in the proof below, where finite presentation comes up.

Proof. For any ring, free modules are projective (§23.2.1), and projective modules
are flat (Exercise 23.2.B), so we need only show that flat modules are free for a local
ring.

(At this point, you should see Nakayama coming from a mile away.) Now
M/mM is a finite-dimensional vector space over the field A/m. Choose a basis of
M/mM, and lift it to elements m1, . . . , mn ∈ M. Consider A⊕n → M given by
ei 7→ mi. We will show this is an isomorphism. It is surjective by Nakayama’s
Lemma (see Exercise 7.2.H): the image is all of M modulo the maximal ideal,
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hence is everything. As M is finitely presented, by Exercise 13.6.A (“finitely pre-
sented implies always finitely presented”), the kernel K is finitely generated. Ten-
sor 0 → K → A⊕n → M → 0 with A/m. As M is flat, the result is still exact
(Exercise 24.3.C):

0→ K/mK→ (A/m)⊕n →M/mM→ 0.

But (A/m)⊕n →M/mM is an isomorphism by construction, so K/mK = 0. As K is
finitely generated, K = 0 by Nakayama’s Lemma 7.2.9. □

Here is an immediate and useful corollary — really just a geometric interpre-
tation.

24.4.7. Corollary (flat = locally free for finitely presented sheaves). — A finitely
presented sheaf F on X is flat (over X) if and only if it is locally free.

Proof. Local freeness of a finitely presented sheaf can be checked at the stalks,
Exercise 13.7.F. □

24.4.E. EXERCISE. Suppose π : X → Y is a finite flat morphism of locally Noether-
ian schemes, and F is a finite rank locally free sheaf on X.

(a) Show that π∗F is a finite rank locally free sheaf on Y.
(b) If Y is irreducible with generic point η, the degree of π above η is n, and

F is locally free of rank r, show that π∗F is locally free of rank nr. (This
may be trickier than it looks.)

24.4.8. Remark. In particular, taking F = OX, we see that in the locally Noetherian
setting, finite flat morphisms have locally constant degree.

24.4.F. ⋆ EXERCISE (INTERESTING VARIANT OF THEOREM 24.4.5, BUT UNIMPOR-
TANT FOR US). Suppose A is a ring (not necessarily local), and M is a finitely
presented A-module. Show that M is flat if and only if it is projective. Hint: show
thatM is projective if and only ifMm is free for every maximal ideal m. The harder
direction of this implication uses the fact that HomAm

(Mm,Nm) = HomA(M,N)m,
which follows from Exercise 1.6.G. (Remark: There exist finitely generated flat mod-
ules that are not projective. They are necessarily not finitely presented. Example
without proof: let A =

∏∞
i=1 F2, interpreted as functions Z≥0 → Z/2, and let M

be the module of functions modulo those of proper support, i.e., those vanishing
at almost all points of Z≥0.)

24.4.G. EXERCISE. Prove the following useful criterion for flatness: Suppose
π : X → Y is a finite morphism, and Y is reduced and locally Noetherian. Then
π is flat if and only if π∗OX is locally free, if and only if the rank of π∗OX is locally
constant (dimκ(q)(π∗OX)q ⊗ κ(q) is a locally constant function of q ∈ Y). Partial
hint: Exercise 13.7.K.

24.4.H. EXERCISE. Show that the normalization of the node (see Figure 7.4) is
not flat. Hint: use Exercise 24.4.G. (This exercise can be strengthened to show that
nontrivial normalizations are never flat.)
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24.4.I. EXERCISE. In A4k = Spec k[w, x, y, z], let X be the union of the wx-plane
with the yz-plane:

(24.4.8.1) X = Speck[w, x, y, z]/(wy,wz, xy, xz).

The projection A4k → A2k given by k[a, b]→ k[w, x, y, z] with a 7→ w− y, b 7→ x− z
restricts to a morphism X→ A2k. Show that this morphism is not flat.

24.4.9. Flat families over regular curves. Exercise 24.4.C gives an elegant geomet-
ric criterion for when morphisms to regular curves are flat.

24.4.J. EXERCISE (CRITERION FOR FLATNESS OVER A REGULAR CURVE). Suppose
π : X → Y is a morphism from a locally Noetherian scheme to a regular (locally
Noetherian) curve. (The local Noetherian hypothesis on X is so we can discuss its
associated points.) Show that π is flat if and only if all associated points of X map
to a generic point of Y. (This is a partial converse to Exercise 24.2.J, that flat maps
always send associated points to associated points. As with Exercise 24.2.J, feel
free to immediately generalize your argument to a coherent sheaf F on X.)

24.4.10. For example, a nonconstant map from an integral (locally Noetherian)
scheme to a regular curve must be flat. (As another example, the deformation
to the normal cone, discussed in the double-starred section §22.4.17 and depicted
in Figure 22.3, is flat.) Exercise 24.4.H (and the comment after it) shows that the
regular condition is necessary. The example of two planes meeting at a point in
Exercise 24.4.I shows that the dimension 1 condition is necessary.

24.4.11. ⋆ Unimportant remark: A valuative criterion for flatness. Exercise 24.4.J shows
that flatness over a regular curves is geometrically intuitive (and is “visualizable”).
It gives a criterion for flatness in general: suppose π : X → Y is finitely presented
morphism. If π is flat, then for every morphism Y ′ → Y where Y ′ is the Spec of a
discrete valuation ring, π ′ : X×Y Y ′ → Y ′ is flat, so no associated points of X×Y Y ′

map to the closed point of Y ′. If Y is reduced and locally Noetherian, then this is
a sufficient condition; this can reasonably be called a valuative criterion for flatness.
(Reducedness is necessary: consider Exercise 24.2.G(d).) This gives an excellent
way to visualize flatness, which you should try to put into words (perhaps after
learning about flat limits below). See [Gr-EGA, IV3.3.11.8] for a proof (and an
extension without Noetherian hypotheses).

24.4.12. Revisiting the degree of a projective morphism from a curve to a regular curve.
As hinted after the statement of Proposition 17.4.5, we can now better understand
why nonconstant projective morphisms from a curve to a regular curve have a
well-defined degree, which can be determined by taking the preimage of any point
(§17.4.4). (Example 9.3.3 was particularly enlightening.) This is because such maps
are flat by Exercise 24.4.J, and then the degree is constant by Remark 24.4.8 (see also
Exercise 24.4.G). Also, Exercise 24.4.G yields a new proof of Proposition 17.4.5.

24.4.13. Flat limits. Here is an important consequence of Exercise 24.4.J, which we
can informally state as: we can take flat limits over one-parameter families. More
precisely: suppose A is a discrete valuation ring, and let 0 be the closed point of
SpecA and η the generic point. Suppose X is a locally Noetherian scheme over A,
and Y is a closed subscheme of X|η. Let Y ′ be the scheme-theoretic closure of Y in
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X. Then Y ′ is flat over A. Similarly, suppose Z is a one-dimensional Noetherian
scheme, 0 is a regular point of Z, and π : X → Z is a morphism from a locally
Noetherian scheme to Z. If Y is a closed subscheme of π−1(Z − {0}), and Y ′ is
the scheme-theoretic closure of Y in X, then Y ′ is flat over Z. In both cases, the
closure Y ′|0 is often called the flat limit of Y. (Feel free to weaken the Noetherian
hypotheses on X.)

24.4.K. EXERCISE. Suppose (with the language of the previous paragraph) that A
is a discrete valuation ring, X is a locally Noetherian A-scheme, and Y is a closed
subscheme of the generic fiber X|η. Show that there is only one closed subscheme
Y ′ of X such that Y ′|η = Y, and Y ′ is flat over A.

24.4.L. HARDER EXERCISE (AN EXPLICIT FLAT LIMIT). Let X = A3×A1 → Z = A1
over a field k, where the coordinates on A3 are x, y, and z, and the coordinates on
A1 are t. Define Y away from t = 0 as the union of the two lines y = z = 0 (the
x-axis) and x = z − t = 0 (the y-axis translated by t). Find the flat limit at t = 0.
(Hints: (i) it is not the union of the two axes, although it includes this union. The
flat limit is nonreduced at the node, and the “fuzz” points out of the plane they
are contained in. (ii) (y, z)(x, z) ̸= (xy, z). (iii) Once you have a candidate flat limit,
be sure to check that it is the flat limit. (iv) If you get stuck, read Example 24.4.14
below.)

Consider a projective version of the previous example, where two lines in P3
degenerate to meet. The limit consists of two lines meeting at a node, with some
nonreduced structure at the node. Before the two lines come together, their space
of global sections is two-dimensional. When they come together, it is not immedi-
ately obvious that their flat limit also has two-dimensional space of global sections
as well. The reduced version (the union of the two lines meeting at a point) has
a one-dimensional space of global sections, but the effect of the nonreduced struc-
ture on the space of global sections may not be immediately clear. However, we
will see that “cohomology groups can only jump up in flat limits”, as a conse-
quence (indeed the main moral) of the Semicontinuity Theorem 28.1.1.

24.4.14. ⋆⋆ Example of variation of cohomology groups in flat families. We can
use a variant of Exercise 24.4.L to see an example of a cohomology group actually
jumping. We work over an algebraically closed field to avoid distractions. Before
we get down to explicit algebra, here is the general idea. Consider a twisted cubic
C in P3. A projection prp from a random point p ∈ P3 will take C to a nodal
plane cubic. Picture this projection “dynamically”, by choosing coordinates so p
is at [1, 0, 0, 0], and considering the map ϕt : [w, x, y, z] 7→ [tw, x, y, z]; ϕ1 is the
identity on P3, ϕt is an automorphism of P3 for t ̸= 0, and ϕ0 is the projection.
The limit of ϕt(C) as t → 0 will be a nodal cubic, with nonreduced structure at
the node “analytically the same” as what we saw when two lines came together
(Exercise 24.4.L). (The phrase “analytically the same” can be made precise once we
define completions in §29.)

Let’s now see this in practice. Rather than working directly with the twisted
cubic, we use another example where we saw a similar picture. Consider the nodal
(affine) plane cubic y2 = x3 + x2. Its normalization (see Figure 7.4, Example (3) of
§7.3.8, Exercise 9.7.E, . . . ) was obtained by adding an extra variablem correspond-
ing to y/x (which can be interpreted as blowing up the origin, see §22.4.3). We use
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the variablem rather than t (used in §7.3.8) in order to reserve t for the parameter
for the flat family.

We picture the nodal cubic C as lying in the xy-plane in A3 = Spec k[x, y,m],
and the normalization C̃ projecting to it, with m = y/x. What are the equations
for C̃? Clearly, they include the equations y2 = x3 + x2 and y = mx, but these
are not enough — the m-axis (i.e., x = y = 0) is also in V(y2 − x3 − x2, y −mx).
A little thought (and the algebra we have seen earlier in this example) will make
clear that we have a third equationm2 = (x+1), which along with y = mx implies
y2 = x2+x3. Now we have enough equations: k[x, y,m]/(m2−(x+1), y−mx) is an
integral domain, as it is clearly isomorphic to k[m]. Indeed, you should recognize
this as the algebra appearing in Exercise 9.7.E.

Next, we want to formalize our intuition of the dynamic projection to the xy-
plane of C̃ ⊂ A3. We picture it as follows. Given a point (x, y,m) at time 1, at time
t we want it to be at (x, y,mt). At time t = 1, we “start with” C̃, and at time t = 0
we have (set-theoretically) C. Thus at time t ̸= 0, the curve C̃ is sent to the curve
cut out by equations

k[x, y,m]/(m2 − t2(x+ 1), ty−mx).

The family over Spec k[t, t−1] is thus

k[x, y,m, t, t−1]/(m2 − t2(x+ 1), ty−mx).

Notice that we have inverted t because we are so far dealing only with nonzero t.
For t ̸= 0, this is certainly a “nice” family, and so surely flat. Let’s make sure this
is true.

24.4.M. EXERCISE. Check this, as painlessly as possible! Hint: by a clever change
of coordinates, show that the family is constant “over Speck[t, t−1]”, and hence
pulled back (in some way you must figure out) via Speck[t, t−1]→ Speck from

Speck[X, Y,M]/(M2 − (X+ 1), Y −MX)→ Speck,

which is flat by Trick Question 24.2.A(a).

We now figure out the flat limit of this family over t = 0, in Spec k[x, y,m, t]→
A1 = Speck[t]. We first hope that our flat family is given by the equations we have
already written down:

Spec k[x, y,m, t]/(m2 − t2(x+ 1), ty−mx).

But this is not flat over A1 = Spec k[t], as the fiber dimension jumps (§24.5.5):
substituting t = 0 into the equations (obtaining the fiber over 0 ∈ A1), we find
Spec k[x, y,m]/(m2,mx). This is set-theoretically the xy-plane (m = 0), which of
course has dimension 2. Notice for later reference that this “false limit” is scheme-
theoretically the xy-plane, with some nonreduced structure along the y-axis. (This may
remind you of Figure 4.4.)

So we are missing at least one equation. One clue as to what equation is miss-
ing: the equation y2 = x3 + x2 clearly holds for t ̸= 0, and does not hold for our
naive attempt at a limit scheme m2 = mx = 0. So we put this equation back in,
and have a second hope for describing the flat family over A1:

Speck[x, y,m, t]/(m2 − t2(x+ 1), ty−mx, y2 − x3 − x2)→ Speck[t].
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Let A = k[x, y,m, t]/(m2 − t2(x + 1), ty −mx, y2 − x3 − x2) for convenience.
The morphism SpecA → A1 is flat at t = 0. How can we show it? We could hope
to show that A is an integral domain, and thus invoke Exercise 24.4.J. Instead we
use Exercise 24.4.B, and show that t is not a zerodivisor onA. We do this by giving
a “normal form” for elements of A.

24.4.N. EXERCISE. Show that each element of A can be written uniquely as a
polynomial in x, y,m, and t such that no monomial in it is divisible bym2,mx, or
y2. Then show that t is not a zerodivisor on A, and conclude that SpecA → A1 is
indeed flat.

Thus the flat limit when t = 0 is given by

Speck[x, y,m]/(m2,mx, y2 − x2 − x3).

24.4.O. EXERCISE. Show that the flat limit is nonreduced, and the “nonreduced-
ness has length 1 and supported at the origin”. More precisely, if X = SpecA/(t),
show that IXred is a skyscraper sheaf, with value k, supported at the origin. Sketch
this flat limit X.

24.4.15. Note that we have a nonzero global function on X, given by m, which is
supported at the origin (i.e., 0 away from the origin).

We now use this example to get a projective example with interesting behavior.
We take the projective completion of this example, to get a family of cubic curves
in P3 degenerating to a nodal cubic Cwith a nonreduced point.

24.4.P. EXERCISE. Do this: describe this family (in P3 × A1) precisely.

Take the long exact sequence corresponding to

0 // ICred
// OC // OCred

// 0,

to get

0 // H0(C,ICred)
α // H0(C,OC) // H0(C,OCred)

// H1(C,ICred) // H1(C,OC) // H1(C,OCred)

// H2(C,ICred)

We have H1(C,ICred) = H2(C,ICred) = 0 as ICred is supported in dimension 0
(by dimensional cohomology vanishing, Theorem 18.2.6). Also,Hi(Cred,OCred) =
Hi(C,OCred) (property (v) of cohomology, see §18.1). The (reduced) nodal cubic
Cred has h0(O) = 1 (§10.3.7) and h1(O) = 1 (cubic plane curves have genus 1,
(18.6.6.1)). Also, h0(C,ICred) = 1 as observed above. Finally, α is not 0, as there
exists a nonzero function on C vanishing on Cred (§24.4.15 — convince yourself
that this function extends from the affine patch SpecA to the projective comple-
tion).

Using the long exact sequence, we conclude h0(C,OC) = 2 and h1(C,OC) = 1.
Thus in this example we see that (h0(O), h1(O)) = (1, 0) for the general member
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of the family (twisted cubics are isomorphic to P1), and the special member (the
flat limit) has (h0(O), h1(O)) = (2, 1). Notice that both cohomology groups have
jumped, yet the Euler characteristic has remained the same. The first behavior, as
stated after Exercise 24.4.L, is an example of the Semicontinuity Theorem 28.1.1.
The second, constancy of Euler characteristics in flat families, is what we turn to
next. (It is no coincidence that the example had a singular limit, see §28.1.3.)

24.5 Topological aspects of flatness

We now discuss some topological aspects and consequences of flatness, that
boil down to the Going-Down Theorem for flat morphisms (§24.5.2), which in turn
comes from faithful flatness. Because dimension in algebraic geometry is a topo-
logical notion, we will show that dimensions of fibers behave well in flat families
(§24.5.5).

24.5.1. Faithful flatness. The notion of faithful flatness is handy for many reasons,
and we describe only a few. A B-module M is faithfully flat if for all complexes
of B-modules

(24.5.1.1) N ′ → N→ N ′′,

(24.5.1.1) is exact if and only if (24.5.1.1)⊗BM is exact. A B-algebra A is faithfully
flat if it is faithfully flat as a B-module.

24.5.A. EXERCISE. Show that a flat B-module M is faithfully flat if and only if for
all B-modules N,M⊗B N = 0 implies that N = 0.

24.5.B. EXERCISE. Suppose M is a flat B-module. Show that the following are
equivalent.

(a) M is faithfully flat;
(b) for all prime ideals p ⊂ B,M⊗B κ(p) is nonzero;
(c) for all maximal ideals m ⊂ B,M⊗B κ(m) =M/mM is nonzero.

Suppose π : X → Y is a morphism of schemes. We say that π is faithfully
flat if it is flat and surjective. (Unlike flatness, faithful flatness is not that useful a
notion for quasicoherent sheaves, so we do not define faithfully flat quasicoherent
sheaves over a base.)

24.5.C. EXERCISE (CF. EXERCISE 24.5.B(B)). Suppose B → A is a ring morphism.
Show thatA is faithfully flat over B if and only if SpecA→ SpecB is faithfully flat.

Faithful flatness is preserved by base change, as both surjectivity and flatness
are (Exercises 9.4.D and 24.2.I respectively). Similarly, faithful flatness is preseved
by composition, as both surjectivity and flatness are .

24.5.D. EXERCISE. Suppose π : SpecA→ SpecB is flat.
(a) Show that π is faithfully flat if and only if every closed point q ∈ SpecB is in the
image of π. (Hint: Exercise 24.5.B(c).)
(b) Hence show that every flat (local) morphism of local rings (Definition 6.3.1) is
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faithfully flat. (Morphisms of local rings are assumed to be local, i.e., the maximal
ideal pulls back to the maximal ideal.)

24.5.2. Going-Down for flat morphisms. A consequence of Exercise 24.5.D is the
following useful result, whose statement makes no mention of faithful flatness.
(The statement is not coincidentally reminiscent of the Going-Down Theorem for
finite extensions of integrally closed domains, Theorem 11.2.12.)

24.5.E. EXERCISE (GOING-DOWN THEOREM FOR FLAT MORPHISMS).
(a) Suppose that B → A is a flat morphism of rings, corresponding to a map
π : SpecA → SpecB. Suppose q ⊂ q ′ are prime ideals of B, and p ′ is a prime
ideal of A with π([p ′]) = [q ′]. Show that there exists a prime p ⊂ p ′ of A with
π([p]) = [q]. Hint: show that Bq ′ → Ap ′ is a flat local ring homomorphism, and
hence faithfully flat by the Exercise 24.5.D(b).
(b) Part (a) gives a geometric consequence of flatness. Draw a picture illustrating
this.
(c) Recall the Going-Up Theorem, described in §7.2.4. State the Going-Down The-
orem for flat morphisms in a way parallel to Exercise 7.2.F, and prove it.

24.5.F. EXERCISE. Suppose π : X→ Y is an integral (e.g., finite) flat morphism, and
Y has pure dimension n. Show that X has pure dimension n. (This generalizes
Exercise 11.1.G(a).) Hint: π satisfies both Going-Up (see Exercise 7.2.F) and Going-
Down.

24.5.G. IMPORTANT EXERCISE: FLAT MORPHISMS ARE OPEN (IN REASONABLE SIT-
UATIONS). Suppose π : X → Y is locally of finite type and flat, and Y (and hence
X) is locally Noetherian. Show that π is an open map (i.e., sends open sets to open
sets). Hint: reduce to showing that π(X) is open for all such π. Reduce to the case
where X andY are both affine. Use Chevalley’s Theorem 7.4.2 to show that π(X) is
constructible. Use the Going-Down Theorem for flat morphisms, Exercise 24.5.E,
to show that π(X) is closed under generization. Conclude using Exercise 7.4.C.

24.5.3. Remark (proof of Proposition 9.5.4). Suppose A and B are finite type k-
algebras. Then by Exercise 24.5.G, SpecA×Speck SpecB→ SpecB is an open map.

24.5.4. Follow-ups to Exercise 24.5.G.
(i) Of course, not all open morphisms are flat: witness Speck[t]/(t)→ Speck[t]/(t2).
(ii) Also, in quite reasonable circumstances, flat morphisms are not open: witness
Spec k(t)→ Speck[t] (flat by Example 24.2.1(ii)).
(iii) On the other hand, you can weaken the hypotheses of “locally of finite type”
and “locally Noetherian” to just “locally finitely presented” [Gr-EGA, IV2.2.4.6]
— as with the similar generalization in Exercise 9.3.I of Chevalley’s Theorem 7.4.2,
use the fact that any such morphisms is “locally” pulled back from a Noetherian
situation. We won’t use this, and hence omit the details.

24.5.5. Dimensions of fibers are well-behaved for flat morphisms.
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24.5.6. Proposition. — Suppose π : X → Y is a flat morphism of locally Noetherian
schemes, with p ∈ X and q ∈ Y such that π(p) = q. Then

codimX p = codimY q+ codimπ−1(q) p

(see Figure 11.3).

Informal translation: the dimension of the fibers is the difference of the dimen-
sions of X and Y (at least locally). Compare this to Exercise 11.4.A, which stated
that without the flatness hypothesis, we would only have inequality (≤).

24.5.H. EXERCISE. Prove Proposition 24.5.6 as follows. As just mentioned, Exer-
cise 11.4.A gives one inequality, so show the other. Given a chain of irreducible
closed subsets in Y containing q, and a chain of irreducible closed subsets in
π−1(q) ⊂ X containing p, construct a chain of irreducible closed subsets in X con-
taining p, using the Going-Down Theorem for flat morphisms (Exercise 24.5.E).

As a consequence of Proposition 24.5.6, if π : X→ Y is a flat map of irreducible
varieties, then the fibers of π all have pure dimension dimX − dim Y. (Warning:
Spec k[t]/(t) → Spec k[t]/(t2) does not exhibit dimensional jumping of fibers, is
open, and sends associated points to associated points, cf. Exercise 24.2.J, but is not
flat. If you prefer a reduced example, the normalization of the cuspidal plane cubic
Spec k[t] → Spec k[x, y]/(y2 − x3), shown in Figure 9.4, also has these properties.)
This leads us to the following useful definition.

24.5.7. Definition. If π : X → Y is a flat morphism that is locally of finite type, and
all fibers of π have pure dimension n, we say that π is flat of relative dimension n.
(In particular, when one says a morphism is flat of relative dimension n, the locally
finite type hypotheses are implied. Remark 24.5.8 motivates this hypothesis.)

24.5.I. EXERCISE. Suppose π : X → Y is a flat morphism of finite type k-schemes,
and Y is equidimensional (so “codimension is the difference of dimensions”, cf.
Theorem 11.2.9). Show that the following are equivalent.

(i) The scheme X has pure dimension dim Y + n.
(ii) The morphism π is flat of relative dimension n.

24.5.J. EXERCISE. Suppose π : X→ Y and ρ : Y → Z are morphisms of locally Noe-
therian schemes, flat of relative dimension m and n respectively (hence locally of
finite type). Show that ρ◦π is flat of relative dimensionm+n. Hint: Exercise 24.5.I.

24.5.K. EXERCISE. Show that the notion of a morphism being “flat of relative
dimension n” is preserved by arbitrary base change. Hint to show that fiber di-
mension is preserved: Exercise 11.2.J.

24.5.L. EXERCISE (DIMENSION IS ADDITIVE FOR PRODUCTS OF VARIETIES). If X
and Y are k-varieties of pure dimension m and n respectively, show that X ×k Y
has pure dimension m + n. (We have waited egregiously long to prove this basic
fact!)

24.5.8. Remark. The reason for the “locally finite type” assumption in the defini-
tion of “flat of relative dimension n” is that we want any class of morphism to be
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behave “reasonably” (in the sense of §7.1.1). In particular, we want our notion of
“flatness of relative dimension n” to be preserved by base change. Consider the
fibered diagram

Spec k(x)⊗k k(y) //

π ′

��

Speck(y)

π

��
Spec k(x) // Spec k.

Both π and π ′ are trivially flat, because they are morphisms to spectra of fields
(Exercise 24.2.A(a)). But the dimension of the fiber of π is 0, while (as described in
Remark 11.2.16) the dimension of the fiber of π ′ is 1.

24.5.9. Generic flatness. (This would be better called “general flatness”.)

24.5.M. EASY EXERCISE (GENERIC FLATNESS). Suppose π : X → Y is a finite type
morphism to a Noetherian integral scheme, and F is a coherent sheaf on X. Show
that there is a dense open subset U ⊂ Y over which F is flat. Translation: F is
flat at all points of X mapping to U. (An important special case is if F = OX, in
which case this shows there is a dense open subset U over which π is flat.) Hint:
Grothendieck’s Generic Freeness Lemma 7.4.4.

24.5.10. Interpretation of the degree of a generically finite morphism. We use this to
interpret the degree of a rational map of varieties in terms of counting preimages,
fulfilling a promise made in §11.2.2. Suppose π : X 99K Y is a generically finite
rational map of k-varieties of degree d. For simplicity we assume that X and Y are
irreducible. (But feel free to relax this.) Replace X by an open subset on which π
is a morphism. By Proposition 11.4.3 (“generically finite implies generally finite”),
there is a dense open subset V of Y over which π is finite. By “generic flatness”
(Exercise 24.5.M, there is a dense open subset V ′ of V over which π is finite and
flat. Then by Remark 24.4.8 (“finite flat morphisms have locally constant degree”),
over this open subset V ′, π has “locally constant degree”, which is necessarily d .

24.5.11. Exercise 24.5.M can be improved:

24.5.12. Theorem (generic flatness, improved version, [Stacks, tag 052B]). — If
π : X→ Y is a finite type morphism of schemes, Y is reduced, and F is a finite type quasi-
coherent sheaf on X, then there is an open dense subscheme U ⊂ Y such that F |π−1(U) is
of finite presentation over π−1(U), and flat over U.

We won’t use this result, so we omit the proof.

24.5.13. Flatness is an open condition. Generic flatness can be used to show that in
reasonable circumstances, the locus where a quasicoherent sheaf is flat over a base
is an open subset. More precisely:

24.5.14. Theorem (flatness is an open condition). — Suppose π : X→ Y is a locally
finite type morphism of locally Noetherian schemes, and F is a finite type quasicoherent
sheaf on X.

(a) The locus of points of X at which F is Y-flat is an open subset of X.
(b) If π is closed (e.g., proper), then the locus of points of Y over which F is flat (i.e.

those q ∈ Y for which F is flat at all p ∈ π−1(q)) is an open subset of Y.
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Part (b) follows immediately from part (a). Part (a) reduces to a nontrivial
statement in commutative algebra, see for example [Mat2, Thm. 24.3] or [Gr-EGA,
IV3.11.1.1]. As is often the case, Noetherian hypotheses can be dropped in ex-
change for local finite presentation hypotheses on the morphism π, see [Gr-EGA,
IV3.11.3.1] or [Stacks, tag 00RC].

24.6 Local criteria for flatness

(This is the hardest section on ideal-theoretic criteria for flatness, and could
profitably be postponed to a second reading.)

In the case of a Noetherian local ring, there is a greatly improved version of
the ideal-theoretic criterion of Theorem 24.4.1: we need check only one ideal —
the maximal ideal. The price we pay for the simplicity of this “local criterion for
flatness” is that it is harder to prove.

24.6.1. Theorem (local criterion for flatness). — Suppose (A,m) is a Noether-
ian local ring, and M is a finitely generated A-module. Then M is flat if and only if
TorA1 (M,A/m) = 0.

This is a miracle: flatness over all of SpecA is determined by what happens
over the closed point. (Caution: the finite generation hypothesis is necessary. Let
A = k[x, y](x,y) and M = k(x), with y acting as 0. Then M is not flat by Observa-
tion 24.2.2, but it turns out that it satisfies the local criterion otherwise.)

Theorem 24.6.1 is an immediate consequence of the following more general
statement.

24.6.2. Theorem (local criterion for flatness, more general version). — Suppose
(B, n) → (A,m) is a local morphism of Noetherian local rings (§6.3.1), and that M is a
finitely generated A-module. ThenM is B-flat if and only if TorB1 (M,B/n) = 0.

24.6.3. ⋆ Proof of Theorem 24.6.2. A sign of the difficulty of this result is that the
Artin-Rees Lemma 12.9.3 (or a consequence thereof) is used twice — once for the
local ring (A,m) (in the guise of the Krull Intersection Theorem, Exercise 12.9.A),
and once for the local ring (B, n).

Recall from Exercise 18.4.R that a B-module N has finite length if there is a
finite sequence 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = N with Nm/Nm−1

∼= B/n for
1 ≤ m ≤ n.

24.6.A. EASY PRELIMINARY EXERCISE. With the same hypotheses as Theorem 24.6.2,
suppose that TorB1 (M,B/n) = 0. Show that TorB1 (M,N) = 0 for all B-modulesN of
finite length, by induction on the length of N.

By Exercise 23.1.D, if M is B-flat, then TorB1 (M,B/n) = 0, so it remains to
assume that TorB1 (M,B/n) = 0 and show thatM is B-flat.

By the ideal theoretic criterion for flatness (Theorem 24.4.1, see §24.4.2), we
wish to show that ϕ : I ⊗B M → M is an injection for all ideals I of B, i.e., that
kerϕ = 0.

Note that I ⊗B M inherits an A-module structure (as M is an A-module). It
is furthermore a finitely generated A-module (do you see why?), so by the Krull
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Intersection Theorem (Exercise 12.9.A), ∩tmt(I ⊗B M) = 0. Thus it suffices to
show that kerϕ ⊂ mt(I⊗BM) for all t.

As n ⊂ m (or more correctly, the image of n is contained in m), it suffices to
show that kerϕ ⊂ nt(I ⊗B M) for all t. Notice that nt(I ⊗B M) is (the image in
I⊗BM of) (ntI)⊗BM.

24.6.B. EXERCISE. Show that for each s, nt ∩ I ⊂ nsI for t ≫ 0, so it suffices to
show that kerϕ ⊂ (nt ∩ I)⊗BM for all t. Hint: Use the Artin-Rees Lemma 12.9.3,
taking A there to be B here,Mt = nt, I = n, and L = I.

Consider the short exact sequence

0→ nt ∩ I→ I→ I/(nt ∩ I)→ 0.

Applying (·)⊗BM, and using the fact that I/(nt ∩ I) is finite length, we have that

0→ (nt ∩ I)⊗BM→ I⊗BM→ (
I/(nt ∩ I)

)
⊗BM→ 0

is exact using Exercise 24.6.A. Our goal is thus to show that kerϕmaps to 0 in

(24.6.3.1)
(
I/(nt ∩ I)

)
⊗BM =

(
(I+ nt)/nt

)
⊗BM.

Applying (·)⊗BM to the short exact sequence

(24.6.3.2) 0→ (I+ nt)/nt → B/nt → B/(I+ nt)→ 0,

and using Exercise 24.6.A (as B/(I+nt) is finite length), the top row of the diagram
(24.6.3.3)
0 // ((I+ nt)/nt)⊗BM

α // (B/nt)⊗BM // (B/(I+ nt))⊗BM // 0

I⊗BM
ϕ //

OO

B⊗BM

OO

is exact, and the square clearly commutes. But then any element of I ⊗BM map-
ping to 0 in B ⊗B M = M must map to 0 (under the right vertical arrow) in
(B/nt) ⊗B M, and hence must have mapped to 0 in ((I+ nt)/nt) ⊗B M by the
injectivity of α, as desired. □

This argument basically shows that flatness is an “infinitesimal” property, de-
pending only on the completion of the scheme at the point in question. This is
made precise as follows.

Suppose (B, n)→ (A,m) is a (local) homomorphism of Noetherian local rings,
and M is an A-module. If M is flat over B, then for each t ∈ Z≥0, M/(ntM) is
flat over B/nt (flatness is preserved by base change, 24.2.I). (You should of course
restate this in your mind in the language of schemes and quasicoherent sheaves.)
The infinitesimal criterion for flatness states that this necessary criterion for flatness
is actually sufficient.

24.6.C. ⋆ EXERCISE (THE INFINITESIMAL CRITERION FOR FLATNESS). Suppose
(B, n) → (A,m) is a (local) homomorphism of local rings, and M is a finitely gen-
erated A-module. Suppose further that for each t ∈ Z≥0, M/(ntM) is flat over
B/nt. Show that M is flat over B. (In combination with Exercise 24.6.A, this gives
another proof of the local criterion of flatness, Theorem 24.6.2.) Hint: follow the
proof of Theorem 24.6.2. Given the hypothesis, then for each t, we wish to show
that kerϕmaps to 0 in (24.6.3.1). We wish to apply (·)⊗BM to (24.6.3.2) and obtain
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the (exactness of the) top row of (24.6.3.3). To do this, show that applying (·)⊗BM
to (24.6.3.2) is the same as applying (·) ⊗B/nt (M/ntM). Then proceed as in the
rest of the proof of Theorem 24.6.2.

Exercise 24.6.C implies the useful fact that if A is a Noetherian local ring, then
its completion (at its maximal ideal) is flat over A.

24.6.4. The slicing criterion for flatness.
A useful variant of the local criterion is the following. Suppose t is a non-

zerodivisor of B in m (geometrically: an effective Cartier divisor on the target pass-
ing through the closed point). If M is flat over B, then t is not a zerodivisor of M
(Observation 24.2.2). Also, M/tM is a flat B/tB-module (flatness commutes with
base change, Exercise 24.2.I). The next result says that this is a characterization of
flatness, at least whenM is finitely generated, or somewhat more generally.

24.6.5. Theorem (slicing criterion for flatness). — Suppose (B, n) → (A,m) is a
local morphism of Noetherian local rings, M is a finitely generated A-module, and t ∈ n
is a non-zerodivisor on B. ThenM is B-flat if and only if

(i) t is not a zerodivisor onM, and
(ii) M/tM is flat over B/(t).

(For slicing criteria for other properties, see Exercise 12.2.C and Theorem 26.2.3.)

Proof. Assume that t is not a zerodivisor on M, and M/tM is flat over B/(t). We
will show thatM is B-flat. (As stated at the start of §24.6.4, the other implication is
a consequence of what we have already shown.)

By the local criterion for flatness, Theorem 24.6.2, we know

TorB/(t)1 (M/tM, (B/(t))/n) = 0,

and we wish to show that TorB1 (M,B/n) = 0. (Note that (B/(t))/n = B/n.) The
result then follows from the following lemma. □

24.6.6. Lemma. — SupposeM is a B-module, and t ∈ n is not a zerodivisor onM. Then
for any B/(t)-module N, we have

(24.6.6.1) TorBi (M,N) = TorB/(t)i (M/tM,N).

Proof. We calculate the left side of (24.6.6.1) by taking a free resolution ofM:

(24.6.6.2) · · ·→ F2 → F1 → F0 →M→ 0.

By Exercise 24.3.A, TorBi (M,B/(t)) = 0 for i > 0 (here we use that t is not a zero-
divisor on M, to show that TorB1 (M,B/(t)) = 0). But this Tor module is computed
by tensoring the free resolution (24.6.6.2) ofMwith B/(t). Thus the complex

(24.6.6.3) · · ·→ F2/tF2 → F1/tF1 → F0/tF0 →M/tM→ 0

is exact (exactness except at the last term comes from the vanishing of Tori). This is
a free resolution ofM/tM over the ring B/(t)! The left side of (24.6.6.1) is obtained
by tensoring (24.6.6.2) by N and truncating and taking homology, and the right
side is obtained by tensoring (24.6.6.3) by N and truncating and taking homology.
As (·)⊗B N = (· ⊗B (B/t))⊗B/t N, we have established (24.6.6.1) as desired. □
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24.6.D. EXERCISE. Give a second (admittedly less direct) proof of the criterion for
flatness over a discrete valuation ring of Exercise 24.4.J, using the slicing criterion
for flatness (Theorem 24.6.5).

24.6.E. EXERCISE. Use the slicing criterion to give a second solution to Exer-
cise 24.4.I, on two planes in P4 meeting at a point.

The following exercise gives a sort of slicing criterion for flatness in the source.

24.6.F. EXERCISE. SupposeA is aB-algebra,A andB are Noetherian,M is a finitely
generatedA-module, and f ∈ A has the property that for all maximal ideals n ⊂ B,
multiplication by f is injective on M/nM. Show that if M is B-flat, then M/fM is
also B-flat. (Hint: Use the local criterion for flatness, Theorem 24.6.2. Notice that

0 //M
×f //M //M/fM // 0

is a flat resolution ofM/fM.)

Exercise 24.6.F has an immediate geometric interpretation: “Suppose π : X →
Y is a morphism of Noetherian schemes, F is a coherent sheaf onX, andZ ↪→ X is a
locally principal subscheme ...” In the special case where F = OX, this leads to the
notion of a relative effective Cartier divisor: a locally principal subscheme of X
that is an effective Cartier divisor on all the fibers of π. Exercise 24.6.F implies that
if π is flat, then any relative effective Cartier divisor is also flat. (See Exercise 28.3.F
for an important application.)

24.6.7. Remark: Local slicing criterion for flatness in the source, without Noetherian
assumptions.

The Noetherian hypotheses in Exercise 24.6.F can be removed. Suppose (B, n)→
(A,m) is a flat (local) homomorphism of local rings (not necessarily Noetherian).
Suppose further that A is the localization of a finitely presented B-algebra. (This
means that A is essentially finitely presented, or essentially of finite presentation, over
B, but we won’t need this language.) If f ∈ A is a nonzero divisor in B/mB, then
A/f is flat over B. See [Stacks, tag 046Z] for a proof.

24.6.8. ⋆⋆ Fibral flatness. We conclude by mentioning a criterion for flatness that
is useful enough to be worth recognizing, but not so useful as to merit proof here.

24.6.G. EXERCISE. Suppose we have a commuting diagram

(24.6.8.1) X
π //

τ
��?

??
??

??
? Y

ρ
����
��
��
��

Z

and a quasicoherent sheaf F on X, and points p ∈ X, q = π(p) ∈ Y, r = τ(p) ∈ Z.
Suppose ρ is flat at q, and F is π-flat at p. Show that F is τ-flat at p, and F |r is
πr-flat at p. Here F |r is the restriction of F to the fiber above r, and πr : τ−1(r)→
ρ−1(r) is the restriction of π above r.

The Fibral Flatness Theorem states that in good circumstances the converse is
true.
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24.6.9. The Fibral Flatness Theorem ([Gr-EGA, IV3.11.3.10], see also [Stacks, tag
039A]). — Suppose we have a commuting diagram (24.6.8.1) and a finitely presented
quasicoherent sheaf F on X, and points p ∈ X, q = π(p) ∈ Y, r = τ(p) ∈ Z, with
Fp ̸= 0. Suppose either X and Y are locally Noetherian, or ρ and τ are locally of finite
presentation. Then the following are equivalent.

(a) F is τ-flat at p, and F |r is πr-flat at p.
(b) ρ is flat at q, and F is π-flat at p.

This is a useful way of showing that a F is π-flat. The architecture of the argu-
ment is as follows. First reduce to the case where X, Y, and Z are affine. Cleverly
reduce to the Noetherian case (see [Gr-EGA, IV.11.2.7]), then solve the resulting
nontrivial problem in commutative algebra (see [Gr-EGA, IV.11.3.10.1]).

24.7 Flatness implies constant Euler characteristic

We come to an important consequence of flatness promised in §24.1. We will
see that this result implies many answers and examples to questions that we would
have asked before we even knew about flatness.

24.7.1. Important Theorem (Euler characteristic is constant in flat families). —
Suppose π : X → Y is a projective morphism of locally Noetherian schemes, and F is a
coherent sheaf on X, flat over Y. Then χ(Xq,F |Xq

) =
∑
i≥0(−1)

ihi(Xq,F |Xq
) is a

locally constant function of q ∈ Y (where Xq = π−1(q)).

This is first sign that “cohomology behaves well in flat families.” (We will
soon see a second: the Semicontinuity Theorem 28.1.1. A different proof of Theo-
rem 24.7.1, giving an extension to the proper case, will be given in §28.2.5.) The
Noetherian hypotheses are used to ensure that π∗F (m) is a coherent sheaf.

Theorem 24.7.1 gives a necessary condition for flatness. Converses (yielding a
sufficient condition) are given in Exercise 24.7.A(b)–(d).

Proof. We make three quick reductions. (i) The question is local on the target Y, so
we may reduce to case Y is affine, say Y = SpecB, so π factors through a closed
embedding X ↪→ PnB for some n. (ii) We may reduce to the case X = PnB, by
considering F as a sheaf on PnB. (iii) We may reduce to showing that for m ≫ 0,
h0(Xq,F (m)|Xq

) is a locally constant function of q ∈ Y (by Serre vanishing for
m≫ 0, Theorem 18.1.4(ii), h0 agrees with the Euler characteristic).

Twist by O(m) for m ≫ 0, so that all the higher cohomology of F vanishes.
Now consider the Čech complex C • for F (m). Note that all the terms in the
Čech complex C • are flat, because F is flat. (Do you see why?) As all higher
cohomology groups (higher pushforwards) vanish, C • is exact except at the first
term, where the cohomology is Γ(π∗F (m)). We add the module Γ(π∗F (m)) to the
front of the complex, so it is once again exact:
(24.7.1.1)

0 // Γ(π∗F (m)) // C 1 // C 2 // · · · // Cn+1 // 0.

(We have done this trick of tacking on a module before, for example in (18.2.4.1).)
Thus by Exercise 24.3.G, as we have an exact sequence in which all but the first
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terms are flat, the first term is flat as well. Thus π∗F (m) is a flat coherent sheaf on
Y, and hence locally free (Corollary 24.4.7), and thus has locally constant rank.

Suppose q ∈ Y. We wish to show that the Hilbert function hF |Xq
(m) is a

locally constant function of q. To compute hF |Xq
(m), we tensor the Čech reso-

lution with κ(q) and take cohomology. Now the extended Čech resolution (with
Γ(π∗F (m)) tacked on the front), (24.7.1.1), is an exact sequence of flat modules,
and hence remains exact upon tensoring with κ(q) (Exercise 24.3.F). Thus

Γ(π∗F (m))⊗ κ(q) ∼= Γ(π∗F (m)|q),

so the Hilbert function hF |Xq
(m) is the rank at q of a locally free sheaf, which is a

locally constant function of q ∈ Y. □
Before we get to the interesting consequences of Theorem 24.7.1, we mention

some converses.

24.7.A. UNIMPORTANT EXERCISE (CONVERSES TO THEOREM 24.7.1). (We won’t
use this exercise for anything.)
(a) Suppose A is a ring, and S• is a finitely generated A-algebra that is flat over A.
Show that ProjS• is flat over A.
(b) Suppose π : X → Y is a projective morphism of locally Noetherian schemes
(which as always includes the data of an invertible sheaf OX(1) on X), such that
π∗OX(m) is locally free for all m ≥ m0 for some m0. Show that π is flat. Hint:
describe X as

Proj
(
OY
⊕

(⊕m≥m0
π∗OX(m))

)
.

(c) More generally, suppose π : X→ Y is a projective morphism of locally Noether-
ian schemes, and F is a coherent sheaf on X, such that π∗F (m) is locally free for
allm ≥ m0 for somem0. Show that F is flat over Y.
(d) Suppose π : X → Y is a projective morphism of locally Noetherian schemes,
and F is a coherent sheaf on X, such that

∑
(−1)ihi(Xq,F |q) is a locally constant

function of q ∈ Y. If Y is reduced, show that F must be flat over Y. (Hint: Ex-
ercise 13.7.K shows that constant rank implies local freeness in particularly nice
circumstances.)

We now give some ridiculously useful consequences of Theorem 24.7.1.

24.7.2. Corollary. — Assume the same hypotheses and notation as in Theorem 24.7.1.
Then the Hilbert polynomial of F |Xq

is locally constant as a function of q ∈ Y.

24.7.B. CRUCIAL EXERCISE. Suppose X → Y is a projective flat morphism, where
Y is connected. Show that the following functions of q ∈ Y are constant: (a) the
degree of the fiber, (b) the dimension of the fiber, (c) the arithmetic genus of the
fiber.

24.7.C. EXERCISE. Use §24.4.9 and Exercise 24.7.B(a) to give another solution to
Exercise 17.4.D(a) (“the degree of a finite map from a curve to a regular curve is
constant”).

Another consequence of Corollary 24.7.2 is something remarkably useful.

24.7.3. Corollary. — An invertible sheaf on a flat projective family of curves has locally
constant degree on the fibers.
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(Recall that the degree of a line bundle on a projective curve requires no hy-
potheses on the curve such as regularity, see (18.4.4.1).)

Proof. An invertible sheaf L on a flat family of curves is always flat (as locally it is
isomorphic to the structure sheaf). Hence χ(Xq,Lq) is a constant function of q. By
the definition of degree given in (18.4.4.1), deg(Xq,Lq) = χ(Xq,Lq)−χ(Xq,OXq

).
The result follows from the local constancy of χ(Xq,Lq) and χ(Xq,OXq

) (Theo-
rem 24.7.1). □

The following exercise is a serious generalization of Corollary 24.7.3.

24.7.D. ⋆ EXERCISE FOR THOSE WHO HAVE READ STARRED CHAPTER 20: INTER-
SECTION NUMBERS ARE LOCALLY CONSTANT IN FLAT FAMILIES. Suppose
π : X → Y is a flat projective morphism to a connected scheme; L1, . . . , Ln are
line bundles on X; and F is a coherent sheaf on X, flat over Y, such that the sup-
port of F when restricted to any fiber of π has dimension at most n. If q is any
point of Y, define (the temporary notation) (L1 · L2 · · ·Ln · F )q to be the inter-
section on the fiber Xq of L1, . . . , Ln with F |Xq

(Definition 20.1.1). Show that
(L1 · L2 · · ·Ln · F )q is independent of q.

Corollary 24.7.3 motivates the following definition.

24.7.4. Definition. Suppose L1 and L2 are line bundles on a k-variety X. We say
that L1 and L2 are algebraically equivalent if there exists a connected (but not
necessarily irreducible) k-variety Y with two k-valued points q1 and q2, and a line
bundle L on X × Y such that the restriction of L to the fibers over q1 and q2 are
isomorphic to L1 and L2 respectively.

24.7.E. EXERCISE. Show that “algebraic equivalence” really is an equivalence
relation. Show that the line bundles algebraically equivalent to O form a subgroup
of PicX. This subgroup is denoted Pic0 X.

24.7.5. Identify the group of line bundles PicXmodulo algebraic equivalence with
PicX/Pic0 X. This quotient is called the Néron-Severi group. (This definition was
promised in §18.4.10.) By Proposition 20.1.4, Pic0 X ⊂ Picτ X: algebraic equiva-
lence implies numerical equivalence. (Side Remark: a line bundle on a proper
k-scheme X is numerically trivial if and only if there exists an integer m ̸= 0 with
L⊗m algebraically trivial. Thus Picτ X/Pic0X is torsion. See [SGA6, XIII, Thm. 4.6]
for a proof, or [Laz, Cor. 1.4.38] for the projective case.)

24.7.6. ⋆ Hironaka’s example of a proper nonprojective smooth threefold.
In §16.4.10, we produced a proper nonprojective variety, but it was singular.

We can use Corollary 24.7.3 to give a smooth example, due to Hironaka.
Inside P3k, fix two conics C1 and C2, which meet in two (k-valued) points, p1

and p2. We construct a proper map π : X→ P3k as follows. Away from pi, we blow
up Ci and then blow up the proper transform of C3−i (see Figure 24.3). This is
well-defined, as away from p1 and p2, C1 and C2 are disjoint, blowing up one and
then the other is the same as blowing up their union, and thus the order doesn’t
matter.

Note that π is proper, as it is proper away from p1, and proper away from p2,
and the notion of properness is local on the base (Proposition 10.3.4(b)). As P3k is
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FIGURE 24.3. Hironaka’s example of a proper nonprojective
smooth threefold

proper (over k, Theorem 7.4.7), and compositions of proper morphisms are proper
(Proposition 10.3.4(c)), X is proper.

24.7.F. EXERCISE. Show that X is smooth. (Hint: Theorem 22.3.10.) Let Ei be the
preimage of Ci \ {p1, p2}. Show that π|Ei

: Ei → Ci \ {p1, p2} is a P1-bundle (and
flat).

24.7.G. EXERCISE. Let Ei be the closure of Ei in X. Show that Ei → Ci is flat.
(Hint: Exercise 24.4.J.)

24.7.H. EXERCISE. Show that π∗(pi) is the union of two P1’s, say Yi and Zi,
meeting at a point, such that Yi, Y3−i, Z3−i ∈ Ei but Zi /∈ Ei.

24.7.I. EXERCISE. Show that X is not projective as follows. Suppose otherwise
L is a very ample line bundle on X, so L has positive degree on every curve
(including the Yi andZi). Using flatness of Ei → Ci, and constancy of degree in flat
families (Exercise 24.7.D), show that deg

Yi
L = deg

Y3−i
L + deg

Z3−i
L . Obtain

a contradiction. (This argument will remind you of the argument of §16.4.10.)

24.7.7. The notion of “projective morphism” is not local on the target. Note that
π : X → P3 is not projective, as otherwise X would be projective (as the compo-
sition of projective morphisms is projective if the final target is quasicompact, Ex-
ercise 17.3.B). But away from each pi, π is projective (as it is a composition of
blow-ups, which are projective by construction, and the final target is quasicom-
pact, so Exercise 17.3.B applies). Thus the notion of “projective morphism” is not
local on the target.



CHAPTER 25

Smooth and étale morphisms, and flatness

We have defined smooth and étale morphisms earlier (Definition 12.6.2), but
we are now in a position to understand them much better. We will see that the
notion of unramified morphism (§21.6) is a natural companion to them.

Our three algebro-geometric definitions won’t be so obviously a natural triplet,
but we will discuss the definitions given in [Gr-EGA] (§25.2.6), and in this context
the three types of morphisms look very similar. (We briefly mention other ap-
proaches and definitions in §25.2.7.)

25.1 Some motivation

The three classes of morphisms we will discuss in this chapter are the analogs
of the following types of maps of manifolds, in differential geometry.

• Submersions are maps inducing surjections of tangent spaces everywhere.
They are useful in the notion of a fibration. (Perhaps a more relevant
notion from differential geometry, allowing singularities, is: “locally on
the source a smooth fibration”.)

• Isomorphisms locally on the source (or local isomorphisms) are maps inducing
isomorphisms of tangent spaces.

• Immersions are maps inducing injections of tangent spaces.
(Recall our warning from §8.1.2: “immersion” is often used in algebraic geometry
with a different meaning.)

[picture to be made later]

FIGURE 25.1. Sketches of notions from differential geometry: (a)
maps “locally on the source a smooth fibration”, (b) local isomor-
phisms, and (c) immersions. (In algebraic geometry: (a) smooth
morphisms, (b) étale morphisms, and (c) unramified morphisms.)

In order to better understand smooth and étale morphisms, we temporarily
forget our earlier definitions, and consider some examples of things we want to
be analogs of “local isomorphism” (or “locally on the source an isomorphism”)
and “locally on the source a smooth fibration”, and see if they help us make good
definitions.

25.1.1. “Local isomorphisms” (étale morphisms). Consider the parabola x = y2

projecting to the x-axis, over the complex numbers. (This example has come up

673
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repeatedly, in one form or another, including in Exercise 12.6.F.) We might reason-
ably want this to be a local isomorphism (on the source) away from the origin.
We might also want the notion of local isomorphism space to be an open condi-
tion: the locus where a morphism is a local isomorphism should be open on the
source. This is true for the differential geometric definition. But then this mor-
phism should be a local isomorphism over the generic point, and here we get a
non-trivial residue field extension (C(y)/C(y2)), not an isomorphism. Thus we
are forced to consider (the Spec’s of) certain finite extensions of fields to be “iso-
morphisms locally on the source” — in this case, even “covering spaces”. (We will
see in Exercise 25.2.C that we want precisely the finite separable extensions; you
could have shown this earlier.)

Note also in this example there are no (nonempty) Zariski-open subsets U ⊂
SpecC[x] \ {0} and V ⊂ SpecC[x, y]/(x− y2) \ {(0, 0)} where the map sends U into
V isomorphically (Exercise 12.6.F), so this is not a local isomorphism in a way you
may have seen before. This leads to the notion of the étale topology, which is not
even a topology in the usual sense, but a “Grothendieck topology” (§13.3.4). The
étale topology is beyond the scope of this book.

25.1.2. Submersions (smooth morphisms).

25.1.3. Fibers are smooth varieties. As a first approximation of the algebro-geometric
version of submersion, we will want the fibers to be smooth varieties (over the
residue field). So the very first thing we need is to generalize the notion of “vari-
ety” over a base. It is reasonable to do this by having a locally finite type hypoth-
esis. For somewhat subtle reasons, we will require the stronger condition that the
morphism be locally of finite presentation. (If you really care, you can see where
it comes up in our discussion. But of course there is no difference for Noetherian
readers.)

The fibers are not just varieties; they should be smooth varieties (of dimension
n, say). From the case of smoothness over a field, or from our intuition of what
smooth varieties should look like, we expect the sheaf of differentials on the fibers
to be locally free of rank n, or even better, that the sheaf of relative differentials be
locally free of rank n.

25.1.4. Flatness. At this point, our first approximation of “smooth morphism” is
some version of “locally finitely presented, and fibers are smooth varieties”. But
that isn’t quite enough. For example, a horrible map from a scheme X to a curve
Y that maps a different regular variety to each point of Y (X is the infinite disjoint
union of these) should not be considered a smooth fibration in any reasonable
sense. Also, we might not want to consider Spec k → Speck[ϵ]/(ϵ2) to be a sub-
mersion; for example, this isn’t surjective on tangent spaces, and more generally
the picture “doesn’t look like a fibration”.

Both problems are failures of π : X → Y to be a nice, “’continuous” family.
Whenever we are looking for some vague notion of “niceness” we know that “flat-
ness” will be in the definition.

For comparison, note that “unramified” has no flatness hypothesis, and in-
deed we didn’t expect it, as we would want the inclusion (closed embedding) of
the origin into A1 to be unramified. But then weird things may be unramified.
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FIGURE 25.2. We don’t want this to be a “smooth morphism”

For example, if X =
⨿
z∈C SpecC, then the morphism X → A1C sending the point

corresponding to z to the point z ∈ A1C is unramified. Such is life.

25.1.5. Desired Alternate Definitions. We might hope that a morphism π : X → Y is
smooth of relative dimension n if and only if

(i) π is locally of finite presentation,
(ii) π is flat of relative dimension n, and

(iii) ΩX/Y is locally free of rank n.
We might similarly hope that a morphism π : X→ Y is étale if and only if

(i) π is locally of finite presentation,
(ii) π is flat, and

(iii) ΩX/Y = 0.
We will shortly show (in Theorem 25.2.2 and Exercise 25.2.B respectively) that
these desired definitions are equivalent to Definition 12.6.2.

25.2 Different characterizations of smooth and étale morphisms

The main result in this section is a description of equivalent characterizations
of smooth morphisms, Theorem 25.2.2. We will state the theorem, and then give
consequences, and then finally give a proof.

25.2.1. But first, we discuss a preliminary fact. It requires something from §26.2.7:
if k is a field, and f1, . . . , fi ∈ k[x1, . . . , xN] cut out a dimension N − i subscheme
X of ANk , and fi+1 ∈ k[x1, . . . , xN] does not vanish on any irreducible component
of X, then fi+1 is not a zerodivisor on X. For now, take this fact for granted; you
shouldn’t read all of Chapter 26 in order to do this exercise. There are other ways
around this issue, but it is not worth the effort.

25.2.A. EXERCISE. Suppose π : X→ Y is smooth of relative dimension n. Either (i)
assume Y (and hence X) is locally Noetherian, or (ii) accept Remark 24.6.7 (the slic-
ing criterion for flatness in the source without Noetherian hypotheses, which had a
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reference rather than a proof). Show that π is flat. Hint: suppose π is the morphism
SpecB[x1, . . . xn+r]/(f1, . . . , fr) → SpecB. Consider B[x1, . . . , xn+r]/(f1, . . . , fi) as
i runs from 0 to r, and use induction on i and the slicing criterion for flatness in
the source ((i) Exercise 24.6.F or (ii) Remark 24.6.7).

We now come to the central result of this section.

25.2.2. Theorem. — Suppose π : X → Y is a morphism of schemes. Then the following
are equivalent.

(i) The morphism π is smooth of relative dimension n (Definition 12.6.2).
(ii) The morphism π is locally finitely presented and flat of relative dimension n; and

Ωπ is locally free of rank n (Desired Alternate Definition 25.1.5).
(iii) The morphism π is locally finitely presented and flat, and the fibers are smooth

k-schemes of pure dimension n.
(iv) The morphism π is locally finitely presented and flat, and the geometric fibers are

smooth k-schemes of pure dimension n.

Before proving Theorem 25.2.2, we motivate it, by giving a number of exercises
and results assuming it.

25.2.B. EXERCISE. Show that a morphism π is étale (Definition 12.6.2) if and only
if π is locally of finite presentation, flat, and Ωπ = 0 (Desired Alternate Defini-
tion 25.1.5).

25.2.C. EASY EXERCISE. Suppose π : X → Y is a morphism. Show that the follow-
ing are equivalent.

(a) π is étale.
(b) π is smooth and unramified.
(c) π is locally finitely presented, flat, and unramified.
(d) π is locally finitely presented, flat, and for each q ∈ Y, π−1(q) is the dis-

joint union of schemes of the form SpecK, where K is a finite separable
extension of κ(q).

(e) π is locally finitely presented, flat, and for each geometric point q of Y,
π−1(q) is the (scheme-theoretic) disjoint union of copies of q.

25.2.D. EXERCISE. If π : X→ Y is étale, show that any preimage p ∈ X of any regu-
lar point q ∈ Y whose local ring has dimensionn is also a regular point whose local
ring has dimension n. Hint: Prove the result by induction on dim OY,q. “Slice” by
an element of mY,q \m2Y,q. Use the slicing criterion for regularity (Exercise 12.2.C).

25.2.3. Proof of the Smoothness-Regularity Comparison Theorem 12.2.10(b) (every smooth
k-scheme is regular). By Exercise 12.6.E, any dimension n smooth k-scheme X can
locally be expressed as an étale cover of Ank , which is regular by Exercise 12.3.O.
Then by Exercise 25.2.D, X is regular. □

25.2.E. EXERCISE. Suppose π : X → Y is a morphism of equidimensional k-
varieties, and Y is smooth. Use the conormal exact sequence (Theorem 21.2.12) to
show the following.
(a) Suppose that dimX = dim Y = n, and π is unramified. Show that X is smooth.
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⋆ (b) Suppose dimX = m > dimY = n, and the (scheme-theoretic) fibers of π over
closed points are smooth of dimensionm− n. Show that X is smooth.

25.2.F. EXERCISE. Suppose π : X → Y is a morphism (over k) of smooth equidi-
mensional k-varieties, where dimX = m and dim Y = n. (These two parts are
clearly essentially the same geometric situation.)
(a) Show that if the fibers of π are all smooth of dimensionm−n, then π is smooth
of relative dimensionm− n.
(b) Show that if π∗ΩY → ΩX is injective (“Tπ is surjective”, or “the relative cotan-
gent sequence is exact on the left”), then π is smooth of relative dimensionm− n.
Hint: for each point q ∈ Y, OY,q is a regular local ring. Work by induction on
dim OY,q, and “slice” by an element of mY,q \m2Y,q.

25.2.G. EXERCISE. Suppose π : X → Y is locally finitely presented, ρ : Y → Z is
étale, and τ = ρ ◦ π. Show that π is smooth of dimension n (e.g., étale, taking
n = 0) if and only if τ is. (We showed earlier that π is unramified if and only if τ
is. Do you see why and where?) Hint: use the Cancellation Theorem 10.1.19 for
flat morphisms and Exercise 21.6.F. For theΩ part of the problem, use the relative
cotangent sequence, Theorem 21.2.25. (If you only solved Exercise 21.6.F(a), then
you will still be able to use it to prove this in the Noetherian case.)

25.2.4. ⋆⋆ Proof of Theorem 25.2.2.
(i) implies (ii). As noted in §12.6.2, local finite presentation is clear. Flatness

follows from Exercise 25.2.A. Finally, the sheaf of relative differentials is locally
free of rank n by Exercise 21.2.Q.

(ii) implies (iii). Suppose π satisfies (ii). We wish to show that the fibers are
smooth. The hypotheses of (ii) are preserved by base change, so we may assume
that Y = Speck. Then X is indeed smooth (see the equivalent Definition 21.3.1).

(iii) implies (iv) by Exercise 12.2.G.
We now come to the main part of the argument: (iv) implies (i). (Part of this

argument will be reminiscent of the proof of Theorem 12.6.4, in which we also had
to prove smoothness.)

Fix a point p ∈ X. Let q = π(p) ∈ Y, say q = Speck. We will show that there is
an open neighborhood Ui of p and Vi of q of the form stated in Definition 12.6.2.
It suffices to deal with the case that p is a closed point in π−1(q), because closed
points are dense in finite type schemes (Exercise 5.3.F). (We cannot and do not
assume that q is a closed point of Y.)

Because π is finitely presented, there are affine open neighborhoodsU of p and
V of q, with π(U) ⊂ V , such that the morphism π|U : U→ V can be written as

SpecB[x1, . . . , xN]/I→ SpecB,

where I is finitely generated.
Fix a geometric point q = Speck of Y mapping to q. Fix a point p of the

geometric fiber over q, which maps to p ∈ X. (Why is there such a p?) We then
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have a diagram

Uk
// Uk

� � // U

Speck[x1, . . . , xN]/Ik

��

// Speck[x1, . . . , xN]/Ik

��

� � // SpecB[x1, . . . , xN]/I

π|U

��
Speck // Speck �

� // SpecB

q // q �
� // V

whereUk (resp.Uk) are the fibers ofU over q (resp. q), and Ik (resp. Ik) is the ideal
cutting out Uk (resp. Uk) in AN

k
(resp. ANk ).

We make an important observation, using §24.3.2 (for a flat closed subscheme,
the pullback of the defining ideal as a quasicoherent sheaf is the same as the ideal
of the pulled back closed subscheme). Because B[x1, . . . , xN]/I is flat over B, we
have that Ik = I⊗B k and Ik = I⊗B k.

By our hypothesis (iv), the geometric fiber Uk ⊂ AN
k

is smooth, and hence
regular at its closed points by Exercise 12.2.D. (Here we use the fact that k is alge-
braically closed.)

Let r = N− n be the codimension of Uk in ANk (and the codimension of Uk in
AN
k

). By the Jacobian criterion for smoothness over a field (§21.3.2), the cotangent
space forUk at p is cut out inΩAN

k

|p by r linear equations (over k). By the conormal

exact sequence for Uk ⊂ AN
k

(Theorem 21.2.25(b)), these equations are spanned by
the elements of Ik, which in turn are spanned by elements of I (as Ik = I ⊗B k, so
elements of Ik are finite sums of pure tensors i ⊗ a with i ∈ I and a ∈ k). Thus
we can choose f1, . . . , fr in I so that the images of f1, . . . , fr in k[x1, . . . , xN] cut out
the Zariski tangent space of Uk at p (as the Zariski tangent space at a closed point
of a variety over an algebraically closed field is computed by the Jacobian matrix,
Exercise 12.2.D).

25.2.H. EXERCISE. Show that f1, . . . , fr generate the ideal (Ik)p. Hint: look at your
argument for Exercise 12.2.L(a).

Rearrange the xi’s so that the Jacobian matrix of the fi with respect to the first r
of the xi is invertible at p, and hence at p, and hence in an open neighborhood of p.
Then (an open neighborhood of p in) SpecB[x1, . . . , xN]/(f1, . . . , fr) is of the form
we are looking for. We will show thatU is the same as SpecB[x1, . . . , xN]/(f1, . . . , fr)
(i.e., I = (f1, . . . , fr)) near p, thereby completing the proof.

For notational compactness (at the cost of having subscripts later on with con-
fusingly different meanings), define

A := B[x1, . . . , xN]/(f1, . . . , fr),

Ak := A⊗B k = k[x1, . . . , xN]/(f1, . . . , fr),

Ak := A⊗B k = k[x1, . . . , xN]/(f1, . . . , fr).
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We have the diagram
A/J Aoo

B

``AAAAAAAA

@@��������

where J denotes the image of I in A. We wish to show that “J is 0 near p”.
Let m be the maximal ideal of A corresponding to p, and let m be the maximal

ideal of Ak corresponding to p.
Let Jk be the image of Ik in Ak. We use §24.3.2 a second time in this proof.

Because A/J = B[x1, . . . , xN]/I is flat over B, Jk can be interpreted both as the
pullback of J as a quasicoherent sheaf, or as the ideal sheaf of the “pulled back
closed subscheme corresponding to J”. More precisely,

(25.2.4.1) J⊗B k = JAk.

Similarly,

(25.2.4.2) J⊗B k = JAk.

Now Exercise 25.2.H means that

J ·
(
Ak
)
m
= (0),

so taking the quotient by the maximal ideal m of (Ak)m yields(
J ·Ak

)
⊗Ak

(
Ak/m

)
= (0),

which by (25.2.4.1) can be rewritten as(
J⊗B k

)
⊗A⊗Bk

(
Ak/m

)
= (0),

which in turn can be readily rewritten as

(J⊗B k)⊗A⊗Bk

(
Ak/m

)
= (0)

and then as
((J⊗B k)⊗A⊗Bk (Ak/m))⊗Ak/m

(
Ak/m

)
= (0)

But Ak/m = k is a field extension of Ak/m = k, and a k-vector space V is 0 if (and
only if) V ⊗k k = 0, so we have shown that

((J⊗B k)⊗A⊗Bk (Ak/m)) = (0).

Using (25.2.4.2) (essentially reversing our steps, with k replaced by k), we have

(J ·Ak)⊗Ak
(Ak/m) = 0,

which means that J⊗A (A/m) = 0.

25.2.I. EXERCISE. Show that Jm = 0, and from this conclude that there is an
element f ∈ A \m such that fJ = 0. (Hint: Nakayama, and finite generation of J.)

Then J = 0 in the open neighborhood D(f) ⊂ SpecA of p, implying that (i)
holds. □

This proof can be made notably easier by working in characteristic 0, where
we can take (iii) rather than (iv) as our starting point to prove (i), using the fact
that smooth schemes over perfect fields k are regular at closed points (see Exer-
cise 21.3.D).
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25.2.5. ⋆⋆ Formally unramified, smooth, and étale.
[Gr-EGA] takes a different starting point for the definition of unramified, smooth,

and étale. The definitions there make clear that these three definitions form a fam-
ily.

The cost of these definitions are that they are perhaps less immediately moti-
vated by geometry, and it is harder to show some basic properties. The benefit is
that it is possible to show more (for example, left-exactness of the relative cotan-
gent and conormal exact sequences, and good interpretations in terms of comple-
tions of local rings). But we simply introduce these ideas here, and do not explore
them. See [BLR, §2.2] for an excellent discussion. (You should largely ignore what
follows, unless you find later in life that you really care.)

25.2.6. Definition. We say that π : X → Y is formally smooth (resp. formally
étale, formally unramified) if for all affine schemesZ, and every closed subscheme
Z0 ⊂ Z defined by a nilpotent ideal, and every morphism Z → Y, the canonical
map HomY(Z,X) → HomY(Z0, X) is surjective (resp. bijective, injective). This
is summarized in the following diagram, which is reminiscent of the valuative
criteria for separatedness and properness.

Z0 //
� _

nilpotent ideal
��

X

π

��
Z //

?

>>

Y

(You can check that this is the same as the definition we would get by replacing
“nilpotent” by “square-zero”. This is sometimes an easier formulation to work
with.)

Then [Gr-EGA] defines smooth as morphisms that are formally smooth and
locally of finite presentation, and similarly for unramified and étale.

One can show that [Gr-EGA]’s definitions of formally unramified, and smooth
agree with the definitions we give. For “formally unramified” (where our defini-
tion given in §21.6 is not obviously the same as the definition of [Gr-EGA] given
here), see [Gr-EGA, IV4.17.2.1] or [Stacks, tag 00UO]. For “smooth”, see [Gr-EGA,
IV4.17.5.1] or [Stacks, tag 00TN]. (Our characterization of étale as smooth of rel-
ative dimension 0 then agrees with [Gr-EGA]. Our definition of unramified as
formally unramified plus locally of finite type disagrees with [Gr-EGA], as men-
tioned in §21.6.)

25.2.7. Other starting points. Unlike many other definitions in algebraic geom-
etry, there are a number of quite different ways of defining smooth, étale, and
unramified morphisms, and it is nontrivial to relate them. We have just described
the approach of [Gr-EGA]. Another common approach is the characterization of
smooth morphisms as locally finitely presented, flat, and with regular geomet-
ric fibers (see Theorem 25.2.2). Yet another definition is via a naive version of
the cotangent complex; this is the approach taken by [Stacks, tag 00T2], and is
less frightening than it sounds. Finally, the different characterizations of Exer-
cise 25.2.C give a number of alternate initial definitions of étaleness.
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25.3 Generic smoothness and the Kleiman-Bertini Theorem

We will now discuss a number of important results that fall under the rubric
of “generic smoothness”, an idea we first met in §21.3.4. All will require working
over a field of characteristic 0 in an essential way.

25.3.1. Theorem (generic smoothness on the source). — Let k be a field of character-
istic 0, and let π : X → Y be a dominant morphism of integral k-varieties. Then there is a
nonempty (=dense) open setU ⊂ X such that π|U is smooth of dimension dimX−dimY.

The key idea already appeared in Theorem 21.3.5, when we showed that every
variety has an open subset that is regular.

Proof. Define n = dimX − dimY (the “relative dimension”). Now K(X)/K(Y) is a
finitely generated field extension of transcendence degree n (from transcendence
theory, see for example Exercise 11.2.A), so ΩX/Y has rank n at the generic point,
by Exercise 21.2.M(b). (Here we use the hypothesis chark = 0, as we are using
the fact that K(X)/K(Y) is separably generated by any transcendence basis.) By
upper semicontinuity of fiber rank of a coherent sheaf (Exercise 13.7.J), it is rank n
for every point in a dense open set. On a reduced scheme, constant rank implies
locally free of that rank (Exercise 13.7.K), so ΩX/Y is locally free of rank n on that
set. Also, by generic flatness (Exercise 24.5.M), it is flat on a dense open set. Let U
be the intersection of these two open sets. □

25.3.2. Example. An examination of the proof yields an example showing that this
result fails in positive characteristic: consider the purely inseparable extension
Fp(t)/Fp(tp). The same problem can arise even over an algebraically closed field of
characteristic p: consider A1k = Spec k[t]→ Speck[u] = A1k, given by u 7→ tp.

If furthermore X is smooth, the situation is even better.

25.3.3. Theorem (generic smoothness on the target). — Suppose π : X → Y is a
morphism of k-varieties, where chark = 0, and X is smooth (over k). Then there is a
dense open subset U of Y such that π|π−1(U) is a smooth morphism.

Note that π−1(U) may be empty! Indeed, if π is not dominant, we will have to
take such a U.

To prove Theorem 25.3.3, we use a neat trick. Suppose π : X→ Y is a morphism
of schemes that are finite type over k, where chark = 0. Define

Xr =
{
p ∈ X : rank

(
π∗ΩY/k → ΩX/k

)∣∣
p
≤ r
}
.

25.3.A. EXERCISE. Show that Xr is a closed subset of X. Hint: If X and Y are both
smooth, show that the rank condition implies that Xr is cut out by “determinantal
equations”, or use an appropriate form of uppersemicontinuity.

By Chevalley’s Theorem 7.4.2, π(Xr) is constructible, so we can make sense of
dimπ(Xr).
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25.3.4. Lemma. — If π : X → Y is a morphism of schemes that are finite type over k,
where chark = 0, then dimπ(Xr) ≤ r.

Proof. In this proof, we make repeated use of the identification of Zariski cotangent
spaces at closed points with the fibers of cotangent sheaves, using Corollary 21.3.9.
We can replace X by an irreducible component of Xr, and Y by the closure of that
component’s image in Y (with reduced subscheme structure, see §8.3.9). The result-
ing map will have all of X contained in Xr, so we may as well assume X = Xr. This
boils down to the following linear algebra observation: if a linear map ρ : V1 → V2
has rank at most r, and V ′

i is a subspace of Vi, with ρ sending V ′
1 to V ′

2, then
the restriction of ρ to V ′

1 has rank at most that of ρ itself.) Thus we have a dom-
inant morphism π : X → Y, and we wish to show that dim Y ≤ r. Using generic
smoothness on the source (Theorem 25.3.1) for Y → Spec k, we can shrink Y fur-
ther so as to assume that it is smooth. By generic smoothness on the source for
π : X → Y, there is a nonempty open subset U ⊂ X such that π : U → Y is smooth.
But then for any point p ∈ U, the cotangent map ΩY |π(p) → ΩX|p is injective
(Exercise 21.2.S), and has rank at most r. Taking p to be a closed point, we have
dim Y = dimπ(p) Y ≤ dimΩY |π(p) ≤ r. □

There is not much left to do to prove the theorem.

25.3.5. Proof of Theorem 25.3.3. Reduce to the case Y smooth over k (by restricting to
a smaller open set, using generic smoothness of Y, Theorem 25.3.1). Say n = dim Y.
Now dimπ(Xn−1) ≤ n − 1 by Lemma 25.3.4 , so remove π(Xn−1) from Y as well.
Then the rank of Ωπ is at least n for each closed point of X. But as Y is regular of
dimension n, we have that Ωπ = (π∗ΩY/k → ΩX/k) is injective for every closed
point of X, and hence π∗ΩY/k → ΩX/k is an injective map of sheaves (do you see
why?). Thus π is smooth by Exercise 25.2.F(b). □

25.3.6. ⋆⋆ The Kleiman-Bertini Theorem. The same idea of bounding the di-
mension of some “bad locus” can be used to prove the Kleiman-Bertini Theo-
rem 25.3.7 (due to Kleiman), which is useful in (for example) enumerative geome-
try. Throughout this discussion k = k, although the definitions and results can be
generalized. SupposeG is a group variety (over k = k), and we have aG-action on
a variety X. We say that the action is transitive if it is transitive on closed points.
A better definition (that you can show is equivalent) is that the action morphism
G× X→ X restricted to a fiber above any closed point of X is surjective. A variety
Xwith a transitiveG-action is said to be a homogeneous space forG. For example,
G acts on itself by left-translation, and via this action G is a homogeneous space
for itself.

25.3.B. EASY EXERCISE. SupposeG is a group variety over an algebraically closed
field k of characteristic 0. Show that every homogeneous space X for G is smooth.
(In particular, taking X = G, we see thatG is smooth.) Hint: X has a dense open set
U that is smooth by Theorem 25.3.1, and G acts transitively on the closed points of
X, so we can cover Xwith translates of U.

25.3.7. The Kleiman-Bertini Theorem, [Kl2, Thm. 2]. — Suppose X is homogeneous
space for a group variety G (over a field k = k of characteristic 0). Suppose α : Y → X and
β : Z→ X are morphisms from smooth k-varieties Y and Z.
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(a) Then there is a nonempty open subset V ⊂ G such that for every σ ∈ V(k), Y ×X Z
defined by

Y ×X Z

��

// Z

β

��
Y

σ◦α // X

(Y is “translated by σ”) is smooth of dimension dim Y + dimZ− dimX.
(b) Furthermore, there is a nonempty open subset V ⊂ G such that

(25.3.7.1) (G×k Y)×X Z→ G

is a smooth morphism of relative dimension dimY + dimZ− dimX over V .

The first time you hear this, you should think of the special case where Y → X

and Z → X are locally closed embeddings (Y and Z are smooth subvarieties of X).
In this case, the Kleiman-Bertini theorem says that the second subvariety will meet
a “general translate” of the first “transversely”.

Proof. It is more pleasant to describe this proof “backwards”, by considering how
we would prove it ourselves. We will use generic smoothness twice.

Clearly (b) implies (a), so we prove (b).
In order to show that the morphism (25.3.7.1) is smooth over a nonempty

open set V ⊂ G, it would suffice to apply generic smoothness on the target (Theo-
rem 25.3.3) to (25.3.7.1). Hence it suffices to show that (G ×k Y) ×X Z is a smooth
k-variety. Now Z is smooth over k, so it suffices to show that (G ×k Y) ×X Z → Z

is a smooth morphism (as the composition of two smooth morphisms is smooth,
Exercise 12.6.D). But this is obtained by base change fromG×kY → X, so it suffices
to show that this latter morphism is smooth (as smoothness is preserved by base
change).

NowG×kY → X is aG-equivariant morphism. (By “G-equivariant”, we mean
that the G-action on both sides respects the morphism.) By generic smoothness of
the target (Theorem 25.3.3), this is smooth over a dense open subset X. But then
by transitivity of the G-action on X, this morphism is smooth everywhere. □

25.3.C. EXERCISE (POOR MAN’S KLEIMAN-BERTINI). Prove Theorem 25.3.7(a)
without the hypotheses on k (on algebraic closure or characteristic), and without
the smoothness in the conclusion. Hint: This is a question about dimensions of
fibers of morphisms, so you could have solved this after reading §11.4.

25.3.D. EXERCISE (IMPROVED CHARACTERISTIC 0 BERTINI). Suppose Z is a
smooth k-variety, where char k = 0 and k = k. Let V be a finite-dimensional
base-point-free linear series on Z, i.e., a finite vector space of sections of some in-
vertible sheaf L on Z. Show that a general element of V , considered as a closed
subscheme of Z, is regular. (More explicitly: each element s ∈ V gives a closed sub-
scheme of Z. Then for a general s, considered as a point of PV , the corresponding
closed subscheme is smooth over k.) Hint: figure out what this has to do with the
Kleiman-Bertini Theorem 25.3.7. Let n = dimV , G = GL(V), X = P|V∨|, take Z in
Kleiman-Bertini to be the Z of the problem, and let Y be the “universal hyperplane”
over P|V∨| (the incidence variety I ⊂ PV × PV∨ of Definition 12.4.1).
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25.3.E. EASY EXERCISE. Interpret Bertini’s Theorem 12.4.2 over a characteristic 0
field as a corollary of Exercise 25.3.D.

In characteristic 0, Exercise 25.3.D is a good improvement on Bertini’s Theo-
rem. For example, we don’t need L to be very ample, or X to be projective. But
unlike Bertini’s Theorem, Exercise 25.3.D fails in positive characteristic, as shown
by the one-dimensional linear series {pQ : Q ∈ P1}. This is essentially Exam-
ple 25.3.2. (Do you see why this does not contradict Bertini’s Theorem 12.4.2?)



CHAPTER 26

Depth and Cohen-Macaulayness

We now introduce the notion of depth. Depth is an algebraic rather than geo-
metric concept, so we concentrate on developing some geometric sense of what
it means. Most important is the geometric bound on depth by dimension of (clo-
sures of) associated points (Theorem 26.1.2). A central tool to understanding depth
is the Koszul complex, but we avoid this approach, as we can prove what we need
directly.

When the depth of a local ring equals its dimension, the ring is said to be
Cohen-Macaulay, and this is an important way in which schemes can be “nice”.
For example, regular local rings are Cohen-Macaulay (§26.2.5), as are regular em-
beddings in smooth varieties (Proposition 26.2.6). Cohen-Macaulayness will be
key to the proof of Serre duality in Chapter 30, through the Miracle Flatness Theo-
rem 26.2.11.

Another application of depth is Serre’s R1 + S2 criterion for normality (Theo-
rem 26.3.2), which we will use to prove that regular schemes are normal (§26.3.5)
without having to show that regular local rings are factorial (the Auslander-Buchsbaum
Theorem, Fact 12.8.5), and to prove that regular embeddings in smooth schemes
are normal if they are regular in codimension 1 (§26.3.3).

26.1 Depth

Recall the theory of regular sequences from §8.4.3.

26.1.1. Definition. Suppose (A,m) is a Noetherian local ring, and M is a finitely
generated A-module. The depth of M (denoted depthM) is the length of the
longest M-regular sequence with elements in m. (More generally, if R is a Noe-
therian ring, I ⊂ R is an ideal, and M is a finitely generated R-module, then the
I-depth of M, denoted depth

I
M, is the length of the longest M-regular sequence

with elements in I. We won’t need this.)

26.1.A. IMPORTANT EXERCISE. SupposeM is a nonzero finitely generated module
over a Noetherian local ring (A,m). Show that depthM = 0 if and only if every
element of m is a zerodivisor ofM if and only if m is an associated prime ofM.

26.1.B. EXERCISE. Suppose M is a finitely generated module over a Noetherian
local ring A. Show that depthM ≤ dim SuppM. In particular,

(26.1.1.1) depthA ≤ dimA.

Hint: Krull’s Principal Ideal Theorem 11.3.3. (We will improve this result in Theo-
rem 26.1.6.)

685
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At this point, it is hard to determine the depth of an A-module M. You can
start trying to build an M-regular sequence by successively choosing x1, x2, . . . ,
but how do you know you have made the right choices to find the longest one?
The happy answer is that you can’t go wrong; this is the content of the next result.
(We then describe how to find the depth of a moduleM in practice, in §26.1.4.)

26.1.2. Theorem. — Suppose M is a finitely generated module over a Noetherian local
ring (A,m). Then all maximalM-regular sequences contained in m (M-regular sequences
x1, . . . , xn in m that cannot be extended to x1, . . . , xn+1) have the same length. Thus the
depth ofM is the length of any maximalM-regular sequence.

We prove Theorem 26.1.2 by giving a cohomological criterion, Theorem 26.1.3,
for a regular sequence to be maximal. (You will then prove Theorem 26.1.2 in Ex-
ercise 26.1.D.) We will also use this criterion to give a better bound on the depth in
Theorem 26.1.6. Theorem 26.1.2 is the key technical result of this Chapter. An im-
portant moral is that depth should be understood as a “cohomological” property.

26.1.3. Theorem (cohomological criterion for existence of regular sequences). —
Suppose (A,m) is a Noetherian local ring, and M is a finitely generated A-module. The

following are equivalent.

(i) For every finitely generatedA-moduleN with SuppN = {[m]} (i.e.,N has finite
length), ExtiA(N,M) = 0 for all i < n.

(ii) ExtiA(A/m,M) = 0 for all i < n.
(iii) There exists anM-regular sequence in m of length n.

This result can be extended in various ways, see for example [Mat1, Thm. 28].

Proof. Clearly (i) implies (ii).

26.1.C. EXERCISE. Prove that (ii) implies (i). Hint: apply Exercise 5.5.M to N,
so that it admits a filtration with each subquotient isomorphic to A/m, or see Ex-
ercise 18.4.R. Use induction on the length of the filtration, and the long exact se-
quence for ExtiA(·,M).

Proof that (iii) implies (ii). The case n = 0 is vacuous. We inductively prove the
result for all n. Suppose (iii) is satisfied, where n ≥ 1, and assume that we know
(ii) for “all smaller n”. Choose a regular sequence x1, . . . , xn of length n. Then x1
is a non-zerodivisor onM, so we have an exact sequence

(26.1.3.1) 0 //M
×x1 //M //M/x1M // 0.

ThenM/x1M has a regular sequence x2, . . . , xn−1 of length n− 1, so by the induc-
tive hypothesis, ExtiA(A/m,M/x1M) = 0 for i < n − 1. Taking the Ext long exact
sequence for ExtiA(A/m, ·) for (26.1.3.1), we find that

ExtiA(A/m,M)
×x1 // ExtiA(A/m,M)

is an injection for i < n. Now ExtiA(A/m,M) can be computed by taking an in-
jective resolution of M, and applying HomA(A/m, ·). Hence as x1 lies in m (and
thus annihilates A/m), multiplication by x1 is the zero map. Thus (ii) holds for n
as well.
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Proof that (ii) implies (iii). The case n = 0 is vacuous.
We deal next with the case n = 1, by showing the contrapositive. Assume

that there are no non-zerodivisors in m on M, so by Exercise 26.1.A, m is an asso-
ciated prime of M. Thus from §5.5.9 we have an injection A/m ↪→ M, yielding
HomA(A/m,M) ̸= 0 as desired.

We now inductively prove the result for all n > 1. Suppose (ii) is satisfied,
where n ≥ 2, and assume that we know (iii) for “all smaller n” . Then by the case
n = 1, there exists a non-zerodivisor x1 on M, so we have a short exact sequence
(26.1.3.1). A portion of the Ext long exact sequence for ExtiA(A/m, ·) for (26.1.3.1)
is

ExtiA(A/m,M) // ExtiA(A/m,M/x1M) // Exti+1A (A/m,M).

By assumption, both ExtiA(A/m,M) and Exti+1A (A/m,M) are 0 for i < n − 1, so
ExtiA(A/m,M/x1M) = 0 for i < n− 1, so by the inductive hypothesis, we have an
(M/x1M)-regular sequence x2, . . . , xn of length n− 1 in m. Adding x1 to the front
of this sequence, we are done. □

26.1.D. EXERCISE. Prove Theorem 26.1.2. Hint: by Theorem 26.1.3 (notably, the
equivalence of (ii) and (iii)), you have control of how long an M-regular sequence
in m can be. Use the criterion, and the long exact sequence used in the proof of
Theorem 26.1.3, to show that anyM-regular sequence in m can be extended to this
length.

26.1.E. EXERCISE. Suppose M is a finitely generated module over a Noether-
ian local ring (A,m). If x is a non-zerodivisor in m, show that depth(M/xM) =
depthM− 1. Hint: Theorem 26.1.2.

26.1.4. Finding the depth of a module. We can now compute the depth of M by
successively finding non-zerodivisors, as follows. Is there a non-zerodivisor x on
M in m?

(a) If not, then depthM = 0 (Exercise 26.1.A).
(b) If so, then choose any such x, and (using the previous exercise) repeat the

process withM/xM.

The process must terminate by Exercise 26.1.B.

26.1.F. IMPORTANT EXERCISE. Suppose (A,m) is a dimension d regular local ring.
Show that depthA = d. Hint: Exercise 12.2.B.

26.1.G. EXERCISE (CF. EXERCISE 24.4.I). Suppose X = SpecR, where

R = k[w, x, y, z]/(wy,wz, xy, xz),

the union of two co-ordinate two-planes in A4k meeting at the origin. Show that
the depth of the local ring of X at the origin is 1. Hint: Show that w − y is not a
zerodivisor, and that R/(w− y) has an embedded point at the origin.

26.1.5. Depth is bounded by the dimension of associated prime ideals.
Theorem 26.1.3 can be used to give an important improvement of the bound

(26.1.1.1) on depth by the dimension:
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26.1.6. Theorem. — The depth of a moduleM is at most the smallest dimA/p as p runs
over the associated prime ideals ofM.

(The example of two planes meeting at a point in Exercise 26.1.G shows that
this bound is not sharp.) The key step in the proof of Theorem 26.1.6 is the follow-
ing result of Ischebeck.

26.1.7. Lemma. — Suppose (A,m) is a Noetherian local ring, andM andN are nonzero
finitely generated A-modules. Then ExtiA(N,M) = 0 for i < depthM− dim SuppN.

Proof. Consider the following statements.

(generalr) Lemma 26.1.7 holds for dim SuppN ≤ r.
(primer) Lemma 26.1.7 holds for dim SuppN ≤ r and N = A/p for some prime p.

Note that (general0) (and hence (prime0)) is true, as in this case SuppN = {[m]},
and the result follows from Theorem 26.1.3 (from “(iii) implies (i)”).

26.1.H. EXERCISE. Use Exercise 5.5.M, and Exercise 5.5.L (or the easier fact that if
0→M ′ →M→M ′′ → 0 is a short exact sequence of A-modules, then SuppM =
SuppM ′ ∪ SuppM ′′), to show that (primer) implies (generalr).

We conclude the proof by showing that (generalr−1) implies (primer) for r ≥ 1.
Fix a prime p ⊂ A with dimA/p = r. Since dimA/p > 0, we can choose x ∈ m \ p.
Consider the exact sequence

(26.1.7.1) 0 // A/p
×x // A/p // A/(p + (x)) // 0,

noting that dim SuppA/(p+(x)) ≤ r−1 (do you see why?). Then the Ext long exact
sequence obtained by applying HomA(·,M) to (26.1.7.1), along with the vanishing
of ExtiA(A/(p + (x))),M) for i < depthM− r+ 1 (by (generalr−1)), implies that

ExtiA(A/p,M)
×x // ExtiA(A/p,M)

is an isomorphism for i < depthM − r. But ExtiA(A/p,M) is a finitely generated
A-module (Exercise 23.2.F), so by Nakayama’s Lemma 7.2.8, ExtiA(A/p,M) = 0 for
i < depthM− r. □

26.1.I. EASY EXERCISE. Prove Theorem 26.1.6. Hint: from §5.5.9, if p ∈ Ass(M),
then HomA(A/p,M) ̸= 0.

26.2 Cohen-Macaulay rings and schemes

26.2.1. Definition. A Noetherian local ring (A,m) is Cohen-Macaulay (or often
CM for short) if depthA = dimA, i.e., if equality holds in (26.1.1.1). (One may
define Cohen-Macaulay module similarly, but we won’t need this concept.) A
locally Noetherian scheme is Cohen-Macaulay if all of its local rings are Cohen-
Macaulay.
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26.2.A. EXERCISE. Show that every locally Noetherian scheme of dimension 0 is
Cohen-Macaulay. Show that a locally Noetherian scheme of dimension 1 is Cohen-
Macaulay if and only if it has no embedded points.

26.2.2. (Counter)example. Let X be the example of Exercise 26.1.G — two planes
meeting at a point. By Exercise 26.1.G, X is not Cohen-Macaulay.

26.2.B. EXERCISE. Suppose A is Cohen-Macaulay Noetherian local ring. Use
Theorem 26.1.6 to show that SpecA is equidimensional, and has no embedded
points. (It is not true that Noetherian local rings of pure dimension having no
embedded prime ideals are Cohen-Macaulay, see Example 26.2.2.)

26.2.3. Theorem (slicing criterion for Cohen-Macaulayness). — Suppose (A,m) is
a Noetherian local ring, and x ∈ m is a non-zerodivisor. Then (A,m) is Cohen-Macaulay
if and only if (A/x,m) is Cohen-Macaulay.

Compare this to the slicing criteria for regularity and flatness (Exercise 12.2.C
and Theorem 24.6.5 respectively).

26.2.4. Geometric interpretation of the slicing criterion. Suppose X is a locally Noe-
therian scheme, andD is an effective Cartier divisor. If X is Cohen-Macaulay, then
so is D. If D is Cohen-Macaulay, then X is Cohen-Macaulay at the points of D.

26.2.C. EXERCISE. Prove Theorem 26.2.3, using Theorem 26.1.2, the fact that max-
imal regular sequences (in m) all have the same length.

26.2.D. EXERCISE. Show that if (A,m) is Cohen-Macaulay, then a set of elements
x1, . . . , xr ∈ m is a regular sequence (for A) if and only if dimA/(x1, . . . , xr) =
dimA− r.

26.2.5. By Exercise 26.1.F, regular local rings (Noetherian by definition) are Cohen-
Macaulay. In particular, as smooth schemes over a field k are regular (Theorem 12.2.10(b)),
we see that smooth k-schemes are Cohen-Macaulay. (In combination with Exer-
cise 26.2.B, this explains why effective Cartier divisors on smooth varieties have
no embedded points, which justifies a comment made in Aside 20.2.2.) Combining
this with Exercise 26.2.D or §26.2.4, we have the following.

26.2.6. Proposition. — Regular embeddings in smooth k-schemes are Cohen-Macaulay.

26.2.7. As a consequence of Proposition 26.2.6 and the fact that Cohen-Macaulay
schemes have no embedded points (Exercise 26.2.B), we see that regular embed-
dings in smooth k-schemes (in Ank or Pnk for example) have no embedded points,
generalizing Exercise 5.5.I (the hypersurface in Ank case). This is not clear with-
out the theory of Cohen-Macaulayness! (This fact was used in Exercise 25.2.A, see
§25.2.1.)

26.2.8. Alternate definition of Cohen-Macaulayness. The slicing criterion (Theo-
rem 26.2.3) gives an enlightening alternative inductive definition of Cohen-Macaulayness
in terms of effective Cartier divisors, in the spirit of the method of §26.1.4 for com-
puting depth. Suppose as before that (A,m) is a Noetherian local ring.

(i) If dimA = 0, then A is Cohen-Macaulay (Exercise 26.2.A).



690 The Rising Sea: Foundations of Algebraic Geometry

(iia) If dimA > 0, and every element of m is a zerodivisor, thenA is not Cohen-
Macaulay (by Exercise 26.1.A).

(iib) Otherwise, choose any non-zerodivisor x in m. ThenA is Cohen-Macaulay
if and only if A/(x) (necessarily of dimension dimA − 1 by Krull’s Prin-
cipal Ideal Theorem 11.3.3) is Cohen-Macaulay.

The following example could have been stated (but not proved) before we
knew any algebraic geometry at all. (We work over C rather than over an arbitrary
field simply to ensure that the statement requires as little background as possible.)

26.2.E. FUN EXERCISE (MAX NOETHER’S AF + BG THEOREM). Suppose f, g ∈
C[x0, x1, x2] are two homogeneous polynomials, cutting out two curves in P2C that
meet “transversely”, i.e., at a finite number of reduced points. Suppose h ∈
C[x0, x1, x2] is a homogeneous polynomial vanishing at these points. Show that
h ∈ (f, g). Hint: show that the intersection of the affine cones V(f) and V(g) in
A3 has no embedded points. (This problem is quite nontrivial to do without the
theory developed in this chapter! As a sign that this is subtle: you can easily con-
struct three quadratics e, f, g ∈ C[x0, x1, x2] cutting out precisely the two points
[1, 0, 0] and [0, 1, 0] ∈ P2C, yet the line z = 0 is not in the ideal (e, f, g) for degree
reasons.)

26.2.9. Miracle flatness.
We conclude with a remarkably simple and useful criterion for flatness, which

we shall use in the proof of Serre duality. The main content is the following alge-
braic result.

26.2.10. Miracle Flatness Theorem (algebraic version). — Suppose ϕ : (B, n) →
(A,m) is a (local) homomorphism of Noetherian local rings, such thatA is Cohen-Macaulay,
and B is regular, and A/nA = A⊗B (B/n) (the ring corresponding to the fiber) has pure
dimension dimA− dimB. Then ϕ is flat.

Proof. We prove Theorem 26.2.10 by induction on dimB. If dimB = 0, then B is a
field (Exercise 12.2.A), so the result is immediate, as everything is flat over a field
(Exercise 24.2.A(a)). Assume next that dimB > 0, and we have proved the result
for all “B of smaller dimension”. Choose x ∈ n − n2, so B/x is a regular local ring
of dimension dimB− 1 . Then

dimA/xA ≤ dimB/(x) + dimA/nA (Key Exercise 11.4.A)
= dimB− 1+ dimA/nA (Krull’s Principal Ideal Theorem 11.3.3)
= dimA− 1 (by hypothesis of Theorem 26.2.10).

By Krull’s Principal Ideal Theorem 11.3.3, dimA/xA ≥ dimA − 1, so we have
dimA/xA = dimB/(x) + dimA/nA = dimA − 1. By Exercise 26.2.D, A/xA is a
Cohen-Macaulay ring, and x is a non-zerodivisor on A. The inductive hypothesis
then applies to (B/(x), n) → (A/xA,m), so A/xA is flat over B/(x). Then by the
local slicing criterion for flatness (Theorem 24.6.5), B→ A is flat, as desired. □

26.2.11. Miracle Flatness Theorem. — Suppose π : X → Y is a morphism of equidi-
mensional finite type k-schemes, where X is Cohen-Macaulay, Y is regular, and the fibers
of π have dimension dimX− dimY. Then π is flat.
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26.2.F. EXERCISE. Prove the Miracle Flatness Theorem 26.2.11. (Do not forget that
schemes usually have non-closed points!)

The geometric situation in the Miracle Flatness Theorem 26.2.11 is part of the
following pretty package.

26.2.G. EXERCISE. Suppose π : X → Y is a map of locally finite type k-schemes,
where both X and Y are equidimensional, and Y is regular. Show that if any two of
the following hold, then the third does as well:

(i) π is flat of relative dimension dimX− dim Y.
(ii) X is Cohen-Macaulay.

(iii) Every fiber Xy is Cohen-Macaulay of pure dimension dimX− dimY.

Hint: if ϕ : B → A is a flat ring map, then ϕ sends non-zerodivisors to non-
zerodivisors (Observation 24.2.2).

The statement of Exercise 26.2.G can be improved, at the expense of killing the
symmetry. In the implication (ii) and (iii) imply (i), the Cohen-Macaulay hypothe-
ses in (iii) are not needed.

26.2.12. Example. As an example of Exercise 26.2.G in action, we consider the
example of two planes meeting a point, continuing the notation of Exercise 26.1.G.
Consider the morphism π : X → Y := A2 given by (w − y, x − z). Then Y is regu-
lar (by the Smoothness-Regularity Comparison Theorem 12.2.10(b)). But X is not
Cohen-Macaulay (Exercise 26.1.G) and π is not flat (Exercise 24.4.I), so by Exer-
cise 26.2.G, you can use either of these to prove the other.

26.2.13. Fancy properties of Cohen-Macaulayness.
We mention a few additional properties of Cohen-Macaulayness without proof.

They are worth seeing, but we will not use them.
If X is a locally Noetherian scheme, the locus of Cohen-Macaulay points is

open, see [Mat2, Thm 24.5] (and also [Stacks, tag 00RD]). In particular:

26.2.14. Fact (cf. Fact 12.8.5). — Any localization of a Cohen-Macaulay Noetherian
local ring at a prime ideal is also Cohen-Macaulay.

(See [Stacks, tag 00NB], [E, Prop. 18.8], [Mat2, Thm. 17.3(iii)], or [Mat1, Thm. 30]
for a direct proof.) In particular, for quasicompact schemes, Cohen-Macaulayness
may be checked at closed points. The fact that Cohen-Macaulayness is preserved
by localization can be used to quickly show that Cohen-Macaulay local rings are
catenary (see [E, Cor. 18.10], [Mat1, Thm. 31(ii)], or [Mat2, Thm. 17.9]). A ring A
is Cohen-Macaulay if and only if A[x] is Cohen-Macaulay ([E, Prop 18.9], [Mat2,
Thm 17.7], [Mat1, Thm. 33]), if and only A[[x]] is [Mat2, p. 137]. A local ring is
Cohen-Macaulay if and only if its completion is Cohen-Macaulay ([E, Prop. 18.8],
[Mat2, Thm 17.5]).

26.3 ⋆ Serre’s R1+ S2 criterion for normality

The notion of depth yields a useful criterion for normality, due to Serre.
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26.3.1. Definition. Suppose A is a Noetherian ring, and k ∈ Z≥0. We say A has
property Rk (A is regular in codimension ≤ k, or more sloppily, A is regular in
codimension k) if for every prime p ⊂ A of codimension at most k, Ap is regular.
(In light of Fact 12.8.2, a Noetherian local ring is regular and only if it has property
Rk for all k.)

We say A has property Sk if for every prime p ⊂ A, the local ring Ap has
depth at least min(k,dimAp) — “the local rings are Cohen-Macaulay up until
codimension k, and have depth at least k thereafter”. (In light of Fact 26.2.14, a
Noetherian local ring is Cohen-Macaulay if and only if it has property Sk for all
k.)

26.3.A. EASY EXERCISE. Note that a Noetherian ring A trivially always has prop-
erty S0. Show that a Noetherian ring A has property R0 if SpecA is “generically
reduced”: it is reduced at the generic point of each of its irreducible components.
Show that a Noetherian ringA has property S1 if and only if SpecA has no embed-
ded points. (Possible hint: Exercise 26.1.A.)

26.3.B. EXERCISE. Show that a Noetherian ring A has no nilpotents (SpecA is
reduced) if and only if it has properties R0 and S1. (Hint: show that a Noetherian
scheme is reduced if and only if each irreducible component is generically reduced,
and it has no embedded points. Another hint: Exercise 5.5.K.)

Incrementing the subscripts in Exercise 26.3.B yields Serre’s criterion.

26.3.2. Theorem (Serre’s criterion for normality). — A Noetherian ring A is normal
if and only if it has properties R1 and S2.

(Recall that a Noetherian ring A is normal if its localizations Ap at all primes
p are integrally closed domains.) Thus failure of normality can have two possible
causes: it can be failure of R1 (something we already knew, from the equivalence
of (a) and (g) in Theorem 12.5.8), or it can be the more subtle failure of S2. Exam-
ples of varieties satisfying R1 but not S2 are given in Example 26.3.4 (two planes
meeting at a point) and Exercise 26.3.D (the pinched plane).

26.3.3. Applications. As usual, before giving a proof, we give some applications
to motivate the result. First, it implies that Cohen-Macaulay schemes are normal
if and only if they are regular in codimension 1. Thus to check normality of hy-
persurfaces (or more generally, regular embeddings) in Pnk (or more generally, in
any smooth variety), it suffices to check that their singular locus has codimen-
sion greater than one. (You should think through the details of why these state-
ments are true.) In particular, this gives a new (more complicated) proof of Exer-
cise 5.4.I(b) and (c).

26.3.C. EXERCISE (PRACTICE WITH THE CONCEPT). Show that two-dimensional
normal varieties are Cohen-Macaulay.

26.3.4. Example: two planes meeting at a point. The variety X of Exercise 26.1.G (two
planes meeting at a point) is not normal (why?), but it is regular away from the
origin. This implies that X does not have property S2 (and hence is not Cohen-
Macaulay), without the algebraic manipulations of Exercise 26.1.G.
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We already knew that this example was not Cohen-Macaulay, but the same
idea can show that the pinched plane Speck[x3, x2, xy, y] (appearing in Exercise 12.5.I)
is not Cohen-Macaulay. Because of the “extrinsic” description of the ring, it is dif-
ficult to do this in another way.

26.3.D. EXERCISE: THE PINCHED PLANE IS NOT COHEN-MACAULAY. Let A be
the subring k[x3, x2, xy, y] of k[x, y]. Show that A is not Cohen-Macaulay. Hint:
Exercise 12.5.I showed that A is not integrally closed.

26.3.5. Regular local rings are integrally closed. Serre’s criterion can be used to
show that regular local rings are integrally closed without going through the hard
Fact 12.8.5 (the Auslander-Buchsbaum Theorem) that they are unique factoriza-
tion domains. Regular local rings are Cohen-Macaulay (§26.2.5), and (by Exer-
cise 26.3.B) regular in codimension 0 as they are integral domains (Theorem 12.2.13),
so we need only show that regular local rings are regular in codimension 1. We
can invoke a different hard Fact 12.8.2 that localizations of regular local rings are
again regular, but at least we have shown this for localizations of finitely generated
algebras over a perfect field (see Theorem 12.8.3 and Exercise 21.3.G).

26.3.6. Caution. As is made clear by the following exercise, the condition S2 is a
condition on all prime ideals, not just those of codimension at most 2.

26.3.E. EXERCISE. Give an example of a variety satisfying R1, and Cohen-Macaulay
at all points of codimension at most 2, which is not normal.

26.3.7. Proof of Theorem 26.3.2. The proof of Serre’s criterion will take us until
the end of this section.

26.3.8. Normal implies R1 + S2.
Suppose first that A is normal. It is reduced, and thus satisfies (R0 and) S1 by

Exercise 26.3.B. It satisfies R1 from the equivalence of (a) and (g) in Theorem 12.5.8.
All that is left is to verify property S2. We thus must show that if (A,m) is a normal
Noetherian local ring of dimension greater than 1, then A has depth at least 2.

Choose any nonzero x ∈ m. (Don’t forget that normality implies that the local
ring A is an integral domain.) We wish to show that depthA/(x) > 0. Assume
otherwise that depthA/(x) = 0, so (by Exercise 26.1.A) m is an associated prime of
A/(x). Thus there is some nonzero y ∈ A/(x) (i.e., y /∈ (x)) with ym = 0 in A/(x),
i.e., multiplying any element z ∈ m by y gives you a multiple of x. Letw = y/x ∈ K(A).
We will show that w ∈ A, and thus that y ∈ (x), yielding a contradiction.

For each prime ideal p ⊂ A of codimension 1, choose any z ∈ m \ p. Then
zw = zy/x ∈ (y/x)m ⊂ A by the italicized statement in the previous paragraph,
sow ∈ Ap. Thusw ∈ Ap for all codimension 1 prime ideals p ⊂ A, so by Algebraic
Hartogs’s Lemma 11.3.11 (using the hypothesis that A is integrally closed), w ∈ A
as desired.

26.3.9. R1 + S2 implies normal: the integral domain case. Normality is a stalk-local
condition by definition, so it suffices to show:

(†) if (A,m) is a dimension dNoetherian local ring satisfying R1 and S2 then
it is an integrally closed integral domain.

(As A satisfies R0 and S1, A is reduced by Exercise 26.3.B.)
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The case in which A is an integral domain is notably easier, and may help
motivate the statement of the criterion, so we deal with this case first, and leave the
general case as something to read when you have too much time on your hands.
Note that this case suffices for many of the consequences we discuss, notably the
normality of regular schemes (§26.3.5).

Suppose now that A is an integral domain. Suppose x ∈ K(A) is integral over
A. We must prove that x ∈ A. Write x = f/g, where f, g ∈ A. We wish to show that
f ∈ (g), or equivalently that f restricts to 0 on the closed subscheme W := V(g) of
SpecA.

26.3.F. EXERCISE. Show that W := V(g) has no embedded points. Translation:
A/(g) satisfies S1.

Let η1, . . . , ηm be the generic points of the irreducible components of W, cor-
responding to prime ideals p1, . . . , pm of A. By Exercise 26.3.F, η1,. . . , ηm are all
the associated points ofW, so the natural map

(26.3.9.1) A/(g)→ m∏
i=1

OW,ηi
=

m∏
i=1

(A/(g))pi

is an injection, by Theorem 5.5.10(b).
The ring Api

is regular in codimension 1, so by parts (a) and (g) of Theo-
rem 12.5.8, Api

is integrally closed. Now x is integral over A and thus over Api
, so

by the integral closedness ofApi
, x ∈ Api

. Hence f is 0 in eachApi
/(g) = (A/(g))pi

.
From the injectivity of (26.3.9.1), we have that f is 0 onW as desired.

26.3.10. ⋆⋆ R1 + S2 implies normal: the general case. We prove (†) by induction on d.

26.3.G. EXERCISE. Prove the desired result if d = 0 and d = 1.

Our next step is to show that A is integrally closed in its total fraction ring,
the localization of A at the multiplicative subset of non-zerodivisors (defined in
§5.5.7). Suppose we have f, g ∈ A, with g a non-zerodivisor, such that f/g satisfies
the monic equation

(26.3.10.1) (f/g)n +

n∑
i=1

ai(f/g)
n−i = 0

with ai ∈ A. We prove f ∈ (g) by induction on d. The cases d = 0 and 1 follow
from Exercise 26.3.G. Assume now that d > 1, and that the result is known for
“smaller d”.

As depthA ≥ 2, depthA/(g) ≥ 1, so there is a non-zerodivisor t on A/(g)
with t ∈ m. Consider the localization of (26.3.10.1) at all the prime ideals corre-
sponding to points of D(t) (those prime ideals not containing t), each of which
has codimension < d. By the inductive hypothesis, f ∈ (g) in each of these local-
izations, so f is zero in (A/(g))t. But as t is a non-zerodivisor on A/(g), the map
A/(g) → (A/(g))t is an injection (Exercise 1.3.C), so f is zero in A/(g), as desired.
We have thus shown that A is integrally closed in its total fraction ring.

26.3.11. Lemma. — Suppose R is a reduced ring with finitely many minimal prime ideals
p1, . . . , pn. If R is integrally closed in its total fraction ring, then R is a finite product of
integral domains.
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26.3.12. Proof of Lemma 26.3.11. The pi are the associated prime ideals of R, by
Exercise 5.5.C, so the natural map ϕ : R → ∏n

i=1 Rpi
is an inclusion (by Theo-

rem 5.5.10(b)).

26.3.H. EXERCISE. Show that the map ϕ identifies the total fraction ring of Rwith∏n
i=1 Rpi

.

Suppose ei is the ith idempotent of the total fraction ring
∏
Rpi

(i.e., (0, . . . , 0, 1, 0, . . . , 0),
where the 1 is in the ith spot). Since R is integrally closed in its total fraction ring,
it contains each of the ei.

26.3.I. EXERCISE. Conclude the proof of Lemma 26.3.11, by describing R =∏n
i=1 Rei, and showing that each Rei is an integrally closed integral domain. Pos-

sible hint: Remark 3.6.3. □
We now return to our proof of Serre’s criterion. By Lemma 26.3.11, we now

know thatA is a product of integral domains. But SpecA is connected (A is a local
ring!), so A is an integral domain. □





CHAPTER 27

Twenty-seven lines

This topic is placed in Chapter 27 for purely numerological reasons. As a
result, it invokes one fact that we will only meet in a later chapter: Castelnuovo’s
Criterion (Theorem 29.7.1) is used in the proof of Proposition 27.4.1. This is a
feature rather than a bug: you needn’t read the details of the later chapters in order
to enjoy this one. In fact, you should probably read this many chapters earlier,
taking key facts as “black boxes”, to appreciate the value of seemingly technical
definitions and theorems before you learn about them in detail. This topic is a
fitting conclusion to an energetic introduction to algebraic geometry, even if you
do not earlier cover everything needed to justify all details.

27.1 Introduction

Wake an algebraic geometer in the dead of night, whispering: “27”. Chances are, he
will respond: “lines on a cubic surface”.

— R. Donagi and R. Smith, [DS] (on page 27, of course)

Since the middle of the nineteenth century, geometers have been entranced by
the fact that there are 27 lines on every smooth cubic surface, and by the remark-
able structure of the configuration of the lines. Their discovery by Cayley and
Salmon in 1849 has been called the beginning of modern algebraic geometry, [Do,
p. 55].

The reason so many people are bewitched by this fact is because it requires
some magic, and this magic connects to many other things, including fundamental
ideas we have discussed, other beautiful classical constructions (such as Pascal’s
Mystical Hexagon Theorem 19.4.4, the fact that most smooth quartic plane curves
have 28 bitangents, exceptional Lie groups, . . . ), and many themes in modern al-
gebraic geometry (deformation theory, intersection theory, enumerative geometry,
arithmetic and diophantine questions, ...). It will be particularly pleasant for us, as
it takes advantage of many of the things we have learned.

You are now ready to be initiated into the secret fellowship of the twenty-seven
lines.

27.1.1. Theorem. — Every smooth cubic surface in P3
k

has exactly 27 lines.

Theorem 27.1.1 is closely related to the following.

27.1.2. Theorem. — Every smooth cubic surface over k is isomorphic to P2 blown up at
6 points.

697
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FIGURE 27.1. Twenty-seven lines on a cubic surface

There are many reasons why people consider these facts magical. First, there
is the fact that there are always 27 lines. Unlike most questions in enumerative ge-
ometry, there are no weasel words such as “a general cubic surface” or “most cubic
surfaces” or “counted correctly” — as in, “every monic degree d polynomial has
d roots — counted correctly”. And somehow (and we will see how) it is precisely
the smoothness of the surface that makes it work.

Second, there is the magic that you always get the blow-up of the plane at six
points (§27.4).

Third, there is the magical incidence structure of the 27 lines, which relates to
E6 in Lie theory. The Weyl group of E6 is the symmetry group of the incidence
structure (see Remark 27.3.5). In a natural way, the 27 lines form a basis of the
27-dimensional fundamental representation of E6.

27.1.3. Structure of this chapter. Throughout this chapter, X will be a smooth cu-
bic surface over an algebraically closed field k. In §27.2, we establish some prelim-
inary facts. In §27.3, we prove Theorem 27.1.1. In §27.4, we prove Theorem 27.1.2.
We remark here that the only input that §27.4 needs from §27.3 is Exercise 27.3.J.
This can be done directly by hand (see for example [Rei, §7], [Be, Thm. IV.13], or
[Sh, p. 246-7]), and Theorem 27.1.2 readily implies Theorem 27.1.1, using Exer-
cise 27.4.E. We would thus have another, shorter, proof of Theorem 27.1.1. The
reason for giving the argument of §27.3 is that it is natural given what we have
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done so far, it gives you some glimpse of some ideas used more broadly in the sub-
ject (the key idea is that a map from one moduli space to another is finite and flat),
and it may help you further appreciate and digest the tools we have developed.

27.2 Preliminary facts

By Essential Exercise 14.1.C, there is a 20-dimensional vector space of cubic
forms in four variables, so the cubic surfaces in P3 are parametrized by P19.

27.2.A. EXERCISE. Show that the any smooth cubic surface X is “anticanonically
embedded” — it is embedded by the complete anticanonical linear series K ∨

X .
Hint: the adjunction formula, Exercise 21.5.B.

27.2.B. EXERCISE. Suppose X ⊂ P3
k

is a smooth cubic surface. Suppose C is a
curve on X. Show that C is a line if and only if C is a (−1)-curve (Definition 20.2.7).
Hint: the adjunction formula again, perhaps in the guise of Exercise 20.2.B(a); and
also Exercise 18.6.L.

It will be useful to find a single cubic surface with exactly 27 lines:

27.2.C. EXERCISE. Show that the Fermat cubic surface

(27.2.0.1) x30 + x
3
1 + x

3
2 + x

3
3 = 0

in P3C has precisely 27 lines, each of the form

x0 +ωxi = xj +ω
′xk = 0,

where {1, 2, 3} = {i, j, k}, j < k, and ω and ω ′ are cube roots of 1 (possibly the
same). Hint: up to a permutation of coordinates, show that every line in P3 can be
written x0 = ax2 + bx3, x1 = cx2 + dx3. Show that this line is on (27.2.0.1) if and
only if

(27.2.0.2) a3 + c3 + 1 = b3 + d3 + 1 = a2b+ c2d = ab2 + cd2 = 0

Show that if a, b, c, and d are all nonzero, then (27.2.0.2) has no solutions.

27.2.1. ⋆ The singular cubic surfaces give an irreducible divisor in the parameter
space P19 of all cubic surfaces. This discussion is starred not because it is hard,
but because it is not needed in the rest of the chapter. Nonetheless, it is a pretty
application of what we have learned, and it foreshadows key parts of the argument
in §27.3.

Fix a field k. Bertini’s Theorem 12.4.2 shows that the locus of smooth cubics
in the parameter space P19 of all cubics is dense and open. The proof suggests
more: that the complement ∆ of this locus is of pure codimension 1. We now
show that this is the case, and even that this “discriminant hypersurface” ∆ is also
irreducible.

27.2.D. EXERCISE. (Hint for both: recall the solution to Exercise 11.2.K.)
(a) Define the incidence correspondence Y ⊂ P19×P3 corresponding to the data of
a cubic surface X, along with a singular point p ∈ X. (This is part of the problem!
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We need Y as a scheme, not just as a set.) Let µ be the projection Y → P19.

Y

P15-bundle

��@
@@

@@
@@

µ

~~}}
}}
}}
}

P19 P3

(b) Show that Y is an irreducible smooth variety of dimension 18, by describing it
as a P15-bundle over P3.

27.2.E. EXERCISE. Show that there exists a cubic surface with a single singular
point. Feel free to assume k is your favorite field; the main point is to familiarize
yourself with geometric ideas, not the peculiarities of positive characteristic fields.
(Hint if chark ̸= 2: Exercise 12.3.C.)

27.2.F. EXERCISE. Show that µ(Y) = ∆ is a closed irreducible subset of codimen-
sion 1. Hint for the codimension 1 statement: Exercise 11.4.A or Theorem 11.4.1,
in combination with Exercise 27.2.E.

Your argument will generalize with essentially no change to deal with degree
d hypersurfaces in Pn.

27.3 Every smooth cubic surface (over k) has 27 lines

We are now ready to prove Theorem 27.1.1. Until Exercise 27.3.K, to avoid
distraction, we assume char k = 0. (However, the following argument carries
through without change if chark ̸= 3. The one required check — and the reason for
the restriction on the characteristic — is that Exercise 27.2.C works with C replaced
by any such k.)

27.3.A. EXERCISE. (Hint for both: recall the solution to Exercise 11.2.K.)
(a) Define the incidence correspondence Z ⊂ P19 × G(1, 3) corresponding to the
data of a line ℓ in P3 contained in a cubic surface X. (As in Exercise 27.2.D, this is
part of the problem.) Let π be the projection Z→ P19.

Z

P15-bundle

""E
EE

EE
EE

EE
π

~~}}
}}
}}
}}

P19 G(1, 3)

(b) Show that Z is an irreducible smooth variety of dimension 19, by describing it
as a P15-bundle over the Grassmannian G(1, 3).

27.3.B. EXERCISE. Use the fact that there exists a cubic surface with a finite number
of lines (Exercise 27.2.C), and the behavior of dimensions of fibers of morphisms
(Exercise 11.4.A or Theorem 11.4.1) to show the following.

(a) Every cubic surface contains a line, i.e., π is surjective. (Hint: show that
π is projective.)
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(b) “Most cubic surfaces have a finite number of lines”: there is a dense
open subset U ⊂ P19 such that the cubic surfaces parametrized by closed
points of U have a positive finite number of lines. (Hint: upper semicon-
tinuity of fiber dimension, Theorem 11.4.2.)

The following fact is the key result in the proof of Theorem 27.1.1, and one
of the main miracles of the 27 lines, that ensures that the lines stay distinct on a
smooth surface. It states, informally, that two lines can’t come together without
damaging the surface. This is really a result in deformation theory: we are explic-
itly showing that a line in a smooth cubic surface has no first-order deformations.

27.3.1. Theorem. — If ℓ is a line in a regular cubic surface X, then {ℓ ⊂ X} is a reduced
isolated point of the fiber of π : Z→ P19.

Before proving Theorem 27.3.1, we use it to prove Theorem 27.1.1.

27.3.2. Proof of Theorem 27.1.1. Now π is a projective morphism, and over P19 \ ∆,
π has relative dimension 0, and hence has finite fibers. Hence by Theorem 18.1.8,
π is finite over P19 \ ∆.

Furthermore, as Z is regular (hence Cohen-Macaulay, §26.2.5) and P19 is regu-
lar, the Miracle Flatness Theorem 26.2.11 implies that π is flat over P19 \ ∆.

Thus, over P19 \ ∆, π is a finite flat morphism, and so the fibers of π (again,
away from ∆) always have the same number of points, “counted correctly” (Re-
mark 24.4.8). But by Theorem 27.3.1, above each closed point of P19 \∆, each point
of the fiber of π counts with multiplicity one (here using k = k). Finally, by Exer-
cise 27.2.C, the Fermat cubic surface gives an example of one regular cubic surface
with precisely 27 lines, so (as P19 \ ∆ is connected) we are done. □

We have actually shown that away from ∆, Z→ P19 is a finite étale morphism
of degree 27.

27.3.3. ⋆ Proof of Theorem 27.3.1. Choose projective coordinates so that the line ℓ
is given, in a distinguished affine subset (with coordinates named x, y, z), by the
z-axis. (We use affine coordinates to help visualize what we are doing, although
this argument is better done in projective coordinates. On a second reading, you
should translate this to a fully projective argument.)

27.3.C. EXERCISE. Consider the lines of the form (x, y, z) = (a, b, 0) + t(a ′, b ′, 1)
(where (a, b, a ′, b ′) ∈ A4 is fixed, and t varies in A1). Show that a, b, a ′, b ′ can be
interpreted as the “usual” coordinates on one of the standard open subsets of the
Grassmannian (see §6.7), with [ℓ] as the origin.

Having set up local coordinates on the moduli space, we can get down to
business. Suppose f(x, y, z) is the (affine version) of the equation for the cubic
surface X. Because X contains the z-axis ℓ, f(x, y, z) ∈ (x, y). More generally, the
line

(27.3.3.1) (x, y, z) = (a, b, 0) + t(a ′, b ′, 1)

lies in X precisely when f(a+ ta ′, b+ tb ′, t) is 0 as a cubic polynomial in t. This is
equivalent to four equations in a, a ′, b, and b ′, corresponding to the coefficients
of t3, t2, t, and 1. This is better than just a set-theoretic statement:
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FIGURE 27.2. Parameters for the space of “lines near ℓ”, in terms
of where they meet the z = 0 plane and the z = 1 plane

27.3.D. EXERCISE. Verify that these four equations are local equations for the
scheme-theoretic fiber π−1([X]).

Now we come to the crux of the argument, where we use the regularity of X
(along ℓ). We have a specific question in algebra. We have a cubic surface X given
by f = 0, containing ℓ, and we know that X is regular (including “at∞”, i.e., in P3).
To show that [ℓ] = V(a, a ′, b, b ′) is a reduced isolated point in the fiber, we work
in the ring k[a, a ′, b, b ′]/(a, a ′, b, b ′)2, i.e., we impose the equations

(27.3.3.2) a2 = aa ′ = · · · = (b ′)2 = 0,

and try to show that a = a ′ = b = b ′ = 0. (It is essential that you understand
why we are setting (a, a ′, b, b ′)2 = 0. You can also interpret this argument in
terms of the derivatives of the functions involved — which after all can be inter-
preted as forgetting higher-order information and remembering only linear terms
in the relevant variables, cf. Exercise 12.1.G. See [Mu6, §8D] for a description of
this calculation in terms of derivatives.)

Suppose f(x, y, z) = cx3x3 + cx2yx2y + · · · + c11 = 0, where cx3 , cx2y, · · · ∈ k.
Because ℓ ⊂ X, i.e., f ∈ (x, y), we have c1 = cz = cz2 = cz3 = 0. We now substitute
(27.3.3.1) into f, and then apply (27.3.3.2). Only the coefficients of f of monomials
involving precisely one x or y survive:

cx(a+ a ′t) + cxz(a+ a ′t)t+ cxz2(a+ a ′t)t2

+cy(b+ b
′t) + cyz(b+ b

′t)t+ cyz2(b+ b
′t)t2

= (a+ a ′t)(cx + cxzt+ cxz2t
2) + (b+ b ′t)(cy + cyzt+ cyz2t

2)

is required to be 0 as a polynomial in t. (Recall that cx, . . . , cyz2 are fixed elements
of k.) LetCx(t) = cx+cxzt+cxz2t2 andCy(t) = cy+cyzt+cyz2t2 for convenience.
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Now X is regular at (0, 0, 0) precisely when cx and cy are not both 0 (as cz = 0).
More generally, X is regular at (0, 0, t0) precisely if cx + cxzt0 + cxz2t20 = Cx(t0)
and cy + cyzt0 + cyz2t20 = Cy(t0) are not both zero. You should be able to quickly
check that X is regular at the point of ℓ “at ∞” precisely if cxz2 and cyz2 are not
both zero. We summarize this as follows: X is regular at every point of ℓ precisely
if the two quadratics Cx(t) and Cy(t) have no common roots, including “at∞”.

We now use this to force a = a ′ = b = b ′ = 0 using (a + a ′t)Cx(t) + (b +
b ′t)Cy(t) ≡ 0.

We deal first with the special case where Cx and Cy have two distinct roots,
both finite (i.e., cxz2 and cyz2 are nonzero). If t0 and t1 are the roots of Cx(t), then
substituting t0 and t1 into (a+a ′t)Cx(t)+ (b+b ′t)Cy(t), we obtain b+b ′t0 = 0,
and b+ b ′t1 = 0, from which b = b ′ = 0. Similarly, a = a ′ = 0.

27.3.E. EXERCISE. Deal with the remaining cases to conclude the proof of Theo-
rem 27.3.1. (It is possible to do this quite cleverly. For example, you may be able
to re-choose coordinates to ensure that Cx and Cy have finite roots.)

□

27.3.4. The configuration of lines.
By the “configuration of lines” on a cubic surface, we mean the data of which

pairs of the 27 lines intersect. We can readily work this out in the special case
of the Fermat cubic surface (Exercise 27.2.C). (It can be more enlightening to use
the description of X as a blow-up of P2, see Exercise 27.4.E.) We now show that
the configuration is the “same” (interpreted appropriately) for all smooth cubic
surfaces.

27.3.F. EXERCISE. Construct a degree 27! finite étale map W → P19 \ ∆, that
parametrizes a cubic surface along with an ordered list of 27 distinct lines. Hint: let
W ′ be the 27th fibered power of Z over P19 \ ∆, interpreted as parametrizing a
cubic surface with an ordered list of 27 lines, not necessarily distinct. LetW be the
subset corresponding to where the lines are distinct, and show thatW is open and
closed inW ′, and thus a union of connected components ofW ′.

We now make sense of the statement that the configuration of lines on the
Fermat cubic surface (call it X0) is the “same” as the configuration on some other
smooth cubic surface (call it X1). Lift the point [X0] to a point w0 ∈W. Let W ′′ be
the connected component ofW containing w0.

27.3.G. EXERCISE. Show that the morphismW ′′ → P19 \∆ is finite and étale (and
surjective).

Choose a point w1 ∈ W ′′ mapping to [X1]. Because W parametrizes a “label-
ing” or ordering of the 27 lines on a surface, we now have chosen an identification
of the lines on X0 with those of X1. Let the lines be ℓ1, . . . , ℓ27 on X0, and let the
corresponding lines on X1 bem1, . . . , m27.

27.3.H. EXERCISE (USING STARRED EXERCISE 24.7.D). Show that ℓi · ℓj = mi ·mj
for all i and j.
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27.3.I. EXERCISE. Show that for each smooth cubic surface X ⊂ P3
k

, each line on X
meets exactly 10 other lines ℓ1, ℓ ′1, . . . , ℓ5, ℓ ′5 on X, where ℓi and ℓ ′i meet for each i,
and no other pair of the lines meet.

27.3.J. EXERCISE. Show that every smooth cubic surface contains two disjoint
lines ℓ and ℓ ′, such that there are precisely five other lines ℓ1, . . . , ℓ5 meeting both ℓ
and ℓ ′. (In fact, for any two disjoint lines ℓ and ℓ ′ in a smooth cubic surface, there
are precise five other lines meeting them; but this is strictly harder than what the
problem asks.)

27.3.5. Remark: The Weyl group W(E6). The symmetry group of the configuration
of lines — i.e., the subgroup of the permutations of the 27 lines preserving the
intersection data — magically turns out to be the Weyl group of E6, a group of
order 51840. (You know enough to at least verify that the size of the group is
51840, using the Fermat surface of Exercise 27.2.C, but this takes some work.) It is
no coincidence that the degree of W ′′ over P19 \ ∆ is 51840, and the Galois group
of the Galois closure of K(Z)/K(P19 \ ∆) is isomorphic toW(E6) (see [H1, III.3]).

27.3.K. ⋆⋆ EXERCISE. Prove Theorem 27.3.1 in arbitrary characteristic. Begin by
figuring out the right statement of Exercise 27.3.A over Z, and proving it. Then
follow the argument given in this section, making changes when necessary.

27.3.6. ⋆ Fano varieties of lines, and Hilbert schemes. In Exercises 27.3.A
and 27.3.K, you constructed a moduli space of lines contained in a X, as a scheme.
Your argument can be generalized to any X ⊂ PN. This construction is called
the Fano variety of lines of X (not to be confused with the notion of a Fano variety,
§21.5.5), and is an example of a Hilbert scheme.

27.4 Every smooth cubic surface (over k) is a blown up plane

We now prove Theorem 27.1.2. As stated in §27.1.3, this section is remarkably
independent from the previous one; all we will need is Exercise 27.3.J, and it is
possible to prove this in other ways.

Suppose X is a smooth cubic surface (over k). Suppose ℓ is a line on X, and
choose coordinates on the ambient P3 so that ℓ is cut out by x0 and x1. Projection
from ℓ gives a rational map P3 99K P1 (given by [x0, x1, x2, x3] 7→ [x0, x1]), which
extends to a morphism on X. The reason is that this rational map is resolved by
blowing up the closed subscheme V(x0, x1) (Exercise 22.4.L). But (x0, x1) cuts out
the effective Cartier divisor ℓ on X, and blowing up an effective Cartier divisor
does not change X (Observation 22.2.1).

Now choose two disjoint lines ℓ and ℓ ′ as in Exercise 27.3.J, and consider the
morphism ρ : X → P1 × P1, where the map to the first P1 is projection from ℓ,
and the map to the second P1 is the projection from ℓ ′. The first P1 can then be
identified with ℓ ′, and the second with ℓ.

27.4.A. EXERCISE. Show that the morphism ρ is birational. Hint: given a general
point of (p, q) ∈ ℓ ′ × ℓ, we obtain a point of X as follows: the line pq in P3 meets
the cubic X at three points by Bézout’s Theorem 8.2.E: p, q, and some third point
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x ∈ X; send (p, q) to x. (This idea appeared earlier in the development of the group
law on the cubic curve, see Proposition 19.10.3.) Given a general point x ∈ X, we
obtain a point (p, q) ∈ ℓ ′ × ℓ by projecting from ℓ ′ and ℓ.

In particular, we have shown for the first time that every smooth cubic surface
over k is rational.

27.4.B. EXERCISE: ρ CONTRACTS PRECISELY ℓ1, . . . , ℓ5. Show that ρ is an isomor-
phism away from the ℓi mentioned in Exercise 27.3.J, and that each ρ(ℓi) is a point
pi ∈ ℓ ′ × ℓ.

27.4.1. Proposition. — The morphism ρ : X → P1 × P1 is the blow-up at P1 × P1 at
the five pi.

Proof. By Castelnuovo’s Criterion (Theorem 29.7.1), as the lines ℓi are (−1)-curves
(Exercise 27.2.B), they can be contracted. More precisely, there is a morphism
β : X → X ′ that is the blow-up of X ′ at five closed points p ′

1, . . . , p ′
5, such that

ℓi is the exceptional divisor at p ′
i. We wish to show that X ′ is P1 × P1.

The morphism ρ : X→ P1×P1 yields a morphism ρ ′ : X ′\{p ′
1, . . . p

′
5}→ P1×P1.

We now show that ρ ′ extends over p ′
i for each i, sending p ′

i to pi. Choose an open
neighborhood of pi ∈ P1 × P1 isomorphic to A2, with coordinates x and y. Then
both x and y pull back to functions on a punctured open neighborhoods of p ′

i (i.e.,
there is some open neighborhoodU of p ′

i such that x and y are functions onU\{p ′
i}).

By Algebraic Hartogs’s Lemma 11.3.11, they extend over p ′
i, and this extension is

unique as P1 × P1 is separated — use the Reduced-to-Separated Theorem 10.2.2 if
you really need to. Thus ρ ′ extends over p ′

i. (Do you see why ρ ′(p ′
i) = pi?)

27.4.C. EXERCISE. Show that the birational morphism ρ ′ : X ′ → P1 × P1 is invert-
ible. Hint: you can use Zariski’s Main Theorem (in the guise of Exercise 29.6.D),
but you needn’t use something so powerful. Instead, note that the birational map
ρ ′−1 is a morphism away from p1, . . . , p5. Use essentially the same argument as
in the last paragraph to extend ρ ′−1 over each pi.

□
As a consequence we see that X is the blow-up of P1 × P1 at 5 points. Because

the blow-up of P1 × P1 at one point is isomorphic to the blow-up of P2 at two
points (Exercise 22.4.K), Theorem 27.1.2 then follows. □

27.4.2. Reversing the process.
(This is a more precise version of 22.4.10(iii).) The process can be reversed: we

can blow-up P2 at six points, and embed it in P3. We first explain why we can’t
blow up P2 at just any six points and hope to embed the result in P3. Because the
cubic surface is embedded anticanonically (Exercise 27.2.A), we see that any curve
C in Xmust satisfy (KX · C) < 0.

27.4.D. EXERCISE. Suppose P2 is sequentially blown up at p1, . . . , p6, resulting in
a smooth surface X.
(a) If pi lies on the exceptional divisor of the blow-up at pj (i > j), then show that
there is a curve C ⊂ X isomorphic to P1, with (KX · C) ≥ 0.
(b) If the pi are distinct points on P2, and three of them are collinear, show that
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there is a curve C ⊂ X isomorphic to P1, with (KX · C) ≥ 0.
(c) If the six pi are distinct points on a smooth conic, show that there is a curve
C ⊂ X isomorphic to P1, with (KX · C) ≥ 0.

Thus the only chance we have of obtaining a smooth cubic surface by blowing
up six points on P2 is by blowing up six distinct points, no three on a line and not
all on a conic.

27.4.3. Proposition. — The anticanonical map of P2 blown up at six distinct points, no
three on a line and not all on a conic, gives a closed embedding into P3, as a cubic surface.

Because we won’t use this, we only describe the main steps of the proof: first
count sections of the anticanonical bundle K ∨

P2
∼= OP2(3) (there is a 4-dimensional

vector space of cubics on P2 vanishing at the six points, and these correspond to
sections of the anticanonical bundle of the blow-up via Exercise 22.4.S(a)). Then
show that these sections separate points and tangent vectors of X, thus showing
that the anticanonical linear series gives a closed embedding, Theorem 19.1.1. Ju-
dicious use of the Cremona transformation (Exercise 6.5.I) can reduce the amount
of tedious case-checking in this step.

27.4.E. EXERCISE. Suppose X is the blow-up of P2
k

at six distinct points p1, . . . ,
p6, no three on a line and not all on a conic. Verify that the only (−1)-curves on X
are the six exceptional divisors, the proper transforms of the 15 lines pipj, and the
proper transforms of the six conics through five of the six points, for a total of 27.

27.4.F. EXERCISE. Solve Exercises 27.3.I and 27.3.J again, this time using the de-
scription of X as a blow-up of P2.

27.4.4. Remark. If you blow-up 4 ≤ n ≤ 8 points on P2, with no three on a line
and no six on a conic, then the symmetry group of the configuration of lines is a
Weyl group, as shown in the following table.

n 4 5 6 7 8

W(A4) W(D5) W(E6) W(E7) W(E8)

(If you know about Dynkin diagrams, you may see the pattern, and may be able
to interpret what happens for n = 3 and n = 9.) This generalizes part of Re-
mark 27.3.5, and the rest of it can similarly be generalized.



CHAPTER 28

Cohomology and base change theorems

28.1 Statements and applications

Higher pushforwards are easy to define, but it is hard to get a geometric sense
of what they are, or how they behave. For example, given a morphism π : X → Y,
and a quasicoherent sheaf F on X, you might reasonably hope that the fibers of
Riπ∗F are the cohomologies of F along the fibers. More precisely, givenψ : q→ Y

corresponding to the inclusion of a point (better: ψ : Specκ(q) → Y), yielding the
fibered diagram

(28.1.0.1) Xq
ψ ′

//

π ′

��

X

π

��
q

ψ // Y,

one might hope that the morphism

ϕpq : ψ
∗(Rpπ∗F )→ Hp(Xq, (ψ

′)∗F )

(given in Exercise 18.8.C) is an isomorphism. (Note: F |Xq
and (ψ ′)∗F are symbols

for the same thing. The first is often preferred, but we sometimes use the second
because we will consider more general ψ and ψ ′.) We could then picture Riπ∗F
as somehow fitting together the cohomology groups of fibers into a coherent sheaf.
(Warning: this is too much to hope for, see Exercise 28.1.A.)

It would also be nice if hp(Xq, (ψ ′)∗F ) was constant, and ϕpq put them to-
gether into a nice locally free sheaf (vector bundle) π∗F .

There is no reason to imagine that the particular choice of base changeψ : q→
Y should be special. As long as we are dreaming, we may as well hope that in
good circumstances, given a Cartesian diagram (18.8.4.1)

(28.1.0.2) W
ψ ′

//

π ′

��

X

π

��
Z

ψ // Y,

the natural morphism

(28.1.0.3) ϕ
p
Z : ψ

∗(Rpπ∗F )→ Rpπ ′
∗(ψ

′)∗F

707
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of sheaves on Z (Exercise 18.8.B(a)) is an isomorphism. (In some cases, we can
already address this question. For example, cohomology commutes with flat base
change, Theorem 24.2.8, so the result holds ifψ is flat. Also related: if F is flat over
Y, then the Euler characteristic of F on fibers is locally constant, Theorem 24.7.1.)

There is no point in dreaming if we are not going to try to make our dreams
come true. So let’s formalize them. Suppose F is a coherent sheaf on X, π : X→ Y

is proper, Y (hence X) is Noetherian, and F is flat over Y. We formalize our dreams
into three nice properties that we might wish in this situation. We will see that they
are closely related.

(a) Given a Cartesian square (28.1.0.1), isϕpq : Rpπ∗F⊗κ(q)→ Hp(Xq,F |Xq
)

an isomorphism?
(b) Given a Cartesian square (28.1.0.2), is ϕpZ : ψ

∗(Rpπ∗F ) → Rpπ ′
∗(ψ

′)∗F
an isomorphism?

(c) Is Rpπ∗F locally free?

We turn first to property (a). The dimension of the left side Rpπ∗F ⊗κ(q) is an
upper semicontinuous function of q ∈ Y by upper semicontinuity of rank of finite
type quasicoherent sheaves (Exercise 13.7.J). The Semicontinuity Theorem states
that the dimension of the right is also upper semicontinuous. More formally:

28.1.1. Semicontinuity Theorem. — Suppose π : X → Y is a proper morphism of
Noetherian schemes, and F is a coherent sheaf on X flat over Y. Then for each p ≥ 0,
the function Y → Z given by q 7→ dimκ(q)H

p(Xq,F |Xq
) is an upper semicontinuous

function of q ∈ Y.

Translation: ranks of cohomology groups are upper semicontinuous in proper
flat families. (A proof will be given in §28.2.4.)

28.1.2. Example. You may already have seen an example of cohomology groups
jumping, in §24.4.14. Here is a simpler example, albeit not of the structure sheaf.
Let (E, p0) be an elliptic curve over a field k, and consider the second projection
π : E× E→ E. Let L be the invertible sheaf (line bundle) on E× E corresponding
to the divisor that is the diagonal, minus the section of p0 × E of π (where p0 ∈ E).
Then L |p0

(i.e., L |p0×E) is trivial, but L |p is non-trivial for any p ̸= p0 (as we
showed in our study of genus 1 curves, in §19.9). Thus h0(E,L |p) is 0 in general,
but jumps to 1 for p = p0.

28.1.A. EXERCISE. Show that π∗L = 0. Thus we cannot picture π∗L as “gluing
together” h0 of the fibers; in this example, cohomology does not commute with
“base change” or “taking fibers”.

28.1.3. Side Remark. In characteristic 0, the cohomology of O doesn’t jump in
smooth families. Over C, this is because Betti numbers are constant in connected
families, and (21.5.11.1) (from Hodge theory) expresses the Betti constants hkBetti as
sums (over i + j = k) of upper semicontinuous functions hj(Ωi), so the Hodge
numbers hj(Ωi) must in fact be constant. The general characteristic 0 case can
be reduced to C by an application of the Lefschetz principle (which also arose in
§21.5.9). But ranks of cohomology groups of O for smooth families of varieties can
jump in positive characteristic (see for example [MO70920]). Also, the example
of §24.4.14 shows that the “smoothness” hypothesis cannot be removed.
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28.1.4. Grauert’s Theorem. If Rpπ∗F is locally free (property (c)) and ϕpq is
an isomorphism (property (a)), then hp(Xq,F |Xq

) is clearly locally constant. The
following is a partial converse.

28.1.5. Grauert’s Theorem. — If π : X→ Y is proper, Y is reduced and locally Noether-
ian, F is a coherent sheaf on X flat over Y, and hp(Xq,F |Xq

) is a locally constant func-
tion of q ∈ Y, then Rpπ∗F is locally free, and ϕpZ is an isomorphism for all ψ : Z → Y.

In other words, if cohomology groups of fibers have locally constant dimen-
sion (over a reduced base), then they can be fit together to form a vector bundle,
and the fiber of the pushforward is identified with the cohomology of the fiber.
(No Noetherian hypotheses are needed.)

We further note that if Y is integral, π is proper, and F is a coherent sheaf
on X flat over Y, then by the Semicontinuity Theorem 28.1.1 there is a dense open
subset of Y on which Rpπ∗F is locally free (and on which the fiber of the pth higher
pushforward is the pth cohomology of the fiber).

The following statement is even more magical than Grauert’s Theorem 28.1.5.

28.1.6. Cohomology and Base Change Theorem. — Suppose π is proper, Y is locally
Noetherian, F is coherent over X and flat over Y, and ϕpq is surjective. Then the following
hold.

(i) There is an open neighborhood U of q such that for any ψ : Z → U, ϕpZ is an
isomorphism. In particular, ϕpq is an isomorphism.

(ii) Furthermore, ϕp−1q is surjective (hence an isomorphism by (i)) if and only if
Rpπ∗F is locally free in some open neighborhood of q (or equivalently, (Rpπ∗F )q
is a free OY,q-module, Exercise 13.7.F). This in turn implies that hp is constant
in an open neighborhood of q.

(Proofs of Theorems 28.1.5 and 28.1.6 will be given in §28.2. Note in (ii) that if
p = 0, ϕp−1q is automatically surjective, as the codomain of ϕ−1

q is H−1(Xq,F |Xq
),

which is 0 by definition.)
This is amazing: the hypothesis that ϕpq is surjective involves what happens

only over reduced points, and it has implications over the (possibly nonreduced)
scheme as a whole! This might remind you of the local criterion for flatness (The-
orem 24.6.2), and indeed that is the key technical ingredient of the proof.

Here are some consequences.

28.1.B. EXERCISE. Use Theorem 28.1.6 to give a second solution to Exercise 24.4.E.
(This is a big weapon to bring to bear on this problem, but it is still enlightening;
the original solution to Exercise 24.4.E foreshadowed the proof of the Cohomology
and Base Change Theorem 28.1.6.)

28.1.C. EXERCISE. Suppose π : X→ Y is proper, Y is locally Noetherian, and F is a
coherent sheaf on X, flat over Y. Suppose further that Hp(Xq,F |Xq

) = 0 for some
q ∈ Y. Show that there is an open neighborhood U of q such that (Rpπ∗F )|U = 0.

28.1.D. EXERCISE. Suppose π : X→ Y is proper, Y is locally Noetherian, and F is
a coherent sheaf on X, flat over Y. Suppose further that Hp(Xq,F |Xq

) = 0 for all
q ∈ Y. Show that the (p− 1)st cohomology commutes with arbitrary base change:
ϕ
p−1
Z is an isomorphism for all ψ : Z→ Y.



710 The Rising Sea: Foundations of Algebraic Geometry

28.1.E. EXERCISE. Suppose π is proper, Y is locally Noetherian, and F is a coher-
ent sheaf on X flat over Y. Suppose further that Rpπ∗F = 0 for p ≥ p0. Show that
Hp(Xq,F |Xq

) = 0 for all q ∈ Y, p ≥ p0.

28.1.F. EXERCISE. Suppose π is proper, Y is locally Noetherian, and F is a coherent
sheaf on X, flat over Y. Suppose further that Y is reduced. Show that there exists
a dense open subset U of Y such that ϕpZ is an isomorphism for all ψ : Z → U

and all p. (Hint: find suitable open neighborhoods of the generic points of Y. See
Exercise 24.2.M and the paragraph following it.)

28.1.7. An important class of morphisms: Proper, O-connected morphisms π : X→
Y of locally Noetherian schemes.

If a morphism π : X → Y satisfies the property that the natural map OY →
π∗OX is an isomorphism, we say that π is O-connected.

28.1.G. EASY EXERCISE. Show that proper O-connected morphisms of locally
Noetherian schemes are surjective.

28.1.8. We will soon meet Zariski’s Connectedness Lemma 29.5.1, which shows
that proper, O-connected morphisms of locally Noetherian schemes have connected
fibers. In some sense, this class of morphisms is really the right class of morphisms
capturing what we might want by “connected fibers”; this is the motivation for the
terminology. The following result gives some evidence for this point of view, in
the flat context.

28.1.H. IMPORTANT EXERCISE. Suppose π : X → Y is a proper flat morphism of
locally Noetherian schemes, whose fibers satisfy h0(Xq,OXq

) = 1. (Important re-
mark: this is satisfied if π has geometrically connected and geometrically reduced
fibers, by §10.3.7.) Show that π is O-connected. Hint: consider

OY ⊗ κ(q) // (π∗OX)⊗ κ(q)
ϕ0

q // H0(Xq,OXq
) ∼= κ(q) .

The composition is surjective, hence ϕ0q is surjective, hence it is an isomorphism
by the Cohomology and Base Change Theorem 28.1.6(i). Then by the Cohomology
and Base Change Theorem 28.1.6(ii), π∗OX is locally free, thus of rank 1. Perhaps
use Nakayama’s Lemma to show that a map of invertible sheaves OY → π∗OX
that is an isomorphism on fibers over closed points points is necessarily an iso-
morphism of sheaves.

28.1.9. ⋆ Unimportant remark. This class of proper, O-connected morphisms is
not preserved by arbitrary base change, and thus is not “reasonable” in the sense
of §7.1.1. But you can show that they are preserved by flat base change, using
the fact that cohomology commutes with flat base change, Theorem 24.2.8. Fur-
thermore, the conditions of Exercise 28.1.H behave well under base change, and
Noetherian hypotheses can be removed from the Cohomology and Base Change
Theorem 28.1.6 (at the expense of finitely presented hypotheses, see §28.2.9), so
the class of morphisms π : X→ Y that are proper, finitely presented, and flat, with
geometrically connected and geometrically reduced fibers, is “reasonable” (and
useful).
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28.1.10. We next address the following question. Suppose π : X→ Y is a morphism
of schemes. Given an invertible sheaf L on X, we ask when it is the pullback of
an invertible sheaf M on Y. For this to be true, we certainly need that L is trivial
on the fibers. We will see that if π is a proper O-connected morphism of locally
Noetherian schemes, then this often suffices. Given L , we recover M as π∗L ; the
fibers of M are one-dimensional, and glue together to form a line bundle. We now
begin to make this precise.

28.1.I. EXERCISE. Suppose π : X→ Y is a proper, O-connected morphism of locally
Noetherian schemes. Show that if M is any invertible sheaf on Y, then the natural
morphism M → π∗π

∗M is an isomorphism. In particular, we can recover M from
π∗M by applying the pushforward π∗.

28.1.11. Proposition. — Suppose π : X→ Y is a flat, proper, O-connected morphism of
locally Noetherian schemes. Suppose also that Y is reduced, and L is an invertible sheaf on
X that is trivial on the fibers of π (i.e., Lq is a trivial invertible sheaf on Xq for all q ∈ Y).
Then π∗L is an invertible sheaf on Y (call it M ), and the natural map π∗M → L is an
isomorphism.

Proof. By Grauert’s Theorem 28.1.5, π∗L is locally free of rank 1 (again, call it
M ), and M ⊗OY

κ(q) → H0(Xq,Lq) is an isomorphism. We have a natural map
of invertible sheaves π∗M = π∗π∗L → L . To show that it is an isomorphism,
we need only show that it is surjective. (Do you see why? If A is a ring, and
ϕ : A → A is a surjection of A-modules, why is ϕ an isomorphism?) For this, it
suffices to show that it is surjective on the fibers of π. (Do you see why? Hint: if
the cokernel of the map is not 0, then it is not 0 above some point of Y.) But this
follows from the hypotheses. □

Proposition 28.1.11 has some pleasant consequences. For example, if you have
two invertible sheaves A and B on X that are isomorphic on every fiber of π, then
they differ by a pullback of an invertible sheaf on Y: just apply Proposition 28.1.11
to A ⊗ B∨. But Proposition 28.1.11 has the unpleasant hypothesis that the tar-
get must be reduced. We can get rid of this hypothesis by replacing the use of
Grauert’s Theorem with the Cohomology and Base Change Theorem 28.1.6. We
do this now.

28.1.12. Projective bundles.

28.1.J. EXERCISE. Let X be a locally Noetherian scheme, and let pr1 : X× Pn → X

be the projection onto the first factor. Suppose L is a line bundle on X × Pn,
whose degree on every fiber of pr1 is zero. Use the Cohomology and Base Change
Theorem 28.1.6 to show that (pr1)∗L is an invertible sheaf on X. Use Nakayama’s
Lemma (in some guise) to show that the natural map pr∗1((pr1)∗L ) → L is an
isomorphism.

Your argument will apply just as well to the situation where pr1 : X× Pn → X

is replaced by a Pn-bundle over X, pr1 : Z → X; or by pr1 : Z → X which is a
smooth morphism whose geometric fibers are integral curves of genus 0.

Furthermore, the locally Noetherian hypotheses can be removed, see §28.2.9.
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28.1.K. EXERCISE. Suppose X is a connected Noetherian scheme. Show that
Pic(X × Pn) ∼= PicX × Z. Hint: the map PicX × PicPn → Pic(X × Pn) is given by
(L ,O(m)) 7→ pr∗1L ⊗ pr∗2O(m), where pr1 : X × Pn → X and pr2 : X × Pn → Pn
are the projections from X×Pn to its factors. (The notation ⊠ is often used for this
construction, see §16.4.8.)

A very similar argument will show that ifZ is a Pn-bundle overX, then PicZ ∼=
PicX× Z. You will undoubtedly also be able to figure out the right statement if X
is not connected.

28.1.13. Remark. As mentioned in §19.10.1, the Picard group of a scheme often
“wants to be a scheme”. You may be able to make this precise in the case of PicPnZ .
In this case, the scheme PicPnZ is “Z copies of SpecZ”, with the “obvious” group
scheme structure. Can you figure out what functor it represents? Can you show
that it represents this functor? This will require extending Exercise 28.1.K out of
the Noetherian setting, using §28.2.9.

28.1.L. EXERCISE. Suppose π : X → Y is a projective flat morphism over a Noe-
therian integral scheme, all of whose geometric fibers are isomorphic to Pn (over
the appropriate field). Show that π is a projective bundle if and only if there is
an invertible sheaf L on X that restricts to O(1) on all the geometric fibers. (One
direction is clear: if it is a projective bundle, then it has a O(1) which comes from
the projectivization, see Exercise 17.2.D. In the other direction, the candidate vec-
tor bundle is π∗L . Show that it is indeed a locally free sheaf of the desired rank.
Show that its projectivization is indeed π : X→ Y.)

Caution: the map π : ProjR[x, y, z]/(x2+y2+ z2)→ SpecR shows that not ev-
ery projective flat morphism over a Noetherian integral scheme, all of whose geo-
metric fibers are isomorphic to Pn, is necessarily a Pn-bundle. However, Tsen’s The-
orem implies that if the target is a smooth curve over an algebraically closed field, then
the morphism is a Pn-bundle (see [GS, Thm. 6.2.8]). Example 18.4.5 shows that
“curve” cannot be replaced by “5-fold” in this statement — the “universal smooth
plane conic” is not a P1-bundle over the parameter space U ⊂ P5 of smooth plane
conics. If you wish, you can extend Example 18.4.5 to show that “curve” cannot
even be replaced by “surface”. (Just replace the P5 of all conics with a generally
chosen P2 of conics — but then figure out what goes wrong if you try to replace it
with a generally chosen P1 of conics.)

28.1.M. EXERCISE. Suppose π : X→ Y is the projectivization of a vector bundle F
over a locally Noetherian scheme (i.e., X ∼= Proj Sym• F ). Recall from §17.2.3 that
for any invertible sheaf L on Y, X ∼= Proj Sym•(F ⊗ L )). Show that these are the
only ways in which it is the projectivization of a vector bundle. (Hint: recover F
by pushing forward O(1).)

28.1.14. The Hodge bundle.

28.1.N. EXERCISE (THE HODGE BUNDLE). Suppose π : X→ Y is a flat proper mor-
phism of locally Noetherian schemes, and the fibers of π are regular irreducible
curves of genus g. Show that π∗ΩX/Y is a locally free sheaf on Y of rank g, and
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that the construction of π commutes with base change: given a Cartesian square

(28.1.14.1) X ′ ψ ′
//

π ′

��

X

π

��
Y ′ ψ // Y,

there is a canonical isomorphism(
π ′
∗ΩX ′/Y ′

)
∼= ψ∗ (π∗ΩX/Y) .

(The locally free sheaf π∗ΩX/Y is called the Hodge bundle.) Hint: use the Coho-
mology and Base Change Theorem 28.1.6 twice, once with p = 2, and once with
p = 1.

28.2 ⋆ Proofs of cohomology and base change theorems

The key to proving the Semicontinuity Theorem 28.1.1, Grauert’s Theorem 28.1.5,
and the Cohomology and Base Change Theorem 28.1.6 is the following wonderful
idea of Mumford (see [Mu3, p. 47 Lem. 1]). It turns questions of pushforwards
(and how they behave under arbitrary base change) into something computable
with vector bundles (hence questions of linear algebra). After stating it, we will
interpret it.

28.2.1. Key Theorem. — Suppose π : X → SpecB is a proper morphism, and F is a
coherent sheaf on X, flat over SpecB. Then there is a complex

(28.2.1.1) · · · // K−1 // K0 // K1 // · · · // Kn // 0

of finitely generated free B-modules and an isomorphism of functors

(28.2.1.2) Hp(X×B A,F ⊗B A) ∼= Hp(K• ⊗B A)

for all p, for all ring maps B→ A.

Because (28.2.1.1) is a complex of free B-modules, all of the information is con-
tained in the maps, which are matrices with entries in B. This will turn questions
about cohomology (and base change) into questions about linear algebra. For ex-
ample, semicontinuity will turn into the fact that ranks of matrices (with functions
as entries) drop on closed subsets (§11.4.4(ii)).

Although the complex (28.2.1.1) is infinite, by (28.2.1.2) it has no cohomology
in negative degree, even after any ring extensionB→ A (as the left side of (28.2.1.2)
is 0 for p < 0).

The idea behind the proof is as follows: take the Čech complex, produce a
complex of finite rank free modules mapping to it “with the same cohomology” (a
quasiisomorphic complex, §18.2.3). We first construct the complex so that (28.2.1.2)
holds for B = A, and then show the same complex works for general A. We begin
with a lemma.

28.2.2. Lemma. — Let B be a Noetherian ring. Suppose C• is a complex of B-modules
such thatHi(C•) are finitely generated B-modules, and such thatCp = 0 for p > n. Then
there exists a complex K• of finite rank free B-modules such that Kp = 0 for p > n, and a
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homomorphism of complexes α : K• → C• such that α induces isomorphisms Hi(K•) →
Hi(C•) for all i.

Proof. We build this complex inductively. (This may remind you of Hint 23.3.3.)
Assume we have defined (Kp, αp, δp) for p ≥ m+ 1 (as in (28.2.2.1)) such that the
squares commute, and the top row is a complex, and αq defines an isomorphism
of cohomology Hq(K•) → Hq(C•) for q ≥ m + 2 and a surjection ker δm+1 →
Hm+1(C•), and the Kp are finite rank free B-modules. (Our base case is m = p:
take Kn = 0 for n > p.)

(28.2.2.1) Km+1 δm+1

//

αm+1

��

Km+2 //

αm+2

��

· · ·

· · · // Cm−1 // Cm
δm

// Cm+1

δm+1

// Cm+2 // · · · .

(We sloppily use δq for the horizontal morphisms in both rows.)
We construct (Km, δm, αm). Choose generators ofHm(C•), say c1, . . . , cM. Let

Dm+1 := ker
(

ker(δm+1)
αm+1

−→ Hm+1(C•)

)
(where the δm+1 is the differential of the top complex K•). Choose generators of
Dm+1, say d1, . . . , dN. Let Km = B⊕(M+N). Define δm : Km → Km+1 by sending
the last N generators to d1, . . . , dN, and the first M generators to 0. Define αm

by sending the first M generators of B⊕(M+N) to (lifts of) c1, . . . , cM, and sending
the last N generators to arbitrarily chosen lifts of the αm+1(di) (as the αm+1(di)
are 0 in Hm+1(C•), and thus lie in the image of δm), so the square (with upper left
corner Km) commutes. Then by construction, we have completed our inductive
step:

Km

αm

��

δm // Km+1 δm+1

//

αm+1

��

Km+2 //

αm+2

��

· · ·

· · · // Cm−1 // Cm
δm

// Cm+1

δm+1

// Cm+2 // · · · .

□

28.2.3. Lemma. — Suppose α : K• → C• is a morphism of complexes of flat B-modules,
bounded on the right (i.e., Kn = Cn = 0 for n ≫ 0), inducing isomorphisms of coho-
mology (a quasiisomorphism, §18.2.3). Then “this quasiisomorphism commutes with arbi-
trary change of base ring”: for everyB-algebraA, the mapsHp(K•⊗BA)→ Hp(C•⊗BA)
are isomorphisms.

Proof. The mapping coneM• of α : K• → C• is exact by Exercise 1.7.E. ThenM•⊗B
A is still exact, by Exercise 24.3.F. ButM• ⊗B A is the mapping cone of

α⊗B A : K• ⊗B A→ C• ⊗B A,

so by Exercise 1.7.E, α ⊗B A induces an isomorphism of cohomology (i.e., is a
quasiisomorphism) too. □
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Proof of Key Theorem 28.2.1. Choose a finite affine covering of X. Take the Čech com-
plexC• for F with respect to this cover. Recall that Grothendieck’s Coherence The-
orem 18.9.1 (which had Noetherian hypotheses) showed that the cohomology of
F is coherent. (Theorem 18.9.1 required serious work. If you need Theorem 28.2.1
only in the projective case, the analogous statement with projective hypotheses,
Theorem 18.8.1(d), was much easier.) Apply Lemma 28.2.2 to get the nicer vari-
ant K• of the same complex C•. By Lemma 28.2.3, if we tensor with A and take
cohomology, we get the same answer whether we use K• or C•. □

We now use Theorem 28.2.1 to prove some of the fundamental results stated
earlier: the Semicontinuity Theorem 28.1.1, Grauert’s Theorem 28.1.5, and the Co-
homology and Base Change Theorem 28.1.6. In the course of proving Semiconti-
nuity, we will give a new proof of Theorem 24.7.1, that Euler characteristics are
locally constant in flat families (that applies more generally in proper situations).

28.2.4. Proof of the Semicontinuity Theorem 28.1.1. The result is local on Y, so
we may assume Y is affine. Let K• be a complex as in Key Theorem 28.2.1.

Then for q ∈ Y,

dimκ(q)H
p(Xq,F |Xq

) = dimκ(q) ker(δp ⊗B κ(q)) − dimκ(q) im(δp−1 ⊗B κ(q))
= dimκ(q)(K

p ⊗B κ(q)) − dimκ(q) im(δp ⊗B κ(q))
−dimκ(q) im(δp−1 ⊗B κ(q))(28.2.4.1)

Now dimκ(q) im(δp⊗Bκ(q)) is a lower semicontinuous function on Y. (Reason:
the locus where the dimension is less than some number N is obtained by setting
all N × N minors of the matrix Kp → Kp+1 to 0; cf. §11.4.4(ii)).) The same is true
for dimκ(q) im(δp−1 ⊗B κ(q)). The result follows. □

28.2.5. A new proof (and extension to the proper case) of Theorem 24.7.1 that
Euler characteristics of flat sheaves are locally constant.

If K• were finite “on the left” as well — if Kp = 0 for p ≪ 0 — then we
would have a short proof of Theorem 24.7.1. By taking alternating sums (over p)
of (28.2.4.1), we would have that

χ(Xq,F |Xq
) =
∑

(−1)php(Xq,F |Xq
) =
∑

(−1)p rankKp,

which is locally constant. The only problem is that the sums are infinite. We patch
this problem as follows. Define J• by Jp = Kp for p ≥ 0, Jp = 0 for p < −1, and
J−1 := ker(K0 → K1). Combine the J• into a complex, by defining Jp → Jp+1 as the
obvious map induced by K•. We have a map of complexes J• → K•. Clearly this
induces an isomorphism on cohomology (as J• patently has the same cohomology
as K• at step p ≥ 0, and both have 0 cohomology for p < 0). Thus the composition
β : J• → K• → C• induces an isomorphism on cohomology as well.

Now J−1 is coherent (as it is the kernel of a map of coherent modules). Con-
sider the mapping coneM• of β : J• → C•:

0→ J−1 → C−1 ⊕ J0 → C0 ⊕ J1 → · · ·→ Cn−1 ⊕ Jn → Cn → 0.

From Exercise 1.7.E, as J• → C• induces an isomorphism on cohomology, the map-
ping cone has no cohomology — it is exact. All terms in it are flat except possibly
J−1 (the Cp are flat by assumption, and Ji is free for i ̸= −1). Hence J−1 is flat
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too, by Exercise 24.3.G. But flat coherent sheaves are locally free (Theorem 24.4.7).
Then Theorem 24.7.1 follows from

χ(Xq,F |Xq
) =
∑

(−1)php(Xq,F |Xq
) =
∑

(−1)p rank Jp.

□

28.2.6. ⋆⋆ Proof of Grauert’s Theorem 28.1.5 and the Cohomology and Base
Change Theorem 28.1.6.

Thanks to Theorem 28.2.1, Theorems 28.1.5 and 28.1.6 are now statements
about complexes of free modules over a Noetherian ring. We begin with some
general comments on dealing with the cohomology of a complex

· · · // Kp
δp // Kp+1 // · · · .

We define some notation for functions on a complex (most of which already ap-
peared in §23.3.7).

• Let Zp be the kernel of the pth differential of a complex, so for example
ZpK• = ker δp.

• Let Bp+1 be the image of the pth differential, so for example Bp+1K• =
im δp.

• LetWp+1 be the cokernel of the pth differential, so for exampleWp+1K• =
coker δp.

• As usual, let Hp be the homology at the pth step.
We have exact sequences (cf. (1.6.5.3) and (1.6.5.4))

(28.2.6.1) 0 // Zp // Kp // Kp+1 // Wp+1 // 0

(28.2.6.2) 0 // Zp // Kp // Bp+1 // 0

(28.2.6.3) 0 // Bp // Zp // Hp // 0

(28.2.6.4) 0 // Bp // Kp // Wp // 0

(28.2.6.5) 0 // Hp // Wp // Bp+1 // 0.

We proceed by a series of exercises, some of which were involved in the proof
of the FHHF Theorem (Exercise 1.6.H). Suppose C• is any complex in an abelian
category A with enough projectives, and suppose F is any right-exact functor from
A .

28.2.A. EXERCISE (COKERNELS COMMUTE WITH RIGHT-EXACT FUNCTORS). De-
scribe an isomorphism γp : FWpC• ∼ // WpFC• . (Hint: consider Cp−1 → Cp →
WpC• → 0.)

28.2.B. EXERCISE.
(a) Describe a map βp : FBpC• → BpFC•. Hint: (28.2.6.4) induces

R1FWpC• // FBpC• //

βp

��

FCp //

=

��

FWpC• //

∼γp

��

0

0 // BpFC• // FCp // WpFC• // 0.
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(b) Show that βp is surjective. Possible hint: use Exercise 1.7.B, a weaker version
of the Snake Lemma, to get an exact sequence

R1FCp // R1FWpC• // kerβp // 0 // kerγp

// cokerβp // 0 // cokerγp // 0.

28.2.C. EXERCISE.
(a) Describe a map αp : FZpC• → ZpFC•. Hint: use (28.2.6.2) to induce

R1FBp+1C• // FZpC• //

αp

��

FCp //

=

��

FBp+1C• //

βp+1

��

0

0 // ZpFC• // FCp // Bp+1FC• // 0

(b) Use Exercise 1.7.B to get an exact sequence

R1FCp // R1FBp+1C• // kerαp // 0 // kerβp+1

// cokerαp // 0 // cokerβp+1 // 0.

28.2.D. EXERCISE.
(a) Describe a map ϵp : FHKp → HFKp. (This is the FHHF Theorem for right-exact
functors, Exercise 1.6.H(a).) Hint: (28.2.6.3) induces

R1FHpC• // FBpC• //

βp

��

FZpC• //

αp

��

FHpC• //

ϵp

��

0

0 // BpFC• // ZpFC• // HpFC• // 0

(b) Use Exercise 1.7.B to get an exact sequence:

R1FZpC• // R1FHpC• // kerβp // kerαp // ker ϵp

// cokerβp // cokerαp // coker ϵp // 0.

28.2.7. Back to the theorems we want to prove. Recall the properties we discussed at
the start of §28.1.

(a) Given a Cartesian square (28.1.0.1), isϕpq : Rpπ∗F⊗κ(q)→ Hp(Xq,F |Xq
)

an isomorphism?
(b) Given a Cartesian square (28.1.0.2), is ϕpZ : ψ

∗(Rpπ∗F ) → Rpπ ′
∗(ψ

′)∗F
an isomorphism?

(c) Is Rpπ∗F locally free?
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We reduce to the case Y and Z are both affine, say Y = SpecB. We apply our
general results of §28.2.6 to the complex (28.2.1.1) of Theorem 28.2.1.

28.2.E. EXERCISE. Suppose WpK• and Wp+1K• are flat. Show that the answer to
(b), and hence (a), is yes. Show that the answer to (c) is yes if Y is reduced or locally
Noetherian. Hint: (You will take F to be the functor (·) ⊗B A, where A is some B-
algebra.) Use (28.2.6.4) (shifted) to show that Bp+1K• is flat, and then (28.2.6.5) to
show that HpK• is flat. By Exercise 28.2.A, the construction of the cokernel W•

behaves well under base change. The flatness of Bp+1 and Hp imply that their
constructions behave well under base change as well — apply F to (28.2.6.4) and
(28.2.6.5) respectively. (If you care, you can check that ZpK• is also locally free, and
behaves well under base change.)

28.2.F. EXERCISE. Prove Grauert’s Theorem 28.1.5. (Reminder: you won’t need
Noetherian hypotheses.) Hint: By (28.2.4.1), WpK• and Wp+1K• have constant
rank. But finite type quasicoherent sheaves having constant rank on a reduced
scheme are locally free (Exercise 13.7.K), so we can invoke Exercise 28.2.E. Con-
clude that HpK• is flat of constant rank, and hence locally free.

28.2.8. Proof of the Cohomology and Base Change Theorem 28.1.6. Keep in mind that
we now have locally Noetherian hypotheses. We have reduced to the case Y and Z
are both affine, say Y = SpecB. Let F be the functor · ⊗B κ(q). The key input is the
local criterion for flatness (Theorem 24.6.2): R1FWpK• = 0 if and only if WpK• is
flat at q (and similarly with W replaced by other letters). In particular, R1FKp = 0
for all p. Also keep in mind that if a coherent sheaf on a locally Noetherian scheme
(such as SpecB) is flat at a point q, then it is flat in an open neighborhood of that
point, by Corollary 24.4.7 (flat = locally free for such sheaves).

28.2.G. EXERCISE. Look at the boxed snakes in §28.2.6 (with C• = K•), and show
the following in order, starting from the assumption that coker ϵp = 0:

• cokerαp = 0, kerβp+1 = 0, R1FWp+1K• = 0;
• Wp+1K• is flat at q, Bp+1K• is flat at q (use (28.2.6.4) with the indexing

shifted by one), ZpK• is flat at q (use (28.2.6.3));
• R1FBp+1K• = 0;
• kerαp = 0, ker ϵp = 0.

It might be useful for later to note that

R1FWpK• ∼= kerβp ∼= R1FHpK•

At this point, we have shown that ϕpq is an isomorphism — part of part (i) of
the theorem.

28.2.H. EXERCISE. Prove part (i) of the Cohomology and Base Change Theo-
rem 28.1.6.

Also, ϕp−1q surjective implies WpK• is flat (in the same way that you showed
ϕ
p
q surjective impliesWp+1K• is flat), so we getHp is free by Exercise 28.2.E, yield-

ing half of (ii).
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28.2.I. EXERCISE. For the other direction of (ii), shift the grading of the last two
boxed snakes down by one, to obtain further isomorphisms

kerβp ∼= cokerαp−1 ∼= coker ϵp−1.

For the other direction of (ii), note that if the stalksWpK• andWp+1K• at y are
flat, then they are locally free (by Corollary 24.4.7), and henceWpK• and Wp+1K•

are locally free in an open neighborhood of q by Exercise 13.7.F. Thus the stalks of
WpK• andWp+1K• are flat in an open neighborhood of q, and the same argument
applies for any point in this open neighborhood to show that Wp+1K•, Bp+1K•,
and ZpK• are all flat.

28.2.J. EXERCISE. Use this to show the following, possibly in order:
• R1FCp+1 = R1FBp+1 = R1FZp = 0.
• kerβp+1 = 0, cokerαp = 0, coker ϵp = 0.

28.2.K. EXERCISE. Put all the pieces together and finish the proof of part (ii) of the
Cohomology and Base Change Theorem 28.1.6. □

28.2.9. ⋆ Removing Noetherian conditions.
It can be helpful to have versions of the theorems of §28.1 without Noetherian

conditions; important examples come from moduli theory, and will be discussed
in the next section. Noetherian conditions can often be exchanged for finite pre-
sentation conditions. We begin with an extension of Exercise 9.3.H.

28.2.L. EXERCISE. Suppose π : X → SpecB is a finitely presented morphism, and
F is a finitely presented quasicoherent sheaf on X. Show that there exists a base
change diagram of the form

(28.2.9.1) F F ′

X

π

��

σ // X ′

π ′

��
SpecB

ρ // SpecZ[x1, . . . , xN]/I

where N is some integer, I ⊂ Z[x1, . . . , xN], and π ′ is finitely presented (= finite
type as the target is Noetherian, see §7.3.17), and a finitely presented (= coherent)
quasicoherent sheaf F ′ on X ′ with F ∼= σ∗F ′.

28.2.10. Properties of π ′. (The ideal I appears in the statement of Exercise 28.2.L
not because it is needed there, but to make the statement of this remark correct.)
If π is proper, then diagram (28.2.9.1) can be constructed so that π ′ is also proper
(using [Gr-EGA, IV3.8.10.5]). Furthermore, if F is flat over SpecB, then (28.2.9.1)
can be constructed so that F ′ is flat over SpecZ[x1, . . . , xN]/I (using [Gr-EGA,
IV3.11.2.6]). This requires significantly more work.

28.2.M. EXERCISE. Assuming the results stated in §28.2.10, prove the following re-
sults, with the “locally Noetherian” hypotheses removed, and “finite presentation”
hypotheses added:
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(a) the constancy of Euler characteristic in flat families (Theorem 24.7.1, ex-
tended to the proper case as in §28.2.5);

(b) the Semicontinuity Theorem 28.1.1;
(c) Grauert’s Theorem 28.1.5 (you will have to show that Z[x1, . . . , xN]/I in

(28.2.9.1) can be taken to be reduced); and
(d) the Cohomology and Base Change Theorem 28.1.6.

28.2.11. Necessity of finite presentation conditions. The finite presentation conditions
are necessary. There is a projective flat morphism to a connected target where the
fiber dimension jumps. There is a finite flat morphism where the degree of the
fiber is not locally constant. There is a projective flat morphism to a connected
target where the fibers are curves, and the arithmetic genus is not constant. See
[Stacks, tag 05LB] for the first example; the other two use the same idea.

28.3 Applying cohomology and base change to moduli problems

The theory of moduli relies on ideas of cohomology and base change. We
explore this by examining two special cases of one of the primordial moduli spaces,
the Hilbert scheme: the Grassmannian, and the fact that degree d hypersurfaces in
projective space are “parametrized” by another projective space (corresponding to
degree d polynomials, see Remark 4.5.3).

As suggested in §24.1, the Hilbert functor HilbY Pn of PnY parametrizes finitely
presented closed subschemes of PnY , where Y is an arbitrary scheme. More pre-
cisely, it is a contravariant functor sending the Y-scheme X to the set of finitely pre-
sented closed subschemes of X ×Y PnY = PnX flat over X (and sending morphisms
X1 → X2 to pullbacks of flat families). An early achievement of Grothendieck
was the construction of the Hilbert scheme, which can then be cleverly used to
construct many other moduli spaces.

28.3.1. Theorem (Grothendieck). — HilbZ Pn is representable by a scheme locally of
finite type.

(Grothendieck’s original argument is in [Gr5]. A readable construction is
given in [Mu2], and in [FGIKNV, Ch. 5].)

28.3.A. EASY EXERCISE. Assuming Theorem 28.3.1, show that HilbY Pn is repre-
sentable, by showing that it is represented by HilbZ Pn×Z Y. Thus the general case
follows from the “universal” case of Y = Z.

28.3.B. EXERCISE. Assuming Theorem 28.3.1, show that HilbZ Pn is the disjoint
union of schemes Hilbp(m)

Z Pn, each one corresponding to finitely presented closed
subschemes of PnZ whose fibers have fixed Hilbert polynomial p(m). Hint: Corol-
lary 24.7.2.

28.3.2. Theorem (Grothendieck). — Each Hilbp(m)
Z Pn is projective over Z.

In order to get some feeling for the Hilbert scheme, we discuss two important
examples, without relying on Theorem 28.3.1.
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28.3.3. The Grassmannian.
We have defined the Grassmannian G(k, n) twice before, in §6.7 and §16.7.

The second time involved showing the representability of a (contravariant) functor
(from Sheaves to Sets), of rank k locally free quotient sheaves of a rank n free sheaf.

We now consider a parameter space for a more geometric problem. The space
will again be G(k, n), but because we won’t immediately know this, we invent
some temporary notation. Let G ′(k, n) be the contravariant functor (from Schemes
to Sets) which assigns to a scheme B the set of finitely presented closed subschemes
of Pn−1B , flat over B, whose fiber over any point b ∈ B is a (linearly embedded)
Pk−1
κ(b) in Pn−1

κ(b):

(28.3.3.1) X

flat, f. pr.
��

� � cl. subscheme // Pn−1B

π

wwppp
ppp

ppp
ppp

p

B

(This describes the map to Sets; you should think through how pullback makes
this into a contravariant functor.)

28.3.4. Theorem. — The functor G ′(k, n) is represented by G(k, n).

Translation: there is a natural bijection between diagrams of the form (28.3.3.1)
(where the fibers are Pk−1’s) and diagrams of the form (16.7.0.1) (the diagrams that
G(k, n) parametrizes, or represents).

One direction is notably easier. Suppose we are given a diagram of the form
(16.7.0.1) over a scheme B,

(28.3.4.1) O⊕n
B

// // Q,

where Q is locally free of rank k. Applying Proj
B

to the Sym• construction on both
O⊕n
B and Q, we obtain a closed embedding

(28.3.4.2) Proj
B
(Sym• Q)

� � //

&&LL
LLL

LLL
LLL

Proj
B

(
Sym• O⊕n

B

)
xxppp

ppp
ppp

ppp
= Pn−1 × B

B

(as, for example, in Exercise 17.2.H).
The fibers are linearly embedded Pk−1’s (as base change, in this case to a point

ofB, commutes with the Proj construction, Exercise 17.2.E). Note that Proj (Sym• Q)
is flat and finitely presented over B, as it is a projective bundle. We have con-
structed a diagram of the form (28.3.3.1).

We now need to reverse this. The trick is to produce (28.3.4.1) from our geo-
metric situation (28.3.3.1), and this is where cohomology and base change will be
used.

Given a diagram of the form (28.3.3.1) (where the fibers are Pk−1’s), consider
the closed subscheme exact sequence for X:

0→ IX → OPn−1
B
→ OX → 0.
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Tensor this with OPn−1
B

(1):

(28.3.4.3) 0→ IX(1)→ OPn−1
B

(1)→ OX(1)→ 0.

Note that OX(1) restricted to each fiber of π is O(1) on Pk−1 (over the residue
field), for which all higher cohomology vanishes (§18.3).

28.3.C. EXERCISE. Show that Riπ∗OX(1) = 0 for i > 0, and π∗OX(1) is locally free
of rank k. Hint: use the Cohomology and Base Change Theorem 28.1.6. Either use
the non-Noetherian discussion of §28.2.9 (which we haven’t proved), or else just
assume B is locally Noetherian.

28.3.D. EXERCISE. Show that the long exact sequence obtained by applying π∗ to
(28.3.4.3) is just a short exact sequence of locally free sheaves

0→ π∗IX(1)→ π∗OPn−1
B

(1)→ π∗OX(1)→ 0.

of ranks n − k, n, and k respectively, where the middle term is canonically identi-
fied with O⊕n

B .

The surjection O⊕n
B → π∗OX(1) is precisely a diagram of the sort we wished

to construct, (16.7.0.1).

28.3.E. EXERCISE. Close the loop, by using these two “inverse” constructions to
show that G(k, n) represents the functor G ′(k, n).

28.3.5. Hypersurfaces.
Ages ago (in Remark 4.5.3), we informally said that hypersurfaces of degree d

in Pn are parametrized by a P(
n+d

d )−1. We now make this precise. We work over
a base Z for suitable generality. You are welcome to replace Z by a field of your
choice, but by the same argument as in Easy Exercise 28.3.A, all other cases are
obtained from this one by base change.

Define the contravariant functor Hd,n : Sch → Sets from schemes to sets as
follows. To a scheme B, we associated the set of all closed subschemes X ↪→ PnB,
flat and finitely presented over B, all of whose fibers are degree d hypersurfaces in
Pn (over the appropriate residue field). To a morphism B1 → B2, we obtain a map
Hd,n(B2)→ Hd,n(B1) by pullback.

28.3.6. Proposition. — The functor Hd,n is represented by P(
n+d

d )−1.

As with the case of the Grassmannian, one direction is easy, and the other
requires cohomology and base change.

28.3.F. EASY EXERCISE. Over P(
n+d

d )−1, described a closed subscheme X ↪→
Pn × P(

n+d
d )−1 that will be the universal hypersurface. Show that X is flat and

finitely presented over P(
n+d

d )−1. (For flatness, you can use the local criterion of
flatness on the source, Exercise 24.6.F, but it is possible to deal with it easily by
working by hand.)

Thus given any morphism B → P(
n+d

d )−1, by pullback, we have a degree d
hypersurface X over B (an element of Hd,n(B)).
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Our goal is to reverse this process: from a degree d hypersurface π : X → PnB
over B (an element of Hd,n(B)), we want to describe a morphism B→ P(

n+d
d )−1.

Consider the closed subscheme exact sequence for X ↪→ PnB, twisted by OPn
B
(d):

(28.3.6.1) 0→ IX(d)→ OPn
B
(d)→ OX(d)→ 0.

28.3.G. EXERCISE (CF. EXERCISE 28.3.C). Show that the higher pushforwards (by
π) of each term of (28.3.6.1) is 0, and that the long exact sequence of pushforwards
of (28.3.6.1) is

0→ π∗IX(d)→ π∗OPn
B
(d)→ π∗OX(d)→ 0.

where the middle term is free of rank
(
n+d
d

)
(whose summands can be identified

with degree dmonomials in the projective variables x1, . . . , xn (see Exercise 8.2.K),
and the left term π∗IX(d) is locally free of rank 1 (basically, a line bundle).

(It is helpful to interpret the middle term O
⊕(n+d

d )
B as parametrizing homoge-

neous degree d polynomials in n+1 variables, and the rank 1 subsheaf of π∗IX(d)
as “the equation of X”. This will motivate what comes next.)

Taking the dual of the injection π∗IX(d) ↪→ O
⊕(n+d

d )
B , we have a surjection

O
⊕(n+d

d )
B

// // L

from a free sheaf onto an invertible sheaf L = (π∗IX(d))∨, which (by the univer-
sal property of projective space) yields a morphism B→ P(

n+d
d )−1.

28.3.H. EXERCISE. Close the loop: show that these two constructions are inverses,
thereby proving Proposition 28.3.6.

28.3.7. Remark. The proof of the representability of the Hilbert scheme shares a
number of features of our arguments about the Grassmannian and the parameter
space of hypersurfaces.





CHAPTER 29

Power series and the Theorem on Formal Functions

29.1 Introduction

Power series are a central tool in analytic geometry. Their analog in algebraic
geometry, completion, is similarly useful. We will only touch on some aspects of
the subject.

In §29.2, we deal with some algebraic preliminaries. In §29.3, we use comple-
tions to (finally) give a definition of various singularities, such as nodes. (We won’t
use these definitions in what follows.) In §29.4, we state the main technical result
of the chapter, the Theorem on Formal Functions 29.4.2. The subsequent three sec-
tions give applications. In §29.5, we prove Zariski’s Connectedness Lemma 29.5.1
and the Stein Factorization Theorem 29.5.3. In §29.6, we prove a commonly used
version of (Grothendieck’s version of) Zariski’s Main Theorem 29.6.1; we rely on
§29.5. In §29.7, we prove Castelnuovo’s Criterion for contracting (−1)-curves,
which we used in Chapter 27. The proof of Castelnuovo’s Criterion also uses §29.5.
Finally, in §29.8, we prove the Theorem on Formal Functions 29.4.2.

There are deliberately many small sections in this chapter, so you can see that
they tend not to be as hard at they look, with the exception of the proof of the The-
orem on Formal Functions itself, and possibly Theorem 29.2.6 relating completion
to exactness and flatness.

29.2 Algebraic preliminaries

Suppose A is a ring, and J1 ⊃ J2 ⊃ · · · is a decreasing sequence of ideals.
Then we may take the limit lim←−A/Jn. This ring is often denoted Â, and is called
the completion of A (for this sequence of ideals); the sequence of ideals is left
implicit. The most important case of completion is if Jn = In, where I is an ideal
of A. The limit lim←−A/In is called the I-adic completion of A, or the completion
of A along I or at I.

29.2.1. Example. We define k[[x1, . . . , xn]] as the completion of k[x1, . . . , xn] at the
maximal ideal (x1, . . . , xn). This is the ring of formal power series in n variables
over k.

The p-adic numbers (Example 1.4.3) are another example.

725
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29.2.A. EXERCISE. Suppose that J ′1 ⊃ J ′2 ⊃ · · · is a decreasing series of ideals that
is cofinal with Jn. In other words, for every Jn, there is some J ′N with Jn ⊃ J ′N,
and for every J ′n, there is some JN with J ′n ⊃ JN. Show that there is a canonical
isomorphism lim←−A/J ′n ∼= lim←−A/Jn. Thus what matters is less the specific sequence
of ideals than the “cofinal” equivalence class.

29.2.2. Preliminary remarks. We have an obvious morphism A→ Â.
If we put the discrete topology on A/Jn, then Â naturally has the structure of

a topological ring (a ring that is a topological space, where all the ring operations
are continuous, or equivalently, a ring object in the category of topological spaces).
We then can have the notion of a topological moduleM over a topological ringA ′

— a module over the underlying ring A ′, with a topology, such that the action of
A ′ onM is continuous.

In the case of completion at an ideal I, ifA→ Â is an injection, we say thatA is
I-adically separated or complete with respect to I, if the map is an isomorphism?
although we won’t use this phrase. (For example, the Krull Intersection Theorem
implies that if I is a proper ideal of a Noetherian integral domain or a Noetherian
local ring, then A is I-adically separated, see Exercise 12.9.A(b).)

29.2.B. EXERCISE. Suppose m is a maximal ideal of a ring A. Show that the
completion of A at m is canonically isomorphic to the completion of Am at m.

If (A,m) is a Noetherian local ring, then the natural map A → Â is an injec-
tion: anything in the kernel must lie in ∩mi, which is 0 by the Krull Intersection
Theorem (Exercise 12.9.A(b)). Thus “no information is lost by completing”, just as
analytic functions are (locally) determined by their power series expansion.

29.2.C. EXERCISE. Suppose that (A,m) is Noetherian local ring containing its
residue field k (i.e., it is a k-algebra), of dimension d. Let x1, . . . , xn be elements of
A whose images are a basis for m/m2. Show that the map of k-algebras

(29.2.2.1) k[[t1, . . . , tn]]→ Â

defined by ti 7→ xi is a surjection. (First explain why there is such a map!) As
usual, for local rings, the completion is assumed to be at the maximal ideal.

Exercise 29.2.C is a special case of the Cohen Structure Theorem. (See [E, §7.4]
for more on this topic.)

29.2.D. EXERCISE. Let X be a locally Noetherian scheme over k, let p ∈ X be
a rational (k-valued) point. Suppose p ∈ X is regular of codimension d (i.e.,
dim OX,p = d). Describe an isomorphism ÔX,p ∼= k[[x1, . . . , xd]] as topological
rings. (Hint: As in Exercise 29.2.C, choose d elements of m that restrict to a basis
of m/m2; these will be your x1, . . . , xd. Show that the map (29.2.2.1) has no kernel.
It may help to identify mn/mn+1 with Symn(m/m2) using Theorem 22.3.8.)

The converse also holds: if (A,m, k) is a Noetherian local ring that is a k-
algebra, and Â ∼= k[[x1, . . . , xd]], then A is a regular local ring of dimension d;
see [AtM, Prop. 11.24] for the key step.

29.2.3. Remark. Suppose p is a smooth rational (k-valued) point of a k-variety of
dimension d, and f ∈ OX,p (f is a “local function”). By way of the isomorphism of
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Exercise 29.2.D, we can interpret f as an element of k[[x1, . . . , xd]]. This should be
interpreted as the “power series expansion of f at p”, in the “local coordinates x1,
. . . , xd”.

29.2.4. Aside: Some more geometric motivation.
Exercise 29.2.D may give some motivation for completion: “in the completion,

regular schemes look like affine space”. This is often stated in the suggestive lan-
guage of “formally locally, regular schemes are isomorphic to affine space”; this
will be made somewhat more precise in §29.4.1.

We now give a little more geometric motivation for completion, that we will
not use later on. Recall from §12.6.1 that étale morphisms are designed to look like
“local isomorphisms” in differential geometry. But Exercise 12.6.F showed that this
metaphor badly fails in one important way. More precisely, let Y = Speck[t], and
X = Spec k[u, 1/u], and let p ∈ X be given by u = 1, and q ∈ Y be given by t = 1.
The morphism π : X→ Y induced by t 7→ u2 is étale, and π(p) = q. But there is no
open neighborhood of p that π maps isomorphically onto an open neighborhood
of q. However, the following Exercise shows that π induces an isomorphism of
completions (an isomorphism of “formal neighborhoods”).

29.2.E. EXERCISE. Continuing the notation of the previous paragraph, show that
π induces an isomorphism of completions ÔY,q → ÔX,p.

29.2.F. EXERCISE. Suppose Y = SpecA, and X = SpecA[t]/(f(t)), and π : X→ Y is
the morphism induced by A→ A[t]/(f(t)). Suppose p ∈ X is a closed point, q ∈ Y
is a closed point, π(p) = q, and π is étale at p and induces an isomorphism of
residue fields. Show that π induces an isomorphism of completions ÔY,q → ÔX,p.
(If you are not familiar with Hensel’s Lemma, you will rediscover its central idea
in the course of solving this exercise.)

With a little more care, you can show more generally that if π : X → Y is an
étale morphism, π(p) = q, and π induces an isomorphism of residue fields at p,
then π induces an isomorphism of completions ÔY,q → ÔX,p. (You may even wish
to think about how to remove the hypothesis of isomorphism of residue fields.)

These ideas are close to the definition of “formal étaleness” discussed in §25.2.6.
You can interpret these results as a statement that “the implicit function the-

orem works formally locally”, even though it doesn’t work Zariski-locally. (The
étale topology is somewhere between these two; it is partially designed so that the
implicit function theorem in this sense always holds, essentially by fiat. But this is
not the place to discuss the étale topology.)

29.2.5. Completion and exactness.
We conclude this section with an interesting and useful statement.

29.2.6. Theorem. — Suppose A is a Noetherian ring, and I ⊂ A is an ideal. For any
A-moduleM, let M̂ = lim←−M/IjM be the completion ofM with respect to I.
(a) The completion Â (of A with respect to I) is flat over A.
(b) IfM is finitely generated, then the natural map Â⊗AM→ M̂ is an isomorphism.
(c) If 0 → M → N → P → 0 is a short exact sequence of finitely generated A-modules,
then 0 → M̂ → N̂ → P̂ → 0 is exact. (Thus completion preserves exact sequences of
finitely generated modules, by Exercise 1.6.E.)
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We will use (a) in §29.3, and (b) in §29.8.

29.2.7. Remark. Before proving Theorem 29.2.6, we make some remarks. Parts
(a) and (b) together clearly imply part (c), but we will use (c) to prove (a) and
(b). Also, note a delicate distinction (which helps me remember the statement): if
0 → M → N → P → 0 is an exact sequence of A-modules, not necessarily finitely
generated, then

(29.2.7.1) 0→ Â⊗AM→ Â⊗A N→ Â⊗A P → 0

is always exact, but

(29.2.7.2) 0→ M̂→ N̂→ P̂ → 0

need not be exact — and when it is exact, it is often because the modules are finitely
generated, and thus (29.2.7.2) is really (29.2.7.1).

Caution: completion is not always exact. Consider the exact sequence of k[t]-
modules

0 // ⊕∞n=1k[t] ×(t,t2,t3,... ) // ⊕∞n=1k[t] // ⊕∞n=1k[t]/(tn) // 0.

After completion with respect to the ideal ((t, t, t, . . . )), the sequence is no longer
exact in the middle: (t2, t3, t4, . . .) maps to 0, but is not in the image of the comple-
tion of the previous term.

⋆⋆ Proof. The key step is to prove (c), which we do through a series of exercises.
Suppose that 0→M→ N→ P → 0 is a short exact sequence of finitely generated
A-modules.

29.2.G. EXERCISE. Show that N̂ → P̂ is surjective. Hint: consider an element of
P̂ as a sequence (pj ∈ P/IjP)j≥0, where the image of pj+1 is pj, cf. Exercise 1.4.B.
Build a preimage (nj ∈ N/IjN)j≥0 by induction on j.

We now wish to identify ker(N̂→ P̂) with M̂.

29.2.H. EXERCISE. Show that for each j ≥ 0,
(29.2.7.3) 0→M/(M ∩ IjN)→ N/IjN→ P/IjP → 0

is exact. (Possible hint: show that 0 → M ∩ IjN → M → N/IjN → P/IjP → 0 is
exact.)

The short exact sequences (29.2.7.3) form an inverse system as j varies. Its limit
is left-exact (because limits always are), but it is also right-exact by Exercise 1.6.M,
as the “transition maps on the left” M/(M ∩ Ij+1N) → M/(M ∩ IjN) are clearly
surjective. Thus

(29.2.7.4) 0→ lim←−M/(M ∩ IjN)→ N̂→ P̂ → 0

is exact. To complete the proof of (c), it suffices (by Exercise 29.2.A) to show that
the sequence of submodules IjM is cofinal with the sequenceM ∩ IjN, so that the
term lim←−M/(M ∩ IjN) on the left of (29.2.7.4) is naturally identified with M̂.

29.2.I. EXERCISE. Prove this. Hint: clearly IjM ⊂M ∩ IjN. By Corollary 12.9.4 to
the Artin-Rees Lemma 12.9.3, for some integer s, M ∩ Ij+sN = Ij(M ∩ IsN) for all
j ≥ 0, and clearly Ij(M ∩ IsN) ⊂ IjM.
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This completes the proof of part (c) of Theorem 29.2.6.
For part (b), presentM as

(29.2.7.5) A⊕m α // A⊕n //M // 0

where α is anm× nmatrix with coefficients in A. Completion is exact in this case
by part (c), and clearly commutes with finite direct sums, so

Â⊕m // Â⊕n // M̂ // 0

is exact. Tensor product is right-exact, and commutes with direct sums (Exer-
cise 1.3.M), so

Â⊕m // Â⊕n // Â⊗AM // 0

is exact as well. Notice that the maps from Â⊕m to Â⊕n in both right-exact se-
quences are the same; they are both α. Thus their cokernels are identified, and (b)
follows.

Finally, to prove (a), we need to extend the ideal-theoretic criterion for flatness
(Theorem 24.4.1) slightly. Recall (§24.4.2) that it is equivalent to the fact that an
A-module M is flat if and only if for all ideals I, the natural map I ⊗AM → M is
an injection.

29.2.J. EXERCISE (STRONGER FORM OF THE IDEAL-THEORETIC CRITERION FOR FLAT-
NESS). Show that anA-moduleM is flat if and only if for all finitely generated ideals
I, the natural map I⊗AM→M is an injection. (Hint: if there is a counterexample
for an ideal J that is not finitely generated, use it to find another counterexample
for an ideal I that is finitely generated.)

By this criterion, to prove (a) it suffices to prove that the multiplication map
I⊗A Â→ Â is an injection for all finitely generated ideals I. But by part (b), this is
the same showing that Î→ Â is an injection; and this follows from part (c). □

29.3 Defining types of singularities

Singularities are best defined in terms of completions. As an important first
example, we finally define “node”.

29.3.1. Definition. Suppose X is a dimension 1 variety over k, and p ∈ X is a
closed point. We say that X has a node at p if the completion of OX,p at mX,p is
isomorphic (as topological rings) to k[[x, y]]/(xy).

29.3.A. EXERCISE. Suppose k = k and char k ̸= 2. Show that the curve in A2k cut
out by (y2 − x2 − x3), (which we have been studying repeatedly since Figure 7.4)
has a node at the origin.

29.3.B. EXERCISE. Suppose k = k and char k ̸= 2, and we have f(x, y) ∈ k[x, y].
Show that Speck[x, y]/(f(x, y)) has a node at the origin if and only if f has no terms
of degree 0 or 1, and the degree 2 terms are not a perfect square. (This generalizes
Exercise 29.3.A.)
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The definition of node outside the case of varieties over algebraically closed
fields is more problematic, and we give some possible ways forward. For varieties
over a non-algebraically closed field k, one can always base change to the closure
k. As an alternative approach, if p is a k-valued point of a variety over k (not
necessarily algebraically closed), then we could take the same Definition 29.3.1;
this might reasonably be called a split node, because the branches (or more pre-
cisely, the tangent directions) are distinguished. Those singularities that are not
split nodes, but which become nodes after base change to k (such as the origin in
SpecR[x, y]/(x2 + y2)) might reasonably be called non-split nodes.

29.3.2. Other singularities. We may define other singularities similarly. To avoid
complications, we do so over an algebraically closed field.

29.3.3. Definition. Suppose X is a variety over k, and p is a closed point of X,
where char k ̸= 2, 3. We say that X has a cusp (resp. tacnode, triple point) at p
if ÔX,p is isomorphic to the completion of the curve Speck[x, y]/(y2 − x3) (resp.
Spec k[x, y]/(y2 − x4), Spec k[x, y]/(y3 − x3)). We say that X has an ordinary mul-
tiple point of multiplicity m, or ordinary m-fold point, if ÔX,p is isomorphic to
the completion of the curve Speck[x, y]/(f(x, y)) where f is a homogeneous poly-
nomial of degree m with no repeated roots. (You can see quickly that an ordinary
2-fold point — or ordinary double point — is precisely a node, and an ordinary 3-fold
point is a triple point.)

29.3.C. TRIVIAL EXERCISE. (For this exercise, work over an algebraically closed
field for simplicity.) Define An curve singularity (see §22.4.4). Define An surface
singularity (see Exercise 22.4.F). Define Dn, E6, E7, and E8 surface and curve sin-
gularities (see Remark 22.4.5).

29.3.4. Using this definition. We now give an example of how this definition can
be used.

29.3.D. EXERCISE. Suppose X is a k-variety with a node at a closed point p. Show
that the blow up of X at p yields a morphism β : X̃ → X, where the exceptional
divisor β−1(p) consists of two reduced smooth points. Hint: use the fact that com-
pletion is flat (Theorem 29.2.6(a)), and that blowing up commutes with flat base
change (Exercise 24.2.P(a)), to turn this into a calculation on the “formal model” of
the node, Speck[[x, y]]/(xy).

29.3.E. EXERCISE. Continuing the terminology of the previous exercise, describe
an exact sequence

(29.3.4.1) 0→ OX → β∗OX̃ → Op → 0.

Hint: cohomology commutes with flat base change, Theorem 24.2.8 (or more sim-
ply, the affine case version Exercise 18.8.B(b)).

29.3.F. EXERCISE. We continue the terminology of the previous two exercises. If X
is a pure-dimensional reduced projective curve, show that pa(X) = pa(X̃) + 1.

Thus “resolving a node” of a curve reduces the arithmetic genus of the curve
by 1. If you wish, you can readily show that “resolving a cusp” reduces the genus
by 1, and “resolving a tacnode” reduces the genus by 2. In general, for each type of
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curve singularity, the contribution it makes to the genus — the difference between
the genus of the curve and that of its normalization, when the curve is projective
— is called the δ-invariant. Thus δ for a node or cusp is 1, and δ for a tacnode is 2.

29.3.G. EXERCISE. Show that for any singularity type (other than a smooth point),
δ > 0.

29.3.H. EXERCISE. Show that a reduced irreducible degree d plane curve can have
at most

(
d−1
2

)
singularities.

29.3.I. EXERCISE. Here is a trick for speedily working out the genus of a nodal
(projective reduced) curve when it comes up in examples. (The description will
be informal.) Assuming it is possible, draw a sketch on a piece of paper (i.e., the
real plane) where nodes “look like nodes”, and a curve of genus g is drawn with
g holes, as in Figure 29.1. (In Figure 29.1, we see three irreducible components,
of geometric genus 0, 2, and 3 respectively. The first two components are smooth,
while the third meets itself twice. There are also three additional nodes, joining
each pair of the irreducible components.) Then if the curve is connected, count the
number of holes visible in the picture. Prove that this recipe works. (Feel free to
figure out what to do if the curve is not connected.)

FIGURE 29.1. This curve has genus 8 (count the “holes”!)

This can be quite useful. For example, the sketches in Figure 29.2 can remind
you that a degree d plane curve has arithmetic genus

(
d−1
2

)
, the curve on P1 × P1

coming from a section of O(a, b) (§16.4.8) has genus (a− 1)(b− 1), and a curve in
class 2C+ 2F on the Hirzebruch surface F2 (using the language of Exercise 20.2.M)
has arithmetic genus 3. In each case, we are taking a suitable curve in the class, tak-
ing advantage of the fact that arithmetic genus is constant in flat families (Crucial
Exercise 24.7.B).

29.3.5. Other definitions. If k = C, then definitions of this sort agree with the
analytic definitions (see [Ar1, §1]). For example, a complex algebraic curve singu-
larity is a node if and only if it is analytically isomorphic to an open neighborhood
of xy = 0 in C2. There is also a notion of isomorphism “étale-locally”, which we
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FIGURE 29.2. These curves have arithmetic genus 6, 6, and 3 respectively

do not define here. Once again, this leads to the same definition of these types of
singularities (see [Ar2, §2]).

29.4 The Theorem on Formal Functions

Suppose π : X → Y is proper morphism of locally Noetherian schemes, and F is
a coherent sheaf on X, so Riπ∗F is a coherent sheaf (Grothendieck’s Coherence
Theorem 18.9.1). Fix a point q ∈ Y. We already have a sense that there is an
imperfect relationship between the fiber of Riπ∗F at q and the cohomology of F
“on the fiber Xq”, and much of Chapter 28 was devoted to making this precise.

The Theorem on Formal Functions deals with this issue in a different way.
Rather than comparing the fiber of Riπ∗F with the cohomology of F restricted
to the fiber, it gives a precise isomorphism between information on “infinitesimal
thickenings” of the situation.

29.4.1. We now make this more precise. If Z is a closed subscheme ofW cut out by
ideal sheaf I , we say that the closed subscheme cut out by I n+1 is the nth order
formal (or infinitesimal) neighborhood (or thickening) of Z (in W). The phrase
“formal neighborhood” without mention of an “order” refers to the information
contained in all of these neighborhoods at once, often in the form of a limit of the
sort we will soon describe. (This also leads us to the notion of formal schemes, an
important notion we will nonetheless not need.)

We turn now to our situation of interest. Rather than the fiber of Riπ∗F at q,
we consider its completion: we take the stalk at q, and complete it at mY,q. Rather
than the cohomology of F along the fiber, we consider the cohomology of F when
restricted to the nth formal neighborhood Xn of the fiber, and take the limit. The
Theorem of Formal Functions says that these are canonically identified.

Before we state the Theorem on Formal Functions, we need to be precise about
what these limits are, and how they are defined. To concentrate on the essential,
we do this in the special case where q is a closed point of Y, and leave the (mild)
extension to the general case to you (Exercise 29.4.A).

We deal first with Riπ∗F . It is helpful to note that by Exercise 29.2.B, we
can compute the restriction to the nth formal neighborhood either by restrict-
ing/tensoring to the stalk Spec OY,q, or in any affine open neighborhood of q ∈ Y.
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For convenience, we pick an affine open neighborhood SpecB ⊂ Y of q. (Again,
by Exercise 29.2.B, it won’t matter which affine open subset we take.) Define
XB := π−1(SpecB) for convenience. Let m ⊂ B be the maximal ideal correspond-
ing to q. Then Riπ∗(F )^q is canonically the completion of the coherent B-module
Hi(XB,F |XB

) at m:

Riπ∗(F )^q = lim←−Hi(XB,F |XB
)/mnHi(XB,F |XB

).

We turn next to the cohomology of F on thickenings of the fiber. We have
closed embeddingsXn ↪→ Xn+1, and thus maps of cohomology groupsHi(Xn+1,F |Xn+1

)→
Hi(Xn,F |Xn

). We have base change maps

(29.4.1.1) Hi(XB,F |XB
)/mnHi(XB,F |XB

)→ Hi(Xn,F |Xn
)

(see (28.1.0.3)) such that the square

Hi(XB,F |XB
)/mn+1Hi(XB,F |XB

) //

��

Hi(Xn+1,F |Xn+1
)

��
Hi(XB,F |XB

)/mnHi(XB,F |XB
) // Hi(Xn,F |Xn

)

commutes. (Do you see why? Basically, this is again because they are base change
maps.) Thus we have an induced map of limits:

(29.4.1.2) Riπ∗(F )^q → lim←−Hi(Xn,F |Xn
).

29.4.A. EXERCISE. Extend the previous discussion to the case where q is not
closed.

The Theorem on Formal Functions states that this is an isomorphism.

29.4.2. Theorem on Formal Functions. — Suppose π : X → Y is a proper morphism
of locally Noetherian schemes, F is a coherent sheaf on X, and q ∈ Y. Then (29.4.1.2) is
an isomorphism for all i ≥ 0.

Warning: the Theorem on Formal Functions does not imply anything about
the maps “at finite level”, i.e., about (29.4.1.1) for “finite n”.

The proof of Theorem 29.4.2 is quite subtle, and is postponed to the double-
starred §29.8. We first give some important applications.

29.5 Zariski’s Connectedness Lemma and Stein Factorization

We now state and prove Zariski’s Connectedness Lemma, which was men-
tioned in §28.1.8.

29.5.1. Zariski’s Connectedness Lemma. — If a proper morphism π : X → Y of
locally Noetherian schemes is O-connected (see §28.1.7), then π−1(q) is connected for
every q ∈ Y.

The proof requires the following result.
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29.5.A. EASY EXERCISE (THE COMPLETION OF A LOCAL RING IS A LOCAL RING).
Suppose (A,m) is a Noetherian local ring. Show that the completion of A along
m, Â := lim←−A/mn, is a local ring, with maximal ideal mÂ. Hint: show that any
element of Â not in mÂ is invertible.

Proof. Assume otherwise that there is some q ∈ Y such that π−1(q) is not con-
nected, say π−1(q) = X1

⨿
X2 (where X1 and X2 are nonempty open subsets of

the fiber, see Figure 29.3). Then the nth order formal neighborhood of π−1(q), hav-
ing the same topological space, is also disconnected. We use the useful trick of
idempotents (Remark 3.6.3). Let e1 be the function 1 on X1 and 0 on X2, and let
e2 be the function 1 on X2 and 0 on X1. These functions make sense for any order
formal neighborhood, and they have natural images in the inverse limit. Thus we
get nonzero elements e1, e2 ∈ ^OY,q with e1+ e2 = 1, e1e2 = 0. Now, ^OY,q is a local
ring (Exercise 29.5.A). But e1e2 = 0 implies that neither e1 nor e2 is invertible (or
else the other one would be 0), so both e1 and e2 are in the maximal ideal, and
hence e1 + e2 can’t be 1. We thus have a contradiction. □

FIGURE 29.3. “Formal neighborhoods” of X1 and X2 in the proof
of Zariski’s Connectedness Lemma 29.5.1

29.5.2. Stein factorization. We next show the existence of a Stein factorization. We
could have given this construction long before, but now Zariski’s Connectedness
Lemma 29.5.1 will give us some impressive consequences.

29.5.3. Stein Factorization Theorem. — Any proper morphism π : X → Y of locally
Noetherian schemes can be factored intoβ◦α, whereα : X→ Y ′ is proper and O-connected
(hence has connected fibers, by Zariski’s Connectedness Lemma 29.5.1), and β : Y ′ → Y is
a finite morphism.

(29.5.3.1) X

π
��>

>>
>>

>>
> α

O-conn. // Y ′

finite

β

��~~
~~
~~
~~

Y

FIGURE 29.4. Stein Factorization
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We note that by the Cancellation Theorem 10.1.19 for projective morphisms, if
π is projective, then so is α (as δβ, being a closed embedding, is projective).

Although it is not in the statement of the theorem, the proof produces a specific
factorization, which is called the Stein factorization of π. The picture to have in
mind is that the Stein factorization (roughly) contracts the continuous parts of the
fibers, in some canonical way; see Figure 29.4.

As usual, the Noetherian hypotheses can be removed (see [Stacks, tag 03H2]).

Proof of the Stein Factorization Theorem 29.5.3. By Grothendieck’s Coherence Theo-
rem 18.9.1, π∗OX is a coherent sheaf (of algebras) on Y. Define Y ′ := Spec π∗OX,
so (as π∗OX is finite type) the structure morphism β : Y ′ → Y is finite. We have a
factorization

X

π
��>

>>
>>

>>
> α

// Y ′

finite

β

��~~
~~
~~
~~

Y

Finally, we show that α is O-connected. By the quasicoherence of both OY ′ and
α∗OX, it suffices to check on an affine cover of Y ′. We choose as our affine cover
of Y ′ the pullback of an affine cover of Y. If U is an affine open subset of Y ′,
then on β−1(U), on the level of rings, OY ′ → α∗OX is precisely the isomorphism
Γ(U,π∗OX)→ Γ(U,π∗OX). □

29.5.B. EXERCISE. Suppose π : X→ Y is a proper morphism of locally Noetherian
schemes, that is an isomorphism over a dense open subset of Y. Suppose further
that Y is normal. Show that π is O-connected. (This applies, for example, to blow-
ups of smooth varieties under smooth centers.) Hence, by Zariski’s Connectedness
Lemma 29.5.1, for every q ∈ Y, π−1(q) is connected. This is called Zariski’s Main
Theorem (the version for birational morphisms). Hint: Exercise 9.7.P.

29.5.C. EXERCISE. Suppose π : X → Y and π ′ : X → Y ′ are two proper morphisms
of locally Noetherian schemes, each contracting the same connected set of X (and
an isomorphism elsewhere), and suppose Y and Y ′ are normal. Show that π and
π ′ are the same (or more precisely, that there is an isomorphism i : Y → Y ′ such
that π ′ = i ◦ π). Informal translation: If X → Y has connected fibers, then Y is
determined by just knowing the locus contracted on X. Hint: Identify Y and Y ′ as
topological spaces, and then identify π and π ′ as maps of topological spaces. Use
Stein factorization to recover the structure sheaf as π∗OX.

29.5.D. EXERCISE. Show that the construction of the Stein factorization of a
morphism π : X → Y of locally Noetherian schemes commutes with any flat base
change Z→ Y of locally Noetherian schemes.

29.5.4. Resolution of singularities of curves.
If C is a reduced projective curve over a field k, then we can resolve its singu-

larities by normalization: ν : C̃ → C. (See Remark 22.4.6 for some discussion of
resolution of singularities, and Theorem 12.5.8 for the reason why normal curves
are nonsingular.) But as we have seen from examples, it requires luck and insight
to figure out how to take an integral closure, and I often have neither. We now take
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the (inspired) guesswork out of desingularization by explaining how to desingu-
larize by blowing up. The algorithm is simple: we find a singular point, then blow
it up, then look for more singular points to repeat the process. Clearly if there are
no singular points to be found, then we are done; the problem is to show that this
is guaranteed to terminate. We do this by making use of an integer invariant: the
arithmetic genus. We must show (i) that if pa(C) = pa(C̃), then ν is an isomor-
phism — C is already nonsingular; (ii) if C ′ → C is a birational morphism, then
pa(C

′) ≤ pa(C) (so pa(C̃) will be a lower bound for the arithmetic genus through-
out the process); and (iii) that blowing up a singular point decreases the arithmetic
genus.

To set up these results, we consider the following situation. Suppose π : C ′ →
C is a finite morphism (where C is as described in the previous paragraph, and C ′

is a reduced curve), that is an isomorphism away from a finite closed subset of C.
Then the pullback map OC → π∗OC ′ has no kernel, as C is reduced, and the map
is an isomorphism on the generic points of the components of C. The cokernel G
is supported on a finite set of closed points, and thusHi(C,G ) = 0 for i > 0, and if
H0(C,G ) = 0, then G = 0. From the exact sequence

0→ OC → π∗OC ′ → G → 0,

and the fact that π is affine, χ(C ′,OC ′) = χ(C,OC) + χ(C,G ), from which pa(C) ≥
pa(C

′), with equality if and only if π is O-connected (i.e., G = 0).

29.5.E. EXERCISE. Show that if π is O-connected, then π is an isomorphism. Hint:
use Zariski’s Connectedness Lemma 29.5.1 to show that the fibers are connected,
and hence that π is bijective. Identify C and C ′ as topological spaces. Then use the
isomorphism OC → π∗OC to identify C and C ′ as ringed spaces.

To complete our strategy, it remains to show that if β : C ′ → C is the blow-
up of C at a point p, and β is an isomorphism, then C is already nonsingular
at that point. But if β is an isomorphism, then p is the exceptional divisor, and
hence effective Cartier, and hence cut out locally by a singular equation. But then
mC,p ⊂ OC,p is principal, so OC,p is a regular local ring of dimension 1.

(You should verify that we have completed our strategy. Can you extend this
argument to the case where C is not projective?)

Resolution of singularities for surfaces will be briefly discussed in §29.7.4.

29.6 Zariski’s Main Theorem

Zariski’s Main Theorem is misnamed in all possible ways (although not hor-
ribly so). It is not a single Theorem, because there are many results that go by this
name, and they often seem quite unrelated. What they have in common is that
they are intellectual descendants of a particular result of Zariski. This result is
not the Main Theorem of Zariski’s prolific career; the name comes because it was
the Main Theorem of a particular paper, [Z]. And finally, it is not Zariski’s in any
stronger sense than this; the modern versions are due to Grothendieck.

We have already seen one version of Zariski’s Main Theorem: the “birational”
form of Exercise 29.5.B. Our goal in this section is to prove a strong statement that
is close to the optimal version of the one most often used.
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Before we start, we note that the fiber of a proper morphism over a point q ∈ Y
is a proper (hence finite type) scheme over the residue field κ(q), and we say that
a point is isolated in its fiber if it forms a component of the fiber of dimension 0.

29.6.1. Zariski’s Main Theorem (Grothendieck’s form). — Suppose π : X→ Y is a
proper morphism of locally Noetherian schemes.
(a) The set of points of X that are isolated in their fiber forms an open subset X0 ⊂ X.
(b) The morphism π|X0

: X0 → Y factors into an open embedding X0 ↪→ Y ′ followed by a
finite morphism Y ′ → Y. Moreover, the morphism π : X→ Y factors through Y ′.

(29.6.1.1) X

α

��?
??

??
??

?

π

��

X0

π|X0 ��@
@@

@@
@@

@
� y open 33
/ �

open
??~~~~~~~~

Y ′

β finite����
��
��
��

Y

As with Stein factorization, the proof of the theorem yields a specific factoriza-
tion.

If π is a morphism of varieties, we already know part (a), by upper semiconti-
nuity of fiber dimension Theorem 11.4.2(a). For this reason, the proof in the case
of varieties is easier, and (even if you are interested in the more general case) you
are advised to read the proof restricting to this simpler case, to concentrate on the
main ideas. But even in the case of varieties, we will need some of the ideas arising
in the proof of (a), so you should read it until advised to skip ahead to (b).

Proof. (a) Take the Stein factorization (29.5.3.1) of π:

X

π

��

α

O-conn.

  @
@@

@@
@@

Y ′

finite

β

~~~~
~~
~~
~~

Y.

By the finiteness of β, a point of X is an isolated point in its fiber of π if and only if it
is an isolated point in its fiber of α. Thus we may replace by π by α. (Basically, we
are reducing to the case where π is O-connected, but we prefer to carefully call the
morphism under consideration α so we can return to considering π in the proof of
(b).)

Because fibers of proper O-connected morphisms of locally Noetherian schemes
are connected (Zariski’s Connectedness Lemma 29.5.1), a point is isolated in its
fiber of α if and only if it is its fiber.

If you are considering only the variety case, at this point you should jump to
the proof of part (b).

To show that X0 is open, we will identify it with the locus where Ωα = 0 (the
unramified locus of α— not of π!), which is open by Exercise 21.6.H.
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29.6.A. EXERCISE. If Ωα|p = 0, show that p is isolated in its fiber of α (and hence
of π).

We now show the other direction. Suppose p is isolated in its fiber, and let
r ∈ Y ′ be α(p). We will show that α induces an isomorphism α♯ : OY ′,r → OX,p, so
ΩOX,p/OY ′,r

= 0. As the construction ofΩ behaves well with respect to localization
on the source and target (Exercise 21.2.L), this implies that (Ωα)p = 0, so Ωα is 0
at p.

The stalk OY ′,r is obtained by taking the limit (of sections of O) over all open
subsets of Y ′ containing r. For any such open subset V ⊂ Y ′, the condition
α∗OX = OY ′ gives an isomorphism Γ(V,OY ′) ∼= Γ(α−1(V),OX) (compatible with
inclusions). We will show that the system of open subsets α−1(V) (as V varies
through open neighborhoods of r), which each necessarily contain p, is cofinal
with the system of open neighborhoods of p in X. To do this, we must show that
for any open neighborhood U of p in X, there is an open neighborhood V of r in
Y such that α−1(V) ⊂ U. To do this, note that X \ U is closed in X, so α(X \ U) is
closed in Y (as α is proper), so its complement V := Y \ α(X \ U) is open. Simply
note that α−1(V) ⊂ U (implicitly using that α, being proper and O-connected, is
surjective, see Exercise 28.1.G), and we are done.

(b) In our proof of (a), we have established that α gives a bijection between
X0 and an open subset of Y ′. Notice that this is furthermore a homeomorphism:
any open subset of Y ′ pulls back to an open subset of X0 by the continuity of
α; and if U is an open subset of X0, then α(X \ U) is a closed subset of Y ′, so
its complement (which is α(U), using that proper O-connected morphisms are
surjective, Exercise 28.1.G) is open.

Using this isomorphism of topological spaces, the condition of O-connectedness
of α (restricted to α(X0)) shows that α gives an isomorphism of ringed spaces (i.e.,
of schemes) X0 → α(X0). We have found our desired factorization. □

29.6.B. EXERCISE. Prove Zariski’s Main Theorem with Y affine, say SpecA, and
X a quasiprojective A-scheme. (Hint: by the Definition 4.5.9 of quasiprojective A-
scheme, we can find an open embedding X ↪→ X ′ into a projective A-scheme. Ap-
ply Theorem 29.6.1 to X ′ → SpecA.)

For the next two applications (Exercises 29.6.D and 29.6.E), we will need an an-
noying hypothesis, which is foreshadowed by the previous exercise. We say that
a morphism π : X → Y of locally Noetherian schemes satisfies (†) if for all affines
Ui in some open cover of Y, the restriction π|π−1(Ui) : π

−1(Ui) → Ui factors as
an open embedding into a scheme proper over Ui. A morphism satisfying (†) is
necessarily separated and finite type. It turns out that this is sufficient: Nagata’s
Compactification Theorem states that every separated finite type morphism of Noe-
therian schemes π : X → Y can be factored into an open embedding into a scheme
proper over Y. (See [Lü] for a proof. The Noetherian hypotheses can be replaced
by the condition that Y is quasicompact and quasiseparated, see [Co].)

29.6.C. EXERCISE. Show that if π : X → Y is a morphism of varieties over k, and
X is an open subset of a proper variety Z, then π satisfies (†). (Hint: X is an open
subscheme of its closure in Z×k Y.)
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29.6.D. EXERCISE. Suppose π : X→ Y is a quasifinite birational morphism of inte-
gral locally Noetherian schemes, and that Y is normal. Suppose further π satisfies
(†). Show that π is an open embedding. (Hence if furthermore π is a bijection, then
πmust be an isomorphism.)

29.6.E. EXERCISE. Suppose π : X → Y is a quasifinite morphism of Noetherian
schemes satisfying (†). Show that π factors as an open embedding into a finite
morphism.

X

π
��>

>>
>>

>>
>
� � open // Y ′

finite��~~
~~
~~
~~

Y

This shows that it is reasonable to think of quasifinite morphisms as “open subsets
of finite morphisms”, as promised in §7.3.15.

As a final application of Zariski’s Main Theorem, we can finally prove a char-
acterization of finite morphisms that we have mentioned a number of times.

29.6.2. Theorem. — Suppose π : X → Y is a morphism of locally Noetherian schemes.
The following are equivalent.

(a) π is finite.
(b) π is affine and proper.
(c) π is proper and quasifinite.

As usual, Noetherian hypotheses can be removed: [Gr-EGA, IV3.8.11.1] shows
that proper, quasifinite, locally finitely presented morphisms are finite.

Proof. Finite morphisms are affine by definition, and proper by Proposition 10.3.3,
so (a) implies (b).

To show that (b) implies (c), we need only show that affine proper morphisms
have finite fibers (as the “finite type” part of the definition of quasifiniteness is
taken care of by properness). This was shown in Exercise 18.9.A.

Finally, we assume (c), that π is proper and quasifinite, and show (a), that π is
finite. By Zariski’s Main Theorem 29.6.1, we have a factorization (29.6.1.1).

X0

π
��@

@@
@@

@@
@
� �

γ

open // Y ′

finite����
��
��
��

Y

Now X = X0. (Do you see why? Hint: Exercise 7.4.D followed by Exercise 7.3.H.)
By the Cancellation Theorem 10.1.19 for proper morphisms (using that Y ′ → Y is
finite hence separated), γ is proper.

29.6.F. EXERCISE. Show that proper quasicompact open embeddings are closed
embeddings. Hint: use Corollary 8.3.5 to show that the image is open and closed
in the target.

Applying this to our situation, we see that X → Y is the composition of two
finite morphisms γ : X ↪→ Y ′ and Y ′ → Y, and is thus finite itself. □
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29.6.3. ⋆⋆ Other versions of Zariski’s Main Theorem.
The Noetherian conditions in Theorem 29.6.1 can be relaxed (see [Gr-EGA,

IV3.8.12.6] or [GW, Thm. 12.73]): if π : X → Y is a separated morphism of finite
type, and Y is quasicompact and quasiseparated, then the set of points X0 isolated
in their fiber is open in X, and for every quasicompact open subset U of X0, there
is a factorization

U
γ

//

π|U ��?
??

??
??

? Y ′

β

finite��~~
~~
~~
~~

Y

such that β is finite, γ|U is a quasicompact open embedding, and γ−1(γ(U)) = U.
There are also topological and power series forms of Zariski’s Main Theorem,

see [Mu7, §III.9].

29.7 Castelnuovo’s Criterion for contracting (−1)-curves

We now prove a result used in Chapter 27. We showed in Exercise 22.4.O that if we
blow up a regular point of a surface at a (reduced) point, the exceptional divisor is
a (−1)-curve (see Definition 20.2.7: it is isomorphic to P1, and has normal bundle
OC(−1)). Castelnuovo’s Criterion is the converse: if we have a quasiprojective
surface containing a (−1)-curve, that surface is obtained by blowing up another
surface at a reduced regular point. We say that we can blow down the (−1)-curve.

29.7.1. Theorem (Castelnuovo’s Criterion). — Let C ⊂ X be a (−1)-curve on a
smooth projective surface over k. Then there exists a birational morphism π : X→ Y such
that Y is a smooth projective surface, π(C) is a k-valued point, π is the blow-up of Y at
that point, and C is the exceptional divisor of the blow-up.

By Exercise 29.5.C, there is only one way to “blow down C”: this contraction
is unique.

Proof. The proof is in three steps. Step 1. We construct π : X→ Y that contracts C to
a point q (and is otherwise an isomorphism). At this point we will know that Y is a
projective variety. Step 2. Then we show that Y is smooth; this is the hard step, and
requires the Theorem on Formal Functions 29.4.2. Step 3. Finally, we recognize π
as the blow-up Blq Y → Y.

Step 1. We do this by finding an invertible sheaf L whose complete linear
series will do the job. We start with a very ample invertible sheaf H on X such
that H1(X,H ) = 0. We can find such an invertible sheaf H by choosing any
very ample invertible sheaf, and then taking a suitably large multiple, invoking
Exercise 16.6.C (very ample ⊗ very ample = very ample) and Serre vanishing (The-
orem 18.1.4(ii)). Let k = H ·C; k > 0 by the very ampleness of H (Exercise 20.1.K).

29.7.A. EXERCISE. Show thatH1(X,H (iC)) = 0 for 0 ≤ i ≤ k. Hint: use induction
on i, using

(29.7.1.1) 0→H ((i− 1)C)→H (iC)→H (iC)|C → 0.

Hint: Note that H (iC) is a line bundle on C ∼= P1; which O(n) is it?
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Define L := H (kC). We will use the sections of H to obtain sections of L ,
via the map ϕ : H0(X,H )→ H0(X,H (kC)).

29.7.B. EXERCISE. Show that L is base-point-free. Hint: To show that L has
no base points away from C, consider the image of ϕ. To show that L has no
base points on C, use that from (29.7.1.1) for i = k, we have that H0(X,L ) →
H0(C,L |C) is surjective, and L |C ∼= OC.

Thus the complete linear series |L | yields a morphism π ′ from X to some pro-
jective space PN.

29.7.C. EXERCISE. Show that π ′ precisely contractsC to a point q ′. More explicitly,
show that π ′ sends C to a point q ′, and π ′|X\C : X \ C → PN \ {q ′} is a closed em-
bedding. Hint: To show that π ′ gives a closed embedding away from C: consider
the image of ϕ. To show that C is contracted by π ′, use the fact that deg L |C = 0.

Let Y ′ be the image of π ′, so we have a morphism X → Y ′ (which we also
call π ′). Let ν : Y → Y ′ be the normalization of Y ′, so π ′ lifts to π : X → Y by the
universal property of normalization (§9.7). (We are normalizing in order to use
Exercise 29.5.B in Step 2.)

29.7.D. EASY EXERCISE. Show that ν−1(q ′) ⊂ Y is a single point, which we call q;
and that π(C) = q. (Hint: the image of π is closed, and π(C) is connected.)

29.7.E. EXERCISE. Let X be a smooth projective surface, containing a curve C ⊂ X
isomorphic to P1k. IfC·C < 0, show that there is a morphism π : X→ X ′ contracting
C to a point, and leaving the rest of X unchanged. (This will not be used, and is
included to give practice with the argument of Step 1.)

Step 2. We now show that Y is a smooth surface. As Y is normal, we have
that π∗OX ∼= OY (π : X → Y is O-connected), by Exercise 29.5.B. We will show
that Y is smooth at q by showing that ÔY,p ∼= k[[x, y]] as topological rings, as
then dimk(m/m

2) = 2. By the Theorem on Formal Functions 29.4.2, ÔY,p ∼=
lim←−H0(C ′

n,OC ′
n
), whereC ′

n is the closed subscheme ofX that is the scheme-theoretic
pullback of the nth order neighborhood of q.

We are not precisely sure what the nth order neighborhood is, but that is fine;
this inverse system is cofinal with O(−nC) = I n

C/X (do you see why?), so we can
take this inverse limit instead (by Exercise 29.2.A). It suffices to show that for all
n ≥ 0, H0(Cn,OCn

) ∼= k[[x, y]]/(x, y)n where Cn is defined as 0 → O(−nC) →
OX → OCn

→ 0.
We do this by induction on n. As a k-vector space, this is easy, using

0→ I n/I n+1 → OCn+1
→ OCn

→ 0

(the closed subscheme exact sequence (13.5.4.1) for Cn in Cn+1), using the canon-
ical isomorphism H0(P1,OP1(n)) = Symn

(
H0(P1,OP1(1))

)
. The tricky thing is

that we want this isomorphism as rings.

29.7.F. EXERCISE. Prove this. (This may remind you of how we found the ring
of functions on the total space of an invertible sheaf in Exercise 19.11.E. This is no
coincidence.)

Hence we have smoothness, completing Step 2.
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Step 3. We now must recognize π as the blow-up of Y at q. As C is an effective
Cartier divisor on X, by the universal property of blowing up means that there is
a unique morphism αmaking the following diagram commute

X

π
��=

==
==

==
=

α // Blq Y

β
}}{{
{{
{{
{{

Y

By the Cancellation Theorem 10.1.19 for projective morphisms, α is projective.

29.7.G. EXERCISE. Show that α has finite fibers.

As projective morphisms with finite fibers are finite (Theorem 18.1.8), α is a
finite morphism. But then α is a birational finite morphism to a normal scheme,
and thus an isomorphism by Exercise 9.7.P. □

So far we have only used the Theorem on Formal Functions 29.4.2 for H0. The
next exercise will give you a chance to see it in action for other cohomology groups.

29.7.H. EXERCISE.
(a) Suppose β : X = Blq Y → Y is the blow-up of a smooth surface over k at a
smooth k-valued point. Show that R1β∗OX = R2β∗OX = 0.
(b) Suppose further that Y is projective. Show that the natural mapsβ∗ : H1(Y,OY)→
H1(X,OX) and β∗ : H2(Y,OY)→ H2(X,OX) are isomorphisms.

29.7.2. Elementary transformations.
Recall the definition of the Hirzebruch surfaces Fn (over a field k) from Exam-

ple 17.2.4. If n > 0, then on Fn, we have a unique curve E of maximally negative
self-intersection (Exercise 20.2.R). It has self-intersection E · E = −n. It is a section
of the projection π : Fn → P1. (If n = 0, so Fn ∼= P1 × P1, E is usually defined as
any “constant” section of π : P1 × P1 → P1 — it is not unique.)

Suppose q is a k-valued point of Fn. Let F be the fiber of π containing q.

29.7.I. EXERCISE. Show that F · F = 0.

Let β : Blq Fn → Fn be the blow-up at q, and let Z be the exceptional divisor
(as the name “E” is taken). Let F ′ be the proper transform of F, and let E ′ be the
proper transform of E.

29.7.J. EXERCISE. Show that F ′ · F ′ = −1.

Thus by Castelnuovo’s Criterion, we can blow down F ′, to obtain a new sur-
face Y.

29.7.K. EXERCISE. Suppose n > 0. If q /∈ E, show that Y ∼= Fn−1. If q ∈ E,
show that Y ∼= Fn+1. Possible hint: If you knew that Y was a Hirzebruch surface
Fm, you could recognize it by the self-intersection of the unique curve of negative
self-intersection ifm > 0.

29.7.L. EXERCISE. Suppose n = 0. Show that Y ∼= F1. Hint: Exercise 22.4.K.

This discussion can be generalized to P1-bundles over more general curves.
The following is just a first step in the story.
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29.7.M. EXERCISE. Suppose C is a smooth curve over k, π : X→ C is a P1-bundle
over C. If q is a k-valued point of C, then we can blow up q and blow down the
proper transform of the fiber through q. Show that the result is another P1-bundle
X ′ over C. (This is called an elementary transformation of the ruled surface.)

29.7.N. EXERCISE. Suppose X = Proj
C
(L ⊕ M ), and q lies on the section corre-

sponding to
0→ L → L ⊕ M →M → 0.

Show that X ′ ∼= Proj
C
(L (π(q))⊕ M )).

Can you speculate (or show) what happens if you are just told thatX ∼= Proj
C

V ,
where V is a locally free sheaf of rank 2, and q lies on a section corresponding to
(20.2.8.1)?

29.7.3. Minimal models of surfaces.
A surface over an algebraically closed field is called minimal if it has no (−1)-

curves. If a surface X is not minimal, then we can choose a (−1)-curve, and
blow it down. If the resulting surface is not minimal, we can again blow down
a (−1)-curve, and so on. By the finiteness of the Picard number ρ (which we have
admittedly not proved, see §18.4.10), as blowing down reduces ρ by 1 (by Exer-
cise 22.4.O), this process must terminate. By this means we construct a minimal
model of X — a minimal surface birational to X. If minimal models were unique,
this would provide a means of classifying surfaces up to birationality: if X and X ′

were smooth projective surfaces, to see if they were birational, we would find their
minimal models, and see if they were isomorphic.

Sadly, minimal models are not unique. The example of P1 × P1 and P2 show
that there can be more than one minimal model in a birational equivalence class.
(Why are these two surfaces minimal?) Furthermore, the isomorphism between
the blow-up of P2 at two points with the blow-up of P1 × P1 at one point (Exer-
cise 22.4.K) shows that a smooth surface can have more than one minimal model.

Nonetheless, the failure of uniqueness is well-understood: it was shown by
Zariski that the only surfaces with more than one minimal model are those bira-
tional toC×P1 for some curveC. This is part of the Enriques-Kodaira classification
of surfaces. For more on this, see [Be], [Ba], or [BPV, §6].

29.7.4. Here are two more facts worth mentioning but not proving here. First, sin-
gular surfaces can be desingularized by normalizing and then repeatedly blowing
up points; this explicit desingularization is analogous to the version for curves
in §29.5.4, and is generalized by Hironaka’s Theorem on resolution of singularities
(Remark 22.4.6). Second, birational maps X oo //___ Y between smooth surfaces can
be factored into a finite number of blow-ups followed by a finite number of blow-
downs. As a consequence, by Exercise 29.7.H, birational projective surfaces have
the same Hi(O) for i = 0, 1, 2. (Using facts stated in §21.5.10, you can show that
over C, this implies that the entire Hodge diamond except for h1,1 is a birational
invariant of surfaces.)

29.8 ⋆⋆ Proof of the Theorem on Formal Functions 29.4.2
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In this section, we will prove the following.

29.8.1. Theorem. — Suppose X → SpecB is a proper morphism, with B Noetherian,
and F is a coherent sheaf on X. Suppose I is an ideal of B, and B̂ is the I-adic completion
lim←−B/In of B. Let Xn := X×B (B/In+1) (the nth order formal neighborhood of the fiber
X0) and let Fn be the pullback of F to Xn. Then for all i, the natural map

(29.8.1.1) Hi(X,F )⊗B B̂→ lim←−Hi(Xn,Fn)

is an isomorphism.

29.8.A. EXERCISE. Prove that Theorem 29.8.1 implies Theorem 29.4.2. (This is
essentially immediate if q is a closed point, and might require a little thought if q
is not closed; cf. Exercise 29.4.A.)

On the right side of (29.8.1.1), we have morphisms X1 ↪→ X2 ↪→ · · · ↪→ X, from
which we get restriction maps Hi(X1,F1) ← Hi(X2,F2) ← · · · ← Hi(X,F ). But
notice that the Xi are all supported on the same underlying set, and it is helpful to
keep in mind that the Fi’s are all sheaves on the same topological space.

We will most often apply this in the case where I is a maximal ideal. But we
may as well prove the result in this generality. The result can be relativized (with B
and I replaced by a scheme and a closed subscheme), but we won’t bother giving
a precise statement.

Our proof will only use properness through the fact that the pushforward of
coherent sheaves under proper morphisms are coherent (Grothendieck’s Coher-
ence Theorem 18.9.1), which required hard work. If you haven’t read that proof,
you can retreat to the projective case with little loss.

We will show that both sides of (29.8.1.1) are B̂-modules, and that the map of
(29.8.1.1) is an isomorphism of topological B̂-modules.

Write InF for the coherent sheaf on X defined as you might expect: if I is
the pullback of Ĩ from SpecB to X, InF is the image of I n ⊗ F → F . Then
Hi(Xn,Fn) can be interpreted as Hi(X,F/InF ) (by §18.1 property (v)), so the
terms in the limit on the right side of (29.8.1.1) all live on the single space X. From
now on we work on X.

The map in the statement of the theorem arises from the restrictionHi(X,F )→
Hi(X,F/InF ). This appears in the long exact sequence associated to

0→ InF → F → F/InF → 0,

and in particular in the portion

Hi(X, InF )
un // Hi(X,F ) // Hi(X,F/InF ) // Hi+1(X, InF )

vn // Hi+1(X,F ).

We shrink this further to:
(29.8.1.2)

0 // Hi(X,F )/ im(un) // Hi(X,F/InF ) // ker(vn) // 0

and then apply lim←− to both sides. Limits are left-exact (§1.6.12), so the result is
left-exact. But the situation is even better than that. The transition maps of the left
term for our exact sequences,

Hi(X,F )/ im(un+1)→ Hi(X,F )/ im(un),
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are clearly surjective, so by Exercise 1.6.M we have an exact sequence
(29.8.1.3)

0 // lim←−Hi(X,F )/ im(un)
µ // lim←−Hi(X,F/InF ) // lim←−ker(vn) // 0.

Two key facts will imply our result. (i) We will show that {im(un)} is cofinal
with the I-adic topology on Hi(X,F ). Thus by Exercise 29.2.A, we have a natural
isomorphism of the left side of (29.8.1.3) with

lim←−Hi(X,F )/InHi(X,F ) ∼= Hi(X,F )^.

Because Hi(X,F ) is a finitely generated B-module (by Grothendieck’s Coherence
Theorem 18.9.1, or more simply Exercise 18.1.A in the projective case), this is iso-
morphic to Hi(X,F ) ⊗B B̂ by Theorem 29.2.6(b), the left side of (29.8.1.1). (ii) We
will show that there is some d such that the transition map ker(vn+d) → ker(vn)
is the zero map for n≫ 0. This implies that the right term lim←−ker(vn) in (29.8.1.3)
is 0. (Do you see why?) As a result, the map µ in (29.8.1.3) becomes our desired
isomorphism. We now begin these two tasks.

(i) We will show that there is some n0 such that for n ≥ n0,

InHi(X,F ) ⊂ im(un) ⊂ In−n0Hi(X,F ).

The first inclusion is straightforward: note that Hi(X,F ) → Hi(X,F/InF ) is B-
linear with kernel im(un), and target annihilated by In.

We will make use of the ring R• := B⊕I⊕I2⊕· · · (the Rees algebra, defined in
§12.9.1). It is a graded ring generated in degree 1. Because I is a finitely generated
ideal of B, R• is a finitely generated B-algebra, and thus Noetherian.

For each a ∈ Im, we have a commutative diagram of quasicoherent sheaves

InF
×a //� _

��

In+mF� _

��
F

×a // F

which induces a commutative diagram of B-modules

Hi(X, InF )
×a //

��

Hi(X, In+mF )

��
Hi(X,F )

×a // Hi(X,F ).

In this way, ⊕n≥0Hi(X, InF ) and ⊕n≥0Hi(X,F ) are graded R•-modules (where
a is considered as an element of Rm). Then ⊕n≥0 im(un) is the image of the map
of R•-modules

(29.8.1.4) ⊕Hi(X, InF )→ ⊕Hi(X,F ),

and is thus itself an R•-module.
We will show that ⊕n≥0Hi(X, InF ) is a finitely generated R•-module. This will

imply that its image ⊕n≥0 im(un) is also finitely generated, and thus by Proposi-
tion 12.9.2, for some n0 im(un+1) = I im(un) for n ≥ n0, which in turn implies (by
induction) that for n ≥ n0, we have im(un) ⊂ In−n0Hi(X,F ), completing task (i).
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Now cohomology of quasicoherent sheaves commutes with direct sums (§18.1
(vii)), so ⊕n≥0Hi(X, InF ) = Hi(X,⊕n≥0InF ).

29.8.B. EXERCISE. Consider the fibered diagram

X×B R•
σ //

ρ

��

X

��
SpecR• // SpecB.

Interpret ⊕nHi(X, InF ) as ρ∗σ∗F . (Be sure to check that the R•-action determined
by the pushforward agrees with the R•-action on ⊕nHi(X, InF ) described above!)

But σ∗F is coherent (pullback takes finite type quasicoherent sheaves to fi-
nite type quasicoherent sheaves, and all schemes here are locally Noetherian),
so ρ∗σ∗F is coherent (proper pushforward of coherent sheaves on Noetherian
schemes are coherent, by Grothendieck’s Coherence Theorem 18.9.1). We have
now completed task (i).

(ii) For the same reason that ⊕n≥0Hi(X, InF ) is a coherent R•-module, ⊕n≥0Hi+1(X, InF )
is a coherent R•-module. (Just replace iwith i+1 throughout the discussion in (i).)

Notice that ⊕n≥0 ker vn is the kernel of the map of graded R•-modules

⊕n≥0Hi+1(X, InF )
⊕n≥0vn // ⊕n≥0Hi+1(X,F )

(which is just (29.8.1.4) with i replaced by i + 1) and thus itself has the struc-
ture of a graded R•-module. It is a submodule of the finitely generated module
⊕Hi+1(X, InF ), so ⊕n≥0 ker vn is finitely generated as well. We invoke Propo-
sition 12.9.2 a second time, to show that there is some d such that ker(vn+1) =
Iker(vn) for n ≥ d, from which

(29.8.1.5) ker(vA+B) = I
A ker vB for A ≥ 0 and B ≥ d.

For any a ∈ Id, the map

×a : InF → In+dF

induces a mapHi+1(X, InF )→ Hi+1(X, In+dF ), which sends ker(vn) to ker(vn+d).
(This can be interpreted as coming from the action of R• on the module ⊕ker(vn),
taking a as an element of Rd.) As a runs through Id, the B-linear spans of the
images of

ker(vn) // Hi+1(X, InF )
×a // Hi+1(X, In+dF )

for n ≥ d is Id ker(vn) = ker(vn+d) by (29.8.1.5). The composition

Hi+1(X, InF )
×a // Hi+1(X, In+dF ) // Hi+1(X, InF )

(the latter map coming from inclusion of sheaves) is exactly the map

×a : Hi+1(X, InF )→ Hi+1(X, InF ).
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Thus the image of ker(vn+d) → ker(vn) is exactly the B-linear span of the images
of the composition maps

ker(vn)
� � // Hi+1(X, InF )

×a // Hi+1(X, InF )

as a runs through Id.
It thus suffices to show that the multiplication by a ∈ Id on Hi+1(X, InF ) an-

nihilates ker(vn) for n ≥ d. Because ker(vn) = In−d ker(vd) for all n ≥ d ((29.8.1.5)
again), it suffices to show that any element a of Id annihilates ker(vd). But ker(vd)
is the image of Hi(X,F/IdF ) (from the long exact sequence, see (29.8.1.2)), and
thus is annihilated by any element of Id, as desired. □





CHAPTER 30

⋆ Proof of Serre duality

Réfléchissant un peu à ton théorème de dualité, je m’aperçois que sa formulation
générale est à peu près évidente, et d’ailleurs je viens de vérifier qu’elle se trouve implicite-
ment (dans le cas de l’espace projectif) dans ton théorème donnant les Tq(M) par des Ext.
(J’ai bien l’impression, salaud, que tes §3 et 4 du Chap. 3 peuvent se faire aussi sans aucun
calcul).

Thinking a bit about your duality theorem, I notice that its general form is almost
obvious, and in fact I just checked that (for a projective space) it is implicitly contained in
your theorem giving the Tq(M) in terms of Exts. (I have the impression, you bastard, that
§3 and 4 in your Chap. 3 could be done without any computation).

— A. Grothendieck, letter to J.-P. Serre, December 15, 1955 [GrS, p. 19]

30.1 Introduction

We first met Serre duality in §18.4 (Theorem 18.5.1), and we have repeatedly
seen how useful it is. We will prove Theorem 18.5.1 (Corollary 30.3.10, combined
with Exercise 30.4.I, see Remark 30.4.9), as well as stronger versions, and we will
be left with a desire to prove even more. We give three statements (Serre duality
for vector bundles; Serre duality for Hom; and Serre duality for Ext), in two versions
(functorial and trace). (These names are idiosyncratic and nonstandard.) We give
several variants for a number of reasons. First, the easier statements will be easier
to prove, and the hardest statements we won’t be able to prove here. Second, they
may help give you experience in knowing how to know what to hope for, and
what to try to prove.

Throughout this chapter, X will be a projective k-scheme of pure dimension
n. We will want a coherent sheaf ω (or with more precision, ωX , or even better,
ωX/k) on X, the dualizing sheaf, which will play a role in the statements of duality.
For the best statements, we will want a trace morphism

(30.1.0.1) t : Hn(X,ωX)→ k.

30.1.1. Desideratum: the determinant of the cotangent bundle is dualizing for
smooth varieties. If X is smooth, we will want ωX = KX in this case (recall
KX = detΩX) — the miracle that the canonical bundle is Serre-dualizing (§18.5.2).
In particular, ωX is an invertible sheaf. This will be disturbingly harder to prove
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than the basic duality statements we show; we will only get to it later (Exer-
cise 30.4.I). But we will prove more, for example that ωX is an invertible sheaf
if X is a regular embedding in a smooth variety (Exercise 30.4.H).

30.1.2. Desideratum: Serre duality for vector bundles. The first version of dual-
ity, which (along with Desideratum 30.1.1) gives Theorem 18.5.1, is the following:
if F is locally free of finite rank, then we have a functorial isomorphism

(30.1.2.1) Hi(X,F ) ∼= Hn−i(X,F∨ ⊗ωX)∨.
More precisely, we want to construct a particular isomorphism (30.1.2.1), or equiv-
alently, a particular perfect pairing Hi(X,F ) ×Hn−i(X,F∨ ⊗ωX) → k. This iso-
morphism will be functorial in F , i.e., it gives a natural isomorphism of covariant
functors

(30.1.2.2) Hi(X, ·) ∼ // Hn−i(X, ·∨ ⊗ωX)∨.

We call this functorial Serre duality for vector bundles.
Better still, there should be a cup product in cohomology, which can be used

to construct a map Hi(X,F ) × Hn−i(X,F∨ ⊗ ωX) → Hn(X,ωX). This should
be functorial in F (in the sense that we get a natural transformation of func-
tors Hi(X, ·) → Hn−i(X, ·∨ ⊗ωX)∨ ⊗ Hn(X,ωX)). Combined with the trace map
(30.1.0.1), we get a map Hi(X,F ) × Hn−i(X,F∨ ⊗ωX) → k, which should yield
(30.1.2.2). We call this the trace version of Serre duality for vector bundles. (This
was hinted at after the statement of Theorem 18.5.1.)

In fact, the trace version of Serre duality for vector bundles (and hence the
functorial version) is true when X is Cohen-Macaulay, and in particular when X is
smooth. We will prove the functorial version (see Corollary 30.3.10). We will give
an indication of how the trace version can be proved in Remark 30.3.15.

30.1.3. Desideratum: duality for more general X and F . A weaker sort of
duality will hold with weaker hypotheses. We will show that (without Cohen-
Macaulay hypotheses) for any coherent sheaf F on a pure n-dimensional projec-
tive k-scheme X, there is a functorial isomorphism

(30.1.3.1) Hom(F ,ωX)
∼ // Hn(X,F )∨.

We call this functorial Serre duality for Hom.
In parallel with Serre duality for vector bundles, we have a natural candidate

for the perfect pairing:

(30.1.3.2) Hom(F ,ωX)×Hn(X,F ) // Hn(X,ωX)
t // k,

where the trace map t is some linear functional on Hn(X,ωX). If this composition
is a perfect pairing, we say that X (with the additional data of (ωX, t)) satisfies the
trace version of Serre duality for Hom. Unlike the trace version of Serre duality
for vector bundles, we already know what the “cup product” map Hom(F ,ωX)×
Hn(X,F ) → Hn(X,ωX) is: an element [σ : F → ωX] of Hom(F ,ωX) induces
— by covariance of Hn(X, ·), see §18.1 — a map Hn(X,F ) → Hn(X,ωX). The
resulting pairing is clearly functorial in F , so the trace version of Serre duality
for Hom implies the functorial version. Unlike the case of Serre duality for vector
bundles, the functorial version of Serre duality for Hom also implies the trace
version:
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30.1.A. EXERCISE. Show that the functorial version of Serre duality for Hom im-
plies the trace version. In other words, the trace map is already implicit in the
functorial isomorphism Hom(F ,ωX)→ Hn(X,F )∨. Hint: consider the commut-
ing diagram (coming from functoriality)

Hom(F ,ωX) // Hn(X,F )∨

Hom(ωX,ωX) //

OO

Hn(X,ωX)
∨.

OO

30.1.4. Definition. Suppose X is a projective k-scheme of pure dimension n. A
coherent sheaf ω = ωX = ωX/k along with a map t : Hn(X,ωX) → k is called
dualizing if the natural map (cf. (30.1.3.1))

(30.1.4.1) Hom(F ,ωX)×Hn(X,F ) // Hn(X,ωX)
t // k

is a perfect pairing for all coherent sheaves F onX. We callωX the dualizing sheaf
and t the trace map. (The earlier discussion of ωX and t was aspirational. This
now is a definition.) If X has such (ωX, t), we say that X satisfies Serre duality (for
Hom). The following proposition justifies the use of the word “the” (as opposed
to “a”) in the phrase “the dualizing sheaf”.

30.1.5. Proposition. — If a dualizing sheaf and trace (ωX, t) exists for X, this data is
unique up to unique isomorphism.

Proof. Suppose we have two such (ωX, t) and (ω ′
X, t

′). From the two morphisms

(30.1.5.1) Hom(F ,ωX)×Hn(X,F ) // Hn(X,ωX)
t // k

Hom(F ,ω ′
X)×Hn(X,F ) // Hn(X,ω ′

X)
t ′ // k,

we get a natural bijection Hom(F ,ωX) ∼= Hom(F ,ω ′
X), which is functorial in

F . By the typical universal property argument (Exercise 1.3.Z), this induces a
(unique) isomorphism ωX ∼= ω ′

X. From (30.1.5.1), under this isomorphism, the
two trace maps t and t ′ must be the same too. □

We will prove the functorial and trace versions of Serre duality for Hom in
Corollary 30.3.12. The special case of projective space will be a key ingredient; we
prove this case now.

30.1.6. Serre duality (for Hom) for projective space. Define ωPn
k

(or just ω for con-
venience) as OPn

k
(−n − 1). Let t be any isomorphism Hn(Pnk ,ωPn

k
) → k (The-

orem 18.1.3). As the notation suggests, (ωPn
k
, t) will be dualizing for projective

space Pnk .

30.1.B. EXERCISE. Suppose F = OPn
k
(m). Show that the natural map (30.1.4.1)

is a perfect perfect pairing. (Hint: do this by hand. See the discussion after Theo-
rem 18.1.3.) Hence show that if F is a direct sum of line bundles on Pnk , the natural
map (30.1.4.1) is a perfect pairing.
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30.1.7. Proposition. — The functorial version (and hence the trace version by Exer-
cise 30.1.A) of Serre duality for Hom holds for Pnk .

Proof. We wish to show that the (functorial) natural map

Hom(F ,ωPn
k
)

∼ // Hn(Pnk ,F )∨ ,

coming from the cup pairing and the choice of isomorphism t, is an isomorphism
(cf. (30.1.3.1)). Fix a coherent sheaf F on Pnk . By Theorem 15.3.1, we can present
F as

(30.1.7.1) 0 // G // E // F // 0

where E is a finite direct sum of line bundles, and G is coherent. Applying the
left-exact functor Hom(·,ωPn

k
) to (30.1.7.1), we have the exact sequence

(30.1.7.2) 0 // Hom(F ,ωPn
k
) // Hom(E ,ωPn

k
) // Hom(G ,ωPn

k
).

Taking the long exact sequence in cohomology for (30.1.7.1) and dualizing, we
have the exact sequence

(30.1.7.3) 0 // Hn(Pnk ,F )∨ // Hn(Pnk ,E )∨ // Hn(Pnk ,G )∨

The (functorial) pairing (30.1.3.2) gives a map from (30.1.7.2) to (30.1.7.3):
(30.1.7.4)

0 // 0 // Hn(Pnk ,F )∨ // Hn(Pnk ,E )∨ // Hn(Pnk ,G )∨

0

α

OO

// 0

β

OO

// Hom(F ,ωPn
k
)

γ

OO

// Hom(E ,ωPn
k
)

δ

OO

// Hom(G ,ωPn
k
)

ϵ

OO

Maps α and β are obviously isomorphisms, and Exercise 30.1.B shows that δ is an
isomorphism. Thus by the subtle version of the Five Lemma (Exercise 1.7.D, as β
and δ are injective and α is surjective), γ is injective. This shows that the natural
map Hom(F ′,ωPn

k
) → Hn(Pnk ,F ′)∨ is injective for all coherent sheaves F ′, and

in particular for F ′ = G . Thus ϵ is injective. Then by the dual of the subtle version
of the Five Lemma (as β and δ are surjective, and ϵ is injective), γ is surjective. □

30.1.8. Mathematical puzzle. Here is a puzzle to force you to confront a po-
tentially confusing point. We will see that Desideratum 30.1.1 holds for P1, so
ωP1

∼= ΩP1 . What then is the trace map t : H1(P1,ΩP1) → k? The Čech complex
for H1(P1,ΩP1) (with the usual cover of P1) is given by

(30.1.8.1) 0 // ΩP1(U0)×ΩP1(U1)
α // ΩP1(U0 ∩U1) // 0.

If U0 = Spec k[x], and U0 ∩ U1 = Spec k[x, 1/x], then the differentials on U0 ∩ U1
are those of the form f(x) dx where f(x) is a Laurent polynomial (for example:
(x−3 + x−1 + 3+ 17x4) dx). To compute H1(P1,ΩP1), we need to find which such
differentials on U0 ∩U1 are in the image of α in (30.1.8.1). Clearly any term of the
form xi dx (for i ≥ 0) extends to a differential on U0, and thus is in the image of
α. A short calculation shows that any term of the form xi dx (i < −1) extends to a
differential onU1. Thus the cokernel of α can be described as the one-dimensional
k-vector space generated by x−1 dx. We have an obvious isomorphism to k: take
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the coefficient of x−1 dx, which can be interpreted as “take the residue at 0”. But
there is another choice, which is equally good: take the residue at∞— certainly
there is no reason to privilege 0 over ∞ (or U0 over U1)! But these two residues
are not the same — they add to 0 (as you can quickly calculate — you may also
believe it because of the Residue Theorem in the theory of Riemann surfaces). So:
which one is the trace?

30.1.9. Desideratum: a stronger version of duality, involving Ext.

Ta formule:

Hn−p(X,F ) ′ = ExtpO(X, F,Ω
n)

m’excite beaucoup, car je suis bien convaincu que c’est la bonne façon d’énoncer le théorème
de dualité à la fois dans le cas analytique et dans le cas algébrique (le plus important —
pour moi!).

I find your formula

Hn−p(X,F ) ′ = ExtpO(X, F,Ω
n)

very exciting, as I am quite convinced that it is the right way to state the duality theorem
in both the analytic case and the algebraic case (the more important one — for me!).

— J.-P. Serre, letter to A. Grothendieck, December 22, 1955 [GrS, p. 21]

The vector bundle and Hom versions of Serre duality have a common exten-
sion. If we have an isomorphism of functors

(30.1.9.1) Exti(·,ωX)
∼ // Hn−i(X, ·)∨ ,

we say that X satisfies functorial Serre duality for Ext. (The case i = 0 is functorial
Serre duality for Hom, or by Exercise 30.1.A, the trace version.) Here Exti is the
derived functor of Hom; see the start of §30.2 below.

In Exercise 30.2.I, we will find that the functorial version of Serre duality for
Ext (resp. the trace version) implies the functorial version of Serre duality or vector
bundles (resp. the trace version). Thus to prove Theorem 18.5.1, it suffices to prove
functorial Serre duality for Ext, and Desideratum 30.1.1 (see Remark 30.4.9). We
will prove the for functorial version of Serre duality for Ext when X is Cohen-
Macaulay in Corollary 30.3.14.

30.1.10. Functorial Serre duality for Ext holds for projective space.
We now prove that functorial Serre duality for Ext holds for projective space.

We will use the machinery of universal δ-functors (§23.2.6), so you may wish to
either quickly skim that section, or else ignore this discussion.

30.1.C. EXERCISE. Show that (ExtiPn
k
(·,ωPn

k
)) is a (contravariant) universal δ-

functor. Hint: Ext is not a derived functor in its first argument, so you can’t use
the “projective” version of Corollary 23.2.10. Instead, use Theorem 23.2.8, and the
existence of a surjection O(m)⊕N → F for each F , for some m < 0.

30.1.D. EXERCISE. Show that (Hn−i(Pnk , ·)∨) is a universal δ-functor. (What are
the δ-maps?) Hint: try the same idea as in the previous exercise.
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Proposition 30.1.7 gives an isomorphism of functors Ext0Pn
k
(·,ωPn

k
) ∼= Hn(Pnk , ·)∨,

so by the Definition 23.2.7 of universal δ-functor, we have an isomorphism of δ-
functors (ExtiPn

k
(·,ωPn

k
)) ∼= (Hn−i(Pnk , ·)∨), thereby proving functorial Serre dual-

ity for Ext for Pnk .

30.1.11. Trace version of Serre duality for Ext. As with the previous versions, the
functoriality of functorial Serre duality for Ext should come from somewhere. We
should expect a natural cup product Exti(F ,ωX) × Hn−i(X,F ) → Hn(X,ωX),
which coupled with the trace map (30.1.0.1) should yield the isomorphism (30.1.9.1).
We call this the trace version of Serre duality for Ext. We will not be able to prove
the trace version, as we will not define this cup product. But we will give some
indication of how it works in §30.2.3.

30.1.12. Necessity of Cohen-Macaulay hypotheses. We remark that the Cohen-
Macaulay hypotheses are necessary everywhere they are stated. The following
example applies in all cases. Let X be the union of two 2-planes in P4k, meeting at
a point p. If there were a coherent dualizing sheaf ωX on X, then for d ≫ 0, we
would have h1(X,OX(−d)) = h1(X,ωX(d)) by Serre duality, which must be 0 by
Serre vanishing (Theorem 18.1.4(ii)). We show that this is not the case.

30.1.E. EXERCISE. Let H be a hyperplane in P4 not passing through p; say H is
hyperplane x0 = 0. Let Z be the intersection of dH (the divisor xd0 = 0) with X.
Show (cheaply) that for d ≥ 0, h0(Z,OZ) > 1. Show that h1(X,OX) = 0 (perhaps
using an easy Čech cover, or perhaps by comparing the cohomology of X to that
of its normalization, as we did in with curves in (29.3.4.1)). Use the exact sequence

0→ OX(−Z)→ OX → OZ → 0

to show that h1(X,OX(−d)) > 0.

30.2 Ext groups and Ext sheaves for O-modules

Recall that for any ringed space X, the category ModOX
has enough injectives

(Theorem 23.4.1). Thus for any OX-module F on X, we may define

ExtiX(F , ·) : ModOX
→ModΓ(X,OX)

as the ith right derived functor of HomX(F , ·), and we have a corresponding long
exact sequence for ExtiX(F , ·). We similarly define a sheaf version of this

Ext iX(F , ·) : ModOX
→ModOX

as the ith right derived functor of HomX(F , ·). In both cases, the subscript X is
often omitted when it is clear from the context, although this can be dangerous
when more than one space is relevant to the discussion. (We saw Ext functors for
A-modules in §23.2.4.)

Warning: it is not clear (and in fact not true, see §23.4.7) that ModOX
has

enough projectives, so we cannot define Exti as a derived functor in its left ar-
gument. Nonetheless, we will see that it behaves as though it is a derived functor
— it is “computable by acyclics”, and has a long exact sequence (Remark 30.2.1).
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Another warning: with this definition, it is not clear that if F and G are quasi-
coherent sheaves on a scheme, then the Ext i(F ,G ) are quasicoherent, and indeed
the aside in Exercise 13.7.A(a) points out this need not be true even for i = 0. But
Exercise 30.2.F will reassure you.

Exercise 23.5.A (an injective OX-module, when restricted to an open subset
U ⊂ X, is injective on U) has a number of useful consequences.

30.2.A. EXERCISE. Suppose I is an injective OX-module. Show that HomOX
(·,I )

is an exact contravariant functor. (A related fact: HomOX
(·,I ) is exact, by the

definition of injectivity, Exercise 23.2.C(a).)

30.2.B. EXERCISE. SupposeX is a ringed space, F and G are OX-modules, andU is
an open subset. Describe a canonical isomorphism Ext iX(F ,G )|U ∼= Ext iU(F |U,G |U).
Hint: take an injective resolution of G on X, and restrict it toU. Use Exercise 30.2.A
to show that the result is an injective resolution of G |U.

30.2.C. EXERCISE. Suppose X is a ringed space, and G is an OX-module.
(a) Show that

Ext i(OX,G ) =

{
G if i = 0, and
0 otherwise.

(b) Describe a canonical isomorphism Exti(OX,G ) ∼= Hi(X,G ).

30.2.D. EXERCISE. Use Exercise 30.2.C(a) to show that if E is a locally free sheaf
on X, then Ext i(E ,G ) = 0 for i > 0.

In the category of modules over a ring, we like projectives more than injectives,
because free modules are easy to work with. It would be wonderful if locally free
sheaves on schemes were always projective, but sadly this is not true. For if OX
were projective, then Exti(OX, ·) would be zero (as a functor) for i > 0, but by
Exercise 30.2.C(b), it is the functor Hi(X, ·), which is often nonzero. Nonetheless,
we can still compute Ext using a locally free resolution, as shown by the following
exercise.

30.2.E. IMPORTANT EXERCISE. Suppose X is a ringed space, and

(30.2.0.1) · · · // E1 // E0 // F // 0

is a resolution of an OX-module F by locally free sheaves. (Of course we are most
interested in the case where X is a scheme, and F is quasicoherent, or even coher-
ent.) Let E• denote the truncation of (30.2.0.1), where F is removed. Describe an
isomorphism Ext i(F ,G ) ∼= Hi(Hom(E•,G )). In other words, Ext•(F ,G )) can be
computed by taking a locally free resolution of F , truncating, applying Hom(·,G ),
and taking homology. Hint: choose an injective resolution

0 // G // I0 // I1 // · · ·
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and consider the spectral sequence whose E0 term is

...
...

Hom(E0,I1)

OO

// Hom(E1,I1)

OO

// · · ·

Hom(E0,I0)

OO

// Hom(E1,I0)

OO

// · · · .

This result is important: to compute Ext , we can compute it using finite rank
locally free resolutions. You can work affine by affine (by Exercise 30.2.B), and on
each affine you can use a free resolution of the left argument. As another conse-
quence of Exercise 30.2.E:

30.2.F. EXERCISE. Suppose F and G are coherent sheaves on a quasiprojective
k-scheme X. Show that Ext iX(F ,G ) is a coherent sheaf as well. (Your argument
will work on any scheme for which there always exist resolutions by finite rank
locally free sheaves.)

30.2.1. Remark. The statement “Exti(F ,G ) behaves like a derived functor in the first
argument” is true in a number of ways. We can compute it using a resolution of F

by locally frees, which are acyclic for Exti(·,G ). And we even have a correspond-
ing long exact sequence, as shown in the next exercise.

30.2.G. EXERCISE. Suppose 0 → F ′′ → F → F ′ → 0 is an exact sequence of
OX-modules on a ringed space X. For any OX-module G , describe a long exact
sequence

0 // Hom(F ′′,G ) // Hom(F ,G ) // Hom(F ′,G )

// Ext1(F ′′,G ) // Ext1(F ,G ) // Ext1(F ′,G ) // · · · .

Hint: take an injective resolution 0 → G → I 0 → · · · . Use the fact that if I is
injective, then Hom(·,I ) is exact (the definition of injectivity, Exercise 23.2.C(a)).
Hence get a short exact sequence of complexes

0→ Hom(F ′′,I •)→ Hom(F ,I •)→ Hom(F ′,I •)→ 0

and take the long exact sequence in cohomology.

Here are two useful exercises.

30.2.H. EXERCISE. Suppose X is a ringed space, F and G are OX-modules, and E
is a locally free sheaf on X. Describe isomorphisms

Ext i(F ⊗ E ∨,G ) ∼= Ext i(F ,G ⊗ E ) ∼= Ext i(F ,G )⊗ E

and Exti(F ⊗ E ∨,G ) ∼= Exti(F ,G ⊗ E ).

Hint: show that if I is injective then I ⊗ E is injective.
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30.2.I. EXERCISE. If F is a locally free sheaf on a schemeX, andωX is any coherent
sheaf on X, describe an isomorphism Exti(F ,ωX) ∼= Hi(X,F∨ ⊗ωX) (functorial
in F ). Show that functorial Serre duality for Ext implies functorial Serre dual-
ity for vector bundles. (You may wish to ponder the trace versions as well.) As
a consequence, by §30.1.10, functorial Serre duality for vector bundles holds for
projective space. Hint: Exercises 30.2.H and 30.2.C(b).

30.2.2. The local-to-global spectral sequence for Ext.
“Sheaf” Ext and “global” Ext are related by a spectral sequence. This is a

straightforward application of the Grothendieck composition-of-functors spectral
sequence, once we show that Hom(F ,I ) is acyclic for the functor Γ .

30.2.J. EXERCISE. Suppose I is an injective OX-module. Show that Hom(F ,I )
is flasque (and thus Γ -acyclic by Exercise 23.4.G). Hint: suppose j : U ↪→ V is an in-
clusion of open subsets. We wish to show that Hom(F ,I )(V) → Hom(F ,I )(U)
is surjective. Note that I |V is injective on V (Exercise 23.5.A). Apply the exact
functor HomV (·,I |V) to the inclusion j!(F |U) ↪→ F |V of sheaves on V (Exer-
cise 2.7.G).

30.2.K. EXERCISE (THE LOCAL-TO-GLOBAL SPECTRAL SEQUENCE FOR Ext). Sup-
pose X is a ringed space, and F and G are OX-modules. Describe a spectral se-
quence with E2-term Hj(X,Ext i(F ,G )) abutting to Exti+j(F ,G ). (Hint: use the
Grothendieck composition-of-functors spectral sequence, Theorem 23.3.5. Recall
that Hom(F , ·) = Γ(Hom(F , ·)), Exercise 2.3.C.)

30.2.3. ⋆⋆ Composing Ext’s (and Hi’s): the Yoneda cup product.
It is useful and reassuring to know that Ext’s can be composed, in a reasonable

sense. We won’t need this, and so just outline the ideas, so you can recognize them
in the future should you need them. For more detail, see [Gr3, §2] or [Cart].

If C is an abelian category, and A• and B• are complexes in C , then define
Hom•(A•, B•) as the integer-graded group of graded homomorphisms: the elements
of Homn(A•, B•) are the maps from the complex A• to B• shifted “to the right by
n”. Define δ : Hom•(A•, B•) by

δ(u) = du+ (−1)n+1ud

for each u ∈ Homn(A•, B•) (where d sloppily denotes the differential in both A•
and B•). Then δ2 = 0, turning Hom•(A•, B•) into a complex. LetH•(A•, B•) be the
cohomology of this complex. If C• is another complex in C , then composition of
maps of complexes yields a map Hom•(A•, B•)×Hom•(B•, C•)→ Hom•(A•, C•)
which induces a map on cohomology:

(30.2.3.1) H•(A•, B•)×H•(B•, C•)→ H•(A•, C•)

which can be readily checked to be associative. In particular, H•(A•, A•) has the
structure of a graded associative non-commutative ring (with unit), and H•(A•, B•)
(resp. H•(B•, A•)) has a natural graded left-module (resp. right-module) structure
over this ring. The cohomology groups H•(A•, B•) are functorial in both A• and
B•. A short exact sequence of complexes 0 → A ′

• → A• → A ′′
• → 0 induces long

exact sequences

· · · // Hi(A ′
•, B•) // Hi(A•, B•) // Hi(A ′′

• , B•) // Hi+1(A ′
•, B•) // · · ·
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and

· · · // H•(B•, A
′′
• ) // H•(B•, A•) // H•(B•, A

′
•) // · · · .

Suppose now that C has enough injectives. Suppose A,B ∈ C , and let IA• be
any injective resolution ofA (more precisely: take an injective resolution ofA, and
remove the “leading” A), and similarly for IB• . Then it is a reasonable exercise to
describe canonical isomorphisms

H•(IA• , I
B
• )

∼= H•(A, IB• )
∼= Ext•(A,B)

where in the middle term, the “A” is interpreted as a complex that is zero, except
the 0th piece is A.

Then the map (30.2.3.1) induces a (graded) map

(30.2.3.2) Ext•(A,B)× Ext•(B,C)→ Ext•(A,C)

extending the natural map Hom(A,B)×Hom(B,C)→ Hom(A,C). (Of course, one
must show that the map (30.2.3.2) is independent of choice of injective resolutions
of B and C.)

In particular, in the category of O-modules on a ringed spaceX, we have (using
Exercise 30.2.C(b)) a natural map

Hi(X,F )× Extj(F ,G )→ Hi+j(X,G ).

This is the source of the natural map in the trace version of Serre duality for Ext,
discussed at the end of §30.1.

30.3 Serre duality for projective k-schemes

We now prove various versions of Serre duality for projective k-schemes, by
leveraging what we know about Serre duality for projective space.

30.3.1. The weird functor π!sh.
The key construction is a right adjoint π!sh to the pushforward π∗, when π is

an affine morphism. (Caution: the notation π!sh is nonstandard, and is introduced
only for the purposes of the arguments we will give.) This is surprising, as we
usually think of π∗ as a right-adjoint (to the pullback π∗), not a left adjoint. This
can be seen as very roughly analogous to the surprising occasional left-adjoint to
the pullback: extension by zero (Exercise 2.7.G).

30.3.2. We begin with the ring-theoretic version. Suppose B → A is a ring mor-
phism, M is an A-module, and N is a B-module. Note that HomB(A,N) naturally
has the structure of an A-module. Also, M naturally carries the structure of a B-
module; when we wish to emphasize its structure as a B-module, we sometimes
call itMB (see Exercise 1.5.E).

Consider the map

(30.3.2.1) HomA(M,HomB(A,N))→ HomB(MB,N)

defined as follows. Given m ∈ M, and an element ϕ of HomA(M,HomB(A,N)),
sendm to ϕm(1).
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30.3.A. EXERCISE.
(a) Show that (30.3.2.1) is a homomorphism of B-modules.
(b) Show that (30.3.2.1) is a bijection. Thus (M 7→ MB,N 7→ HomB(A,N)) is an
adjoint pair ModA ↔ModB.
(c) Show that this bijection (30.3.2.1) behaves well with respect to localization at an
element of B.

Exercise 30.3.A(c) implies that this naturally “sheafifies” to a construction for
an affine morphism π : X→ Y.

30.3.B. EXERCISE. Suppose π : X→ Y is an affine morphism.
(a) Explain how the map

π!sh : QCohY // QCohX

G � // π−1HomY(π∗OX,G )

(where HomY(π∗OX,G ) is interpreted as a quasicoherent sheaf onX via Exercise 17.1.E,
and in this guise is denoted π−1HomY(π∗OX,G )) globalizes the construction of Ex-
ercise 30.3.A, yielding a covariant functor QCohY → QCohX.
(b) Describe a natural isomorphism of quasicoherent sheaves on Y

π∗π
!
shG

∼= HomY(π∗OX,G ).

(c) Show that (π∗, π!sh) is an adjoint pair between QCohX and QCohY .

Caution: we have defined π!sh only for categories of quasicoherent sheaves.
If π is a finite morphism, and Y (and hence X) is locally Noetherian (the case that
will be relevant for us), then π!sh is a covariant functor from the category of coherent
sheaves on Y to coherent sheaves on X. We may show this affine-locally, using the
notation of §30.3.2. As A and N are both coherent B-modules, HomB(A,N) is a
coherent B-module (cf. Exercise 13.7.A(b)), hence a finitely generated B-module,
and hence a finitely generated A-module, hence a coherent A-module.

Thus if π is a finite morphism of locally Noetherian schemes, (π∗, π!sh) is an
adjoint pair between CohX and CohY .

30.3.3. If F ∈ QCohX and G ∈ QCohY , then there is a natural isomorphism

(30.3.3.1) π∗HomX(F , π!shG )→ HomY(π∗F ,G ),

which affine-locally is the isomorphism (30.3.2.1) described in Exercise 30.3.A.

If G is an OX-module (not necessarily quasicoherent), it is in general not clear
how to make sense of this construction to define an OY-module π!shG . (Try it and
see!) However, in the special case where π is a closed embedding, we can make
sense of π!shG , as discussed in the next exercise.

30.3.C. EXERCISE (USED IN §30.4). Suppose π : X → Y is a closed embedding of
schemes and G is an OY-module.
(a) Explain why π!sh(G ) := HomY(π∗OX,G ) naturally has the structure of an OX-
module. Hint: if I is the ideal sheaf of X, explain how π!sh(G ) (over some open
subset U ⊂ Y) is annihilated by “functions vanishing on X” (elements of I (U)).
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Hence we have defined a map π!sh : ModOY
→ ModOX

extending the map of Exer-
cise 30.3.B(a).
(b) Show that (π∗, π!sh) is an adjoint pair between ModOX

and ModOY
.

(c) Show that π!sh sends injective OY-modules to injective OX-modules. (Hint: π∗ is
exact; use Exercise 23.5.B.)

30.3.4. Remark. If π is finite and flat, which is the case most of interest to us, π!sh
agrees (in the only possible sense of the word) with π!, one of Grothendieck’s “six
operations”, and indeed this motivates our notation (“a variant of π! for sheaves”).
But π! naturally lives in the world of derived categories, so we will not discuss it
here. (For more on π!, see [KS1, Ch. III].)

We now apply the machinery of π!sh to Serre duality.

30.3.5. Projective n-dimensional schemes are covers of Pn.

30.3.6. Proposition. — Suppose X is a projective k-scheme of pure dimension n.

(a) There exists a finite morphism π : X→ Pn.
(b) If furthermore X is Cohen-Macaulay, then π is flat.

Proof. Part (b) follows from part (a) by the Miracle Flatness Theorem 26.2.11, so we
will prove part (a).

Choose a closed embedding j : X ↪→ PN. For simplicity of exposition, first
assume that k is an infinite field. By Exercise 11.3.C(d), there is a linear space
L of codimension n + 1 (one less than complementary dimension) disjoint from
X. Projection from L yields a morphism π : X → Pn. The morphism π is affine
(PN \ L → Pn is affine, and the closed embedding X ↪→ PN \ L is, like all closed
embeddings, affine) and projective (by the Cancellation Theorem 10.1.19 for projec-
tive morphisms), so π is finite (projective affine morphisms of locally Noetherian
schemes are finite, Corollary 18.1.7).

30.3.D. EXERCISE. Prove Proposition 30.3.6(a), without the assumption that k is
infinite. Hint: using Exercise 11.3.C(c), show that there is some d such that there is
an intersection of n + 1 degree d hypersurfaces missing X. Then apply the above
argument to the dth Veronese embedding of PN (§8.2.6).

□

30.3.7. Remark. More generally, the above argument shows that any projective
k-scheme of dimension n (not necessarily equidimensional) can be expressed as a
finite cover of Pn. This might be seen as a projective version of Noether normal-
ization.

30.3.8. Serre duality on X via π!sh.
Suppose π : X→ Y is a finite morphism of projective k-schemes of pure dimen-

sion n, and we have a coherent sheafωY on Y. (We will soon apply this in the case
where Y = Pnk , but we may as well avoid distraction and needless specificity.)

30.3.9. Proposition. — Suppose π is flat. If functorial Serre duality for Ext holds for Y,
with dualizing sheafωY , then functorial Serre duality for vector bundles holds for X, with
dualizing sheaf π!sh(ωY).
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Note the mismatch of the hypotheses and the conclusion: we use functorial
Serre duality for Ext in the hypothesis, and get functorial Serre duality only for
vector bundles in the conclusion.

Proof. For each i, and each finite rank locally free sheaf F on X, we have isomor-
phisms (functorial in F ):

Hn−i(X,F∨ ⊗ π!shωY)
∼= Hn−i(Y, π∗(F

∨ ⊗ π!shωY)) (affineness of π, §18.1 (v))
∼= Hn−i(Y, π∗(HomX(F , π!shωY))) (Exercise 13.7.B)
∼= Hn−i(Y,HomY(π∗F ,ωY)) (equ. (30.3.3.1))
∼= Hn−i(Y, (π∗F )∨ ⊗ωY) (Exercises 24.4.E and 13.7.B)
∼= Hi(Y, π∗F )∨ (functorial Serre duality for Ext on Y)
∼= Hi(X,F )∨ (affineness of π, §18.1 (v))

(The hypothesis of flatness is used to show that π∗F is locally free.) □

30.3.10. Corollary. — Functorial Serre duality for vector bundles holds for every Cohen-
Macaulay equidimensional projective k-scheme.

Proof. Combine Proposition 30.3.9 with Proposition 30.3.6(b) and §30.1.10. □

30.3.11. Proposition. — Suppose π : X→ Y is a finite morphism of projective k-schemes.
If the trace version of Serre duality for Hom holds for Y with dualizing sheaf (ωY , tY),
then functorial Serre duality for Hom holds for X with dualizing sheaf π!shωY .

Recall from Exercise 30.1.A that for Serre duality for Hom, the trace version is
equivalent to the functorial version. We state the Proposition in this awkward way
because we use tY , and conclude functoriality for Serre duality for Hom for X. But
the trace map for X will come cheaply as the diagonal arrow in (30.3.11.1).

Note that we have no flatness hypotheses on π (unlike the corresponding
propositions for Serre duality for vector bundles and, soon, for Ext).

Proof. The following diagram commutes, and is functorial in F .
(30.3.11.1)

HomX(F , π!shωY)×Hn(X,F )

��

// Hn(X, π!shωY)

��
tX

!!D
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
D

Hn(Y, π∗π
!
shωY)

��
HomY(π∗F ,ωY)×Hn(Y, π∗F ) // Hn(Y,ωY)

tY // k

(The left vertical arrow is an isomorphism; it is an isomorphism on each factor.)
The commutativity of the diagram relies on the adjointness of (π∗, π!sh), and the
affineness of π. □

30.3.12. Corollary. — The functorial and trace versions of Serre duality for Hom hold
for all equidimensional projective k-schemes (with no Cohen-Macaulay hypotheses).
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Proof. Combine Proposition 30.3.11 with Proposition 30.3.6(a) and Proposition 30.1.7.
□

30.3.13. Proposition. — If X is a Cohen-Macaulay projective k-scheme of pure di-
mension n, and π : X → Pn is a finite flat morphism (as in Proposition 30.3.6(b)), then
functorial Serre duality for Ext holds for X with dualizing sheafωX := π!sh(ωPn).

Unlike Proposition 30.3.9 and 30.3.11, we did not state this for general π : X→
Y; we will use the fact that the target is Pn.

Proof. The argument will parallel that of §30.1.10: we will show an isomorphism
of δ-functors

(30.3.13.1) ExtiX(F , π!sh(ωPn))→ Hn−i(X,F )∨.

We already have an isomorphism for i = 0 (Corollary 30.3.12), so it suffices to show
that both sides of (30.3.13.1) are universal δ-functors. We do this by verifying the
criterion of Theorem 23.2.8. For any coherent sheaf F on Xwe can find a surjection
O(−m)⊕N → F form≫ 0 (and some N), so it suffices to show that form≫ 0,

ExtiX(O(−m), π!sh(ωPn)) = 0 and Hn−i(X,O(−m))∨ = 0

for i > 0 andm≫ 0. For the first, we have (for i > 0 andm≫ 0)

ExtiX(O(−m), π!sh(ωPn)) ∼= Hi(X, π!sh(ωPn)(m)) (Exercise 30.2.H)
= 0 (Serre vanishing, Thm. 18.1.4(ii))

For the second, we have

Hn−i(X,OX(−m)) = Hn−i(X,OX ⊗ π∗O(−m))

∼= Hn−i(Pn, (π∗OX)⊗ O(−m))

by the projection formula (Exercise 18.8.E(b)). Now π∗OX is locally free by Exer-
cise 24.4.E, so by functorial Serre duality for vector bundles on Pn, we have (for
m≫ 0)

Hn−i(Pn, (π∗OX)⊗ O(−m)) ∼= Hi(Pn, (π∗OX)∨ ⊗ O(m)⊗ωPn)

∼= Hi(Pn, ((π∗OX)∨ ⊗ωPn)⊗ O(m))

= 0 (Serre vanishing, Thm. 18.1.4(ii))

□

30.3.14. Corollary. — Functorial Serre duality for Ext holds for all equidimensional
Cohen-Macaulay projective k-schemes.

Proof. Combine Proposition 30.3.13 with Proposition 30.3.6(b) and the projective
space case of §30.1.10. □

30.3.15. Remark: the trace version of Serre duality for vector bundles. Here is an outline
of how the above proof can be extended to prove the trace version of Serre duality
for vector bundles on all equidimensional Cohen-Macaulay projective k-schemes.
Continuing the notation of Proposition 30.3.13, the Yoneda cup product of §30.2.3
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followed by the trace map gives a pairing

ExtiX(F ,ωX)×Hn−i(X,F )
∪ // Hn(X,ωX)

t // k ,

which is functorial in F . This induces a functorial map (30.3.13.1). One shows
that this particular map is a map of δ-functors. Then by the above argument, this
particular map is an isomorphism.

30.4 The adjunction formula for the dualizing sheaf, andωX = KX

The dualizing sheaf behaves well with respect to slicing by effective Cartier
divisors, and this will be useful to obtaining Desideratum 30.1.1, i.e., the miracle
that the canonical bundle is Serre-dualizing (§18.5.2). In order to show this, we
give a description for the dualizing sheaf for a subvariety of a variety satisfying
Serre duality for Ext.

30.4.1. Preliminary Observation. Suppose π : X → Y is a closed embedding. Then
for any OY-module F , Ext iY(π∗OX,F ) naturally has the structure of an OX-module.
(Reason: we compute this by taking an injective resolution of F by OY-modules,
then truncating, then applying HomY(π∗OX, ·). But for any OY-module G , HomY(π∗OX,G )
has the structure of an OX-module.) To emphasize its structure as an OX-module,
we write it as π−1Ext iY(π∗OX,F ).

30.4.A. EXERCISE. Show that if Y (and hence X) is locally Noetherian, and G is
a coherent sheaf on Y, then π−1Ext iY(π∗OX,G ) is a coherent sheaf on X. (Hint:
Ext iY(π∗OX,G ) is a coherent sheaf on Y, Exercise 30.2.F.)

30.4.2. The dualizing sheaf for a subvariety in terms of the dualizing sheaf of
the ambient variety.

For the rest of this section, π : X→ Y will be a closed embedding of equidimen-
sional projective k-schemes of dimension n and N respectively, where Y satisfies
functorial Serre duality for Ext. Let r = N − n (the codimension of X in Y). By
Corollary 30.3.12, X satisfies functorial Serre duality for Hom. We now identify
ωX in terms ofωY .

30.4.3. Theorem. — We haveωX = π−1Ext rY(π∗OX,ωY).

Before we prove Theorem 30.4.3, we explain what happened to the “earlier”
Ext iY(π∗OX,ωY)’s.

30.4.4. Proposition. — Suppose that π : X ↪→ Y is a closed embedding of equidimen-
sional projective k-schemes of dimension n and N respectively, and Y satisfies functorial
Serre duality for Ext. Then for all i < r := N− n, Ext iY(π∗OX,ωY) = 0.

Proof. As Ext iY(π∗OX,ωY) is coherent (Exercise 30.2.F), it suffices to show that
Ext iY(π∗OX,ωY) ⊗ O(m) has no nonzero global sections for m ≫ 0 (as for any
coherent sheaf G on Y, G (m) is generated by global sections for m ≫ 0 by Serre’s
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Theorem A, Theorem 15.3.8). By Exercise 30.2.H,

Hj(Y,Ext iY(π∗OX,ωY)(m)) = Hj(Y,Ext iY(π∗OX,ωY(m))).

If j > 0, then for m≫ 0, by Serre vanishing, Hj(Y,Ext iY(π∗OX,ωY)(m)) = 0. Thus
by the local-to-global spectral sequence for Ext (Exercise 30.2.K),

H0(Y,Ext iY(π∗OX,ωY(m))) = ExtiY(π∗OX,ωY(m))).

By Exercise 30.2.H again, then functorial Serre duality for Ext on Y,

ExtiY(π∗OX,ωY(m))) = ExtiY(π∗OX(−m),ωY) = H
N−i(Y, π∗OX(−m))

which is 0 if N − i > n, as the cohomology of a quasicoherent sheaf on a projec-
tive scheme vanishes in degree higher than the dimension of the sheaf’s support
(dimensional cohomology vanishing, Theorem 18.2.6). □

The most difficult step in the proof of Theorem 30.4.3 is the following.

30.4.5. Lemma. — Suppose that π : X → Y is a closed embedding of codimension r of
equidimensional projective k-schemes, and Y satisfies functorial Serre duality for Ext. We
have an isomorphism, functorial in F ∈ CohX:

(30.4.5.1) HomX(F , π−1Ext rY(π∗OX,ωY))
∼= ExtrY(π∗F ,ωY).

Proof. Choose an injective resolution

0→ ωY → I 0 → I 1 → I 2 → · · ·

ofωY . To compute the right side of (30.4.5.1), we drop theωY from this resolution,
and apply HomY(π∗F , ·), to obtain

0→ HomY(π∗F ,I 0)→ HomY(π∗F ,I 1)→ HomY(π∗F ,I 2)→ · · · ,

or (by adjointness of π∗ and π!sh for O-modules when π is a closed embedding,
Exercise 30.3.C(b)):

0→ HomX(F , π!shI
0)→ HomX(F , π!shI

1)→ HomX(F , π!shI
2)→ · · · .

Motivated by this, consider the complex

(30.4.5.2) 0→ π!shI
0 → π!shI

1 → π!shI
2 → · · · .

Note first that (30.4.5.2) is indeed a complex, and second that π!shI
i are injective

OX-modules (Exercise 30.3.C(c)).

30.4.B. EXERCISE. Show that the cohomology of (30.4.5.2) at the ith step is
Ext iY(π∗OX,ωY).

Thus by Proposition 30.4.4, the complex (30.4.5.2) is exact before the rth step.

30.4.C. EXERCISE. Show that there exists a direct sum decomposition π!shI
r =

J ⊕ K , so that

0→ π!shI
0 → π!shI

1 → · · ·→ π!shI
r−1 →J → 0

is exact. Hint: work out the case r = 1 first. Another hint: Notice that if

0 // I 0 α // F
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is exact and I 0 is injective, then there is a map β : F → I 0 “splitting” α, allowing
us to write F as a direct sum I 0 ⊕ J 1. If F is furthermore injective, then J 1 is
injective too. This is the beginning of an induction.

30.4.D. EXERCISE. (We continue the notation of the previous exercise.) Identify
ker(K → π!shI

r+1) with π−1Ext rY(π∗OX,ωY).

30.4.E. EXERCISE. Put together the pieces above to complete the proof of Lemma 30.4.5.
□

We are now ready to prove Theorem 30.4.3.

30.4.6. Proof of Theorem 30.4.3. Suppose F is a coherent sheaf on X. We wish to
find an isomorphism

HomX(F , π−1Ext rY(π∗OX,ωY))
∼= Hn(X,F )∨,

functorial in F . By Lemma 30.4.5, we have a functorial isomorphism

HomX(F , π−1Ext rY(π∗OX,ωY))
∼= ExtrY(π∗F ,ωY).

By functorial Serre duality for Ext on Y, we have a functorial isomorphism

ExtrY(π∗F ,ωY) ∼= HN−r(Y, π∗F )∨.

As F is a coherent sheaf on X, and N − r = n, the right side is is precisely
Hn(X,F )∨. □

30.4.7. Applying Theorem 30.4.3. We first apply Theorem 30.4.3 in the special
case where X is an effective Cartier divisor on Y. We can compute the dualizing
sheaf π−1Ext1Y(π∗OX,ωY) by computing Ext1Y(π∗OX,ωY) using any locally free
resolution (on Y) of π∗OX (Exercise 30.2.E). But π∗OX has a particularly simple
resolution, the closed subscheme exact sequence (13.5.4.1) for X:

(30.4.7.1) 0→ OY(−X)→ OY → π∗OX → 0.

We compute Ext•(π∗OX,ωY) by truncating (removing the π∗OX), and applying
Hom(·,ωY): Ext•(π∗OX,ωY) is the cohomology of

0→ HomY(OY ,ωY)→ Hom(OY(−X),ωY)→ 0,

i.e., 0→ ωY → ωY ⊗ OY(X)→ 0.

We immediately see that Ext i(π∗OX,ωY) = 0 if i ̸= 0, 1. Furthermore, Ext0(π∗OX,ωY) =
0 by Proposition 30.4.4. (Unimportant aside: you can use this to show thatωY has
no embedded points.)

We now consider ωX = coker(ωY → ωY ⊗ OY(X)). Tensoring (30.4.7.1) with
the invertible sheaf OY(X), and then tensoring withωY , yields

ωY → ωY ⊗ OY(X)→ ωY ⊗ OY(X)|X → 0

The right term is often (somewhat informally) written asωY(X)|X. Thus

ωX = coker(ωY → ωY ⊗ OY(X)) = ωY(X)|X,

and this identification is canonical.
We have shown the following.
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30.4.8. Proposition (the adjunction formula). — Suppose that Y is a Cohen-Macaulay
projective scheme of pure dimension n (which satisfies functorial Serre duality for Ext by
Corollary 30.3.14), and X is an effective Cartier divisor on Y. (Hence X is Cohen-Macaulay
by §26.2.4, and thus satisfies functorial Serre duality for Ext by Corollary 30.3.14.) Then
ωX = ωY(X)|X. In particular, if ωY is an invertible sheaf on Y, then ωX is an invertible
sheaf on X.

As an immediate application, we have the following.

30.4.F. EXERCISE. Suppose X is a complete intersection in Pn, of hypersurfaces
of degrees d1, . . . , dr. (Note that X is Cohen-Macaulay by Proposition 26.2.6, and
thus satisfies functorial Serre duality for Ext, by Corollary 30.3.14.) Show that
ωX ∼= OX(−n − 1 +

∑
di). If furthermore X is smooth, show that ωX ∼= detΩX.

(Hint for the last sentence: use the adjunction formula for K , Exercise 21.5.B).

But we can say more.

30.4.G. EXERCISE. Suppose Y is a smooth equidimensional variety, and π : X ↪→ Y

is a codimension r regular embedding with normal sheaf NX/Y (which is locally
free, by Proposition 21.2.16(b)). Suppose L is an invertible sheaf on Y.
(a) Show that Ext iY(π∗OX,L ) = 0 if i ̸= r.
(b) Describe a canonical isomorphism π−1Ext rY(π∗OX,L ) ∼= (det NX/Y) ⊗OX

L |X.

(Note that because Exercise 30.4.G has nothing explicitly to do with duality,
we have no projectivity assumptions on Y; it is a completely local question.) From
Exercise 30.4.G we deduce the following.

30.4.H. IMPORTANT EXERCISE. Suppose X is a codimension r regular embedding
in Pnk . (Then X is Cohen-Macaulay by Proposition 26.2.6, and thus satisfies functo-
rial Serre duality for Ext by Corollary 30.3.14.) Show that

ωX = π−1Ext rPn(π∗OX,ωPn) ∼= (det NX/Y)⊗ωPn |X.

In particular,ωX is an invertible sheaf.

30.4.I. IMPORTANT EXERCISE. Suppose X is a smooth pure codimension r sub-
variety of Pnk (and hence a regular embedding, by Exercise 12.2.L(b)). Show that
ωX ∼= KX. Hint: both sides satisfy adjunction (see Exercise 21.5.B for adjunction
forΩ): they are isomorphic to (det NX/Y)⊗ωPn |X ∼= (det NX/Y)⊗ (KPn)|X.

30.4.9. Remark. As long promised, the version of Serre duality given in Theo-
rem 18.5.1 now follows by combining Corollary 30.3.10 with Exercise 30.4.I.

Aux yeux de ces amateurs d’inquiétude et de perfection, un ouvrage n’est jamais
achevé, mot qui pour eux n’a aucun sens, mais abandonné; et cet abandon, qui le livre
aux flammes ou au public (et qu’il soit l’effet de la lassitude ou de l’obligation de livrer),
leur est une sorte d’accident, comparable à la rupture d’une réflexion . . .

In the eyes of those lovers of anxiety and perfection, a work is never finished — a
word that for them has no meaning — but abandoned; and this abandonment, whether to
the flames or to the public (and which is the result of weariness or an obligation to deliver)
is a kind of accident to them, like the breaking off of a reflection . . .
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— P. Valéry, [Val, p. 1497]
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[Ba] L. Bădescu, Algebraic Surfaces, V. Maşek trans., Universitext, Springer-Verlag, New York,

2001.
[BCDKT] M. Baker, B. Conrad, S. Dasgupta, K. Kedlaya, and J. Teitelbaum, p-adic geometry, D.

Savitt and D. Thakur ed., Univ. Lect. Series 45, Amer. Math. Soc., Providence, RI, 2008.
[BPV] W. Barth, C. Peters, and A. van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenz. 4,

Springer-Verlag, Berlin, 1984.
[Be] A. Beauville, Complex Algebraic Surfaces, 2nd ed., R. Barlow trans., Cambridge U.P., Cam-

bridge, 1996.
[BL] C. Birkenhake and H. Lange, Complex Abelian Varieties, 2nd ed., Grund. Math. Wiss. 302,

Springer-Verlag, Berlin, 2004.
[BLR] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Ergeb. Math. Grenz. 21,
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Invent. Math. 89 (1987), no. 2, 247–270.
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(−1)-curve, 549, 614, 699, 705, 706, 725, see also
Castelnuovo’s Criterion, 740, 743

blowing down, 740
(M : x), 652
(L1 · L2 · · ·Ln · F ) (intersection of L1, . . . ,

Ln with F ), 543
A-scheme, 159
ADE singularities, 610
An singularity, 730
An-singularities, 610
A•(I), 364
BlXY (blow-up of Y along X), 599
Creg, 533
D(f), 149
Dn singularity, 730
Ep,q (entry in double complex), 58
E6, 698, 704
E8, 556, 730
EXY (exceptional divisor), 599
En, 610, 706
En singularity, 730
E
p,q
r (entry (p, q) in rth page of spectral

sequence), 59
G(k, n) (Grassmannian), 199
GLn (group scheme), 198, 296, 445
H ((co)homology), 50
H0(U,F ), 73
I(S), 127
K(A), 32, 156
K(X), 156
K(X) (Grothendieck group of coherent

sheaves on X), 554
K(X)≤d, 554
KX, 549
LiF (left derived functors), 626
M(n)•, 412
M•, 411
M•(I), 364
Mtors (torsion submodule), 386
NS(X) (Néron-Severi group), 484
N1(X) = PicX/Picτ X, 484
NXY (normal cone), 606
RiF (right derived functor), 626

Riπ∗ (higher pushforward), 497, see sheaf,
higher pushforward

as derived functor, 635
quasicoherent definition, 498

Rk (regular in codimension k), 692
SLn (group scheme), 199, 296
S−1A (localization), 32
S+, 148
Sk, see property Sk
S•, 147
Sn•, 188
T•(M) tensor algebra, 384
T•(F ), 384
V(S) (vanishing set), 115
V(T), 149
Xs, 209
[p] (point of SpecA corresponding to p), 102
A2, 105
An
X

, 449
Aut(A) (automorphisms of A), 26
∆ (diagonal locally closed subscheme of

X×Y X), 280
Fn (Hirzebruch surface), 452
Γ

adjoint to Spec, 183
Γ(U,F ), 73
Γ•, 417, 417
Mor, 26
Ωi
X/Y

(sheaf of relative i-forms), 583
ΩA/B (Kähler differentials), 573
ΩX/Y (relative cotangent sheaf), 572
Pic0 X, 671
Spec 0, 104
Spec k, 104
Sym•, 384
⊠, 432, 437, 439, 475, 712
KX, see canonical, bundle
TX/Y (relative tangent sheaf), 572
·∨ (dual), 372
χ(X,F ) (Euler characteristic), 399, 478⨿

(coproduct), 37
δ-functor, see delta-functor
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deg F (degree of coherent sheaf on curve),
481

δ-invariant, 731
δπ (diagonal morphism), 279
ℓ(M) (module length), 482
Â (completion), 725
↪→, see [open, closed, l cl] embedding, see

[open, closed, locally closed] embedding,
202, 225, 228

see[open, closed, lococally closed]
embedding, 228

κ(X) (Kodaira dimension), 585
κ(p) (residue field of point p), 138
λ-invariant, 526, 526
A1, see also affine line, 102, 104, 105
A2, see also affine plane
An, see also affine n-space, 106

functorial characterization, 196
G(k − 1, n − 1) (Grassmanian), 200
Gm (multiplicative group scheme), 196, 296,

536
PF (projectivization of finite type

quasicoherent sheaf), 452
P(d1, . . . , dn) (weighted projective space),

235
PV (projectivization of vector space), 152
P1
k

(projective line), 142
Pn (projective space), 151
Pn-bundle (projective bundle), 452, 453
Pn
A

(projective space over A), 144
is quasicompact, 153

Q-Cartier, 406, 407
Q-Cartier divisor, 406
Q-line bundles, 484, 484, 485, 556
Z-graded ring, see graded ring, Z-
Z≥0-graded ring, see graded ring, Z≥0

Zp (p-adics), 41
An
X

, 254
N (nilradical), 113
F (U), 73
F (n), 413
F |U (restriction of sheaf to open subset), 76
F |p, 139
F sh (sheafification), 84
F∨ (dual of OX-module), 80
Flf, 391
Ftor, 391
G |X (pullback), 423
KX (canonical sheaf/bundle), 485
Mg (moduli space of curves), 523
O (structure sheaf), 129
O-connected morphisms

+ proper implies surjective, 738
O-connected morphisms, 710, 710, 711,

735–738
+ proper implies connected fibers, 733
+ proper implies surjective, 710, 738
not preserved by base change, 710

preserved by flat base change, 710
O(1)

on relative Proj, 451
OK (ring of integers in number field K), 276
OX (structure sheaf), 77
OX-modules, 78

Ext-functors for, see Ext functors, for
O-modules

not always quasicoherent, 375
tensor product, 92

OX,p, 78
OSpecA, 129
Hom , 389

of quasicoherents not necessarily
quasicoherent, 389

Proj , see relative Proj
Spec, see relative Spec
| L | (complete linear series), 416
µn (group scheme), 199
ω (dualizing sheaf), 749, 751
AssM (associated primes ofM), 172
ClX (class group), 404
Cl(An

k
) = 0, 404

Hom
need not commute with localization, 53

Hom (“sheaf Hom”)
is left-exact, 53

LocPrin, 403
Pic(Pn

k
) ∼= Z, 405

PicX (Picard group), 372
Pic(An

k
) = 0, 404

Pic0(E), 525, 532, see also Picard group, 540
∼= E, 531

Picτ X (group of numerically trivial line
bundles), 484

Prin (group of principal Weil divisors), 403
Proj S•, 148
Proj, 145
SpecA, 102
SpecZ, 104
Spec

adjoint to Γ , 183
SuppD (support of divisor), 400
Supp G (support of sheaf of sets), 94
Supp(s), 83
Sym•(F ), 384
Tor functors, 621
adj(M) (adjugate matrix), 204
codim (codimension), 305
coker (cokernel), 48
cokerpre (cokernel presheaf), 81
det F (determinant bundle), 385
div, 400
idA (identity morphism), 26
ker (kernel), 48
kerpre (presheaf kernel), 80
obj (object in a category), 26
tr.deg (transcendence degree), 308
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⊕ (direct sum), 48
⊗ (tensor product), 33
⊗OX

(tensor product of OX-modules), 92
ϕ
p
q (cohomology and base change map), 707
π-ample, see relatively ample, see ampleness,

in relative setting
π-very ample, see very ample, relatively, see

very ample, relatively
π∗G , 424
π∗, 422, 425
π!, 759

right-adjoint to π∗, 759
π!sh, 758
π−1F (inverse image sheaf), 92
π−1, 92

is right-exact, 94
π! (extension by zero), 95
ρ(X) (Picard number), 484
Ext functors

computable with locally free resolutions,
756

σ-process ■, see blow-up√
−5, 165, 166√
I (radical of ideal), 116

Ab (category of abelian groups), 27
AbX (category of sheaves of abelian groups on

X), 79
has enough injectives, 634

CohX (category of coherent sheaves on X), 388
ModA (category of A-modules), 27

has enough injectives, 18
ModOX

, 79, 381
not enough projectives, 636

QCohX (category of quasicoherent sheaves on
X), 381

Rings (category of rings), 27
Sets (category of sets), 26
SetsX (category of sheaves of sets on X), 79
Top (category of topological spaces), 27
Veck (category of vector spaces over k), 26
×A (sloppy notation), 247
S (constant sheaf), 76
lim−→ (colimit), 41
lim←− (limit), 40
∧•, 384
∧•(F ), 384
M̃• (quasicoherent sheaf corresponding to

graded moduleM•), 411
in terms of “compatible germs”, 411
is an exact functor, 412
need not be an isomorphism, 412

M̃ (quasicoherent sheaf corresponding to a
moduleM), 132

d : OX → ΩX/Y , 572
d : A→ ΩA/B, 562
d-uple embedding (Veronese embedding), 233
hA (functor of maps from A), 28

hA (functor of maps to A), see functor, of
points

hF (m) (Hilbert function), 488
ip,∗, 76
k-smooth, see smoothness, over a field
k-variety, see variety
k[[x1, . . . , xn]], 725
k[ϵ]/(ϵ2), see dual numbers
n-fold, 304
n-plane, 231
opp (opposite category), 29
p-adics, 39, 40, 55, 351, 362, 655, 725
pa(X) (arithmetic genus), 480
pg(X) (geometric genus), 584
t : Hn(X,ωX)→ k (trace map), 749
xi/j, 143, 149, 397
OX(D), 401
ModOX

(category of O-modules)
has enough injectives, 634

Hom , 79
is left-exact, 92
need not commute with stalkification, 80

Abel, N. H. ■, 297
abelian category, 25, 27, 38, 47, 48, 48, 49,

51–55, 57, 80, 81, 90–92, 369, 374, 381, 382,
388, 395, 625–627, 632, 635, 716, 757

enough injectives
e.g., modules, 626, 627

enough projectives, 716
has enough projectives, 625
of complexes, 51

abelian cone associated to coherent sheaf ■,
449

abelian group scheme ■, 197
abelian semigroup ■, 45
abelian varieties ■, 297, 297, 298, 532

are abelian, 298
absolute Frobenius ■, see Frobenius
abstract nonsense ■, see category theory
abut ■, 61
action of group variety/scheme ■, see group

variety/scheme, action
acyclic ■, see also resolution (complexes),

acyclic
object, 629, 631

additive category ■, see category, additive
additive functor ■, see functor, additive
adjoints, 43

of forgetful functors, 46
right

preserves injectives, 638
table of, 46

adjugate matrix ■, 204
adjunction formula, 584, 699, 766

for canonical bundle, 584, 699
for curve on a surface, 549
for dualizing sheaf, 763, 766, 766
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affine 3-space, 658
affine cover cohomology vanishing, 466, 473
affine line, 103
affine n-space

over a scheme X (An
X

), 254
affine 3-space, 115, 128, 332, 334, 336, 353, 568,

610, 658, 659, 690
Affine Communication Lemma ■, 132, 157,

158, 161, 179, 201, 208, 210, 213, 375, 376,
388, 406

affine complex varieties, 12, 13, see varieties,
affine complex, 108, 110, 114

affine cone ■, 146, 152, 235, 235, 236, 308, 316,
317, 341, 406, 605, 690

relative version, 453
affine cover cohomology vanishing, 467
affine cover cohomology vanishing, 466
affine cover cohomology vanishing, 468, 475,

497, 500
affine line, see also line, 102, 102, 103, 104, 104,

105, 105, 107, 116, 117, 120, 133, 140–142,
160, 179, 191–193, 195–199, 211, 213, 218,
219, 237, 247, 259, 290, 293, 295, 296, 303,
304, 319, 343, 345, 352, 375, 382, 384, 389,
392, 399, 401, 402, 422, 427, 436, 481, 488,
505, 506, 509, 515, 516, 525, 526, 536, 579,
590, 593, 645, 650, 658–660, 674, 681, 701

affine morphisms ■
are quasicompact and quasiseparated, 208

affine morphisms ■, 208
affine-local on target, 208
are separated, 285
as Spec, 449
preserved by base change, 262
preserved by composition, 208

affine n-space, 375, 449
affine n-space, 106, 107, 108, 112, 121, 132, 143,

153, 155, 164, 190, 196, 215, 217, 232, 255,
259, 308–311, 317, 332, 338–340, 344–346,
355, 356, 404, 436, 449, 460, 500, 580, 598,
603, 612, 649, 652, 676, 689

(over a field) is regular, 345
(over any base) is flat, 647
minus origin, 120, 132, 139–142, 155, 213,

215, 237, 279, 281, 284, 291, 359, 360, 475
with doubled origin, 141, 142, 154, 279, 281,

284, 359
affine open subscheme/subset ■, 137
affine plane, 105, 106, 108, 110, 115, 117, 119,

122–124, 128, 129, 132, 139, 140, 142, 170,
196, 213, 215, 217, 227, 236, 247, 259, 260,
291, 292, 310, 343, 353, 373, 406, 436, 475,
515, 524, 540, 548, 549, 564, 568, 569, 597,
598, 605–607, 609–611, 615, 650, 657, 691,
705, 729

affine scheme ■, see scheme, affine
affine variety ■, see variety, affine
affine-local ■, 157, 158

on the source, 202
on the target, 202

Alexandrov space ■, 636
algebraic field extension ■, see field extension,

algebraic
algebraic equivalence, 671

implies numerical equivalence, 671
algebraic group ■, 296
Algebraic Hartogs’s Lemma ■, 144, 145, 161,

163, 315, 320, 320, 353, 373, 400, 402, 407,
583, 693, 705

algebraic space ■, 435
Alteration Theorem ■, 611
ample cone, 483, 552, 556, 558
ampleness, 414, 437, see also Kodaira’s

criterion for ampleness, see also Kleiman’s
numerical criterion for ampleness, see
also Serre’s cohomological criterion for
ampleness, 494, see also Nakai-Moishezon
criterion for ampleness, 552, see also
ample cone, 558

⊗ base-point-free is ample, 439
= positive degree on smooth projective

integral curve, 510
better-behaved than very ampleness, 438
implies nef, 484
in relative setting, 456, 457
in the absolute setting, 441, 441

properties of, 441
Kodaira’s criterion, see Kodaira Embedding

Theorem
of vector bundle, 458
open condition, 438
preserved by ⊗, 439
preserved by ⊠, 439
preserved by finite pullback, 438, 457, 481,

494, 495
relative, see relatively ample, 442
Serre’s cohomological criterion, 496
Serre’s cohomological criterion, 438,

494–496
vector bundle, 458
with respect to π, see ampleness, in relative

setting
analytic geometry, 725, 731
analytification ■

of a morphism, 186
analytification ■, 160, 160, 186, 284, 297, 373,

480, 484, 492, 539, 547, 576, 586
André-Quillen homology ■, 566, 567
anticanonical bundle ■, see also

canonical,bundle, 706
arithmetic genus ■, see genus, arithmetic
arrow ■, see morphism
Artin-Rees Lemma ■, 331
Artin-Rees Lemma ■, 350, 364, 364, 365, 665,

666, 728
Artin-Schreier cover ■, 593
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ascending chain condition ■, 125, 126, 127,
219

associated primes ■, 173
associated graded ■, 334, 555
associated points ■, 170
associated points ■, 135, 166–168, 169,

169–171, 173, 174, 239, 241, 269, 292, 388,
405, 409, 462, 483, 489, 491, 544–546, 548,
554, 577, 601, 650, 657, 663, 685

and flatness, 650
correspond to irreducible components of

support of sections, 167
of coherent sheaf, 388
of integral schemes, 173
of locally Noetherian scheme, 169

associated primes ■, 167–169, 172, 172, 173,
650, 685, 687, 693, 695

properties of, 172
weakly, 168

Associated-to-Separated Theorem ■, 293
Asymptotic Riemann-Roch ■, see

Riemann-Roch, Asymptotic
Atiyah flop ■, 614
Atiyah, M. ■, 17, 203, 614
Auslander, M. ■, 362
Auslander-Buchsbaum Theorem ■, 363, 363,

410, 547, 685, 693
automorphism group ■, 26, 27, 518, 519, 521,

523, 535, 536, 587, 594
bounds for curves, 594
infinitesimal, 587
of a scheme, 181
of an object in a category, 26, 26

Axiom of Choice ■, 18, 113, 123, 263, 623, 625,
see also Zorn’s Lemma, 627

base, 256
base gluability axiom, see also gluability axiom
base change, 256
base change diagram, see Cartesian

diagram/square
base field extension, 255
base gluability axiom, 130
base gluability axiom ■, 130
base gluability axiom ■, 87, 131
base identity axiom ■, 87, see also identity

axiom, 130, 131
base locus, 415, 416, 612–614

scheme-theoretic, see scheme-theoretic, base
locus

base of a topology, 87
presheaf, see presheaf, on a base
sheaf, see sheaf, on a base

base point ■, 415, 416, 509, 519, 557, 741
base ring, 148
base scheme, 181, 256, 416
base-point-free locus, 415

base-point-freeness, see also global generation,
413, 414, 415, 415, 416

⊗ ample is ample, 439
⊗ very ample is very ample, 437
and maps to projective space, 415
implied by very ampleness, 437
in relative setting, 456
preserved by ⊗, see global generation (of

quasicoherent sheaf), preserved by ⊗
relative, 442
with respect to π, see base-point-freeness, in

relative setting
Bertini’s Theorem ■, 348
Bertini’s Theorem ■, 331, 343, 346, 346, 492,

494, 520, 613, 684, see also Kleiman-Bertini
Theorem, 699

improved version, 683
weaker hypotheses, 348

Betti numbers ■, 586, 708
Bézout’s Theorem ■, 531
Bézout’s Theorem ■, 231, 234, 274, 344, 431,

432, 491, 492, 512, 514, 522, 523, 543, 544,
549, 704

for plane curves, 491
bilinear ■, 34
bilinear form ■, 552

symmetric (index of), 553
birational ■, 587

(rational) map, 190, 190, 192, 193, 273, 462,
583, 611, 612, 614, 705, 743
factorization of, 614

invariant, 583–586, 743
model, 459
morphism, 190, 274, 277, 460, 502, 598, 704,

705, 739, 740, 742, 743
Zariski’s Main Theorem version, 735, 736

varieties/schemes, 190, 190, 460, 462, 550,
584, 597, 607, 614, 743
need not be isomorphic, 406

birational, right?, 736
bitangents ■, 697
blow down ■, 740
blow-up ■, 259, 334, see also proper transform

(of blow-up), 597, see also universal
property, of blow-up, 599, see also total
transform (of blow-up)

and line bundles, 614
and the canonical bundle, 615
commutes with flat base change, 652, 730
computable locally, 600
does not commute with general base

change, 652
exists, 603
is projective, 603
locally principal closed subscheme, 600
not flat, 650
of affine space, 450, 599
of nonreduced subscheme, 611
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of regular embeddings, 606
of smooth in smooth is smooth, 607
of the plane, 259, 406, 549, 550, 597, 609, 697,

698, 703–706
as graph of rational map, 292

preserves irreducibility and reducedness,
600

Proj description, 604
to resolve base locus, 612

Blow-Up Closure Lemma ■, 600, 602, 602,
603, 605, 609, 613

Borel-Moore homology and Chow groups,
555

boundary (homological algebra) ■, 50
box-times, see ⊠
branch ■

divisor, 590, 592
locus, 588
points, 514, 515, 516, 526, 591, 591, 594

branched cover ■, see also double cover, 211,
515, 517, 593

Buchsbaum, D. ■, 362

Calabi-Yau variety ■, 322
Calabi-Yau variety ■, see also trichotomy

(classification of varieties), 585, 585, 586
Cancellation Theorem ■, 288, 456

for closed embeddings, 437
for finite type morphisms, 327
for flat morphisms, 677
for projective morphisms, 456, 735, 742, 760
for proper morphisms, 294, 296, 739
for quasicompact separated morphisms,

466
for quasicompact morphisms, 208, 459
in Sets, 288

canonical ■
bundle KX, 485, 584, see also anticanonical

bundle
is Serre-dualizing, 485, 524, 579, 584,

586–588, 593, 749, 763
curve, see curve, canonical
embedding, 521
map, 517
sheaf, see canonical, bundle KX

Caroll, L. ■, 115
Cartan-Eilenberg resolution ■, 630, 631, 633,

633, 634
Cartesian diagram/square, 36, 256
Cartier divisors ■, see also effective Cartier

divisors, 17
Castelnuovo’s Criterion ■, 605, 697, 705, 725,

740, 740, 742
category ■, 26, see also subcategory

abelian, see abelian category
additive, 47, 48, 79–81, 90
concrete, 27

equivalence, 30, 30, 88, 89, 182, 191, 378,
412, 462

index, 40, 41, 42, 74
locally small, 26
of A-schemes, 183
of k-schemes, 183
of S-schemes, 183
of complexes, 51
of open subsets, 28
of schemes, 181
of subsets of a set, 28
opposite, 29, 191, 461

rings and affine schemes, 182
small, 30, 39, 43, 51

category theory ■, 13, 19, 23, 78
catenary rings ■, 311
Cayley, A. ■, 697
Cayley-Bacharach Theorem ■, 512
Čech cohomology, 470
Čech cohomology, 17, 279, 465, 470, 471, 472,

628, 637–642
= derived functor cohomology, 621, 635, 637
agrees with derived functor, 637

Čech complex ■, 470, 470–473, 475–477, 498,
516, 639–641, 669, 713, 715, 752

Čech cover ■, 638, 640, 754
Čech resolution, 670
chase of base, see base change
Chasles’ Theorem ■, 512
Chern class ■, 480, 546, 554, 555
Chevalley’s Theorem ■, 216, 217, 218,

218–221, 236, 260, 262, 321, 546, 662
for finitely presented morphisms, 218, 261
for locally finitely presented morphisms,

261
Chinese Remainder Theorem ■, 133, 144, 254
Chow group ■, 555
Chow groups, 555
Chow’s Lemma ■, 501, 501–503, 544

other versions, 504
Churchill, W. ■, 645
class (set theory) ■, 26
class group ■, 166, 404, 404–408

and unique factorization, 407
excision exact sequence, 404
in number theory, 374, 405, 407

Clifford, W. ■, 526
closed embeddings ■

preserved by base change, 254
closed embeddings ■, 211, 225, 225

affine-local on target, 226
are finite, 225
are monomorphisms, 255
are proper, 293, 294
are separated, 281, 286
base change by, 254
closed under composition, 225
in projective space, 230
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intersections of, 254
preserved by base change, 262, 285

closed immersions ■, see closed embeddings
closed map ■, 211, 221, see also universally

closed morphisms, 293
closed point ■, 505, 691, 744

of SpecA correspond to maximal ideals,
121

closed point ■, 107, 108, 121, 121, 123, 142,
144, 152, 153, 155, see also degree, of
closed point, 160, 179, 212, 219, 226, 232,
248, 260, 267, 268, 290, 296, 298, 306, 314,
327, 335, 336, 339, 340, 342, 343, 345, 347,
348, 357, 359, 361, 363, 391, 415, 422, 432,
435, 440, 460, 464, 481, 491, 495, 496, 505,
507–509, 514, 524, 537–540, 550, 564, 568,
571, 576–578, 606, 607, 616, 636, 657, 665,
667, 677, 678, 682, 701, 705, 710, 727, 729,
730

checking Cohen-Macaulayness (for
quasicompact schemes), 691

checking for singularities of varieties, 338
checking normality (for quasicompact

schemes), 162
checking reducedness (for quasicompact

schemes), 155
dense for finitely generated k-algebras, 121
dense for varieties, 154
of Pn

k
, 143, 144, 151, 232

of SpecQ(t)⊗Q C, 256
of affine n-space, 121
of locally finite type k-schemes, 160
quasicompact schemes have one, 153
schemes need not have one, 153

closed subscheme, 202
closed subscheme exact sequence ■, 479
closed subscheme exact sequence ■, 384, 386,

408, 412, 427, 428, 490, 496, 651, 723, 741,
765

closed subschemes ■, 133, see also closed
embeddings, 138, 147, 151, 225, 225

arbitrary intersections, 227
correspond to quasicoherent sheaf of ideals,

386
cut out by s, 227
finite union of, 227
locally principal

have codimension 0 or 1, 316
locally principal, 241, 241, 262, 602, 603, 612,

see also divisor, locally principal, 668
pull back, 262

closure
scheme-theoretic, see scheme-theoretic,

closure
cocycle condition ■, 89, 141, 251, 370, 371, 376,

399, 411
codimension ■, 244, 305

at most difference of dimensions, 306

odd behavior, 306
one, 315
pathologies, 318
sometimes difference of dimensions, 311

cofinal ■, 726, 728, 738, 741, 745
Cohen Structure Theorem ■, 726
Cohen-Macaulayness ■, 363, 364, 486, 548,

685, 688, 689–693, 701, 750, 753, 754,
760–762, 766

and adding a variable, 691
fancy properties, 691
implies no embedded points, 689
implies no embedded points, 689, 690
of all dimension 0 Noetherian schemes, 689
of all dimension 1 Noetherian schemes

without embedded points, 689
of all dimension 2 normal varieties, 692
of regular local rings, 685
open condition, 691
preserved by localization, 691
slicing criterion, see slicing criterion, for

Cohen-Macaulayness
Coherence Theorem ■, see Grothendieck’s

Coherence Theorem
coherent sheaves ■, 152, 369, 374, 388, see also

modules, coherent
CohX is abelian category, 395
abelian cone of, 449
affine-local nature, 388
dual, 389
Euler characteristic, 478
flat = locally free, see finitely presented

sheaves, flat = locally free
cohomological criterion of affineness ■, see

Serre’s cohomological criterion for
affineness

cohomology, see also Čech cohomology, see
also derived functor cohomology, see also
homology, 17, 50, 478, 499

Čech = derived functor, 637
Čech = derived functor, 621, 635, 637
and change of base field, 474
behaves well in flat families, 669
commutes with flat base change, 651, 708,

730
cup product, see cup product
dimensional vanishing, 660, 764

more generally, 474
dimensional cohomology vanishing, 466
dimensional vanishing, 474, 615, 616

relative, 500
of double complex, 58
of line bundles on projective space, 475
pullback, 466
relative dimensional vanishing, 500
with supports, 17

Cohomology and Base Change Theorem ■,
720
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Cohomology and Base Change Theorem ■,
364, 497, 499, 709, 709–711, 713, 715, 716,
718, 719, 722

cokernel ■, 48, see also universal property, of
cokernel

presheaf, 81
colimits

do not necessarily commute with
right-exact functors, 56

colimits ■, 41
are right-exact, 54
commute with colimits, 54
commute with left adjoints, 54
e.g., cokernels, 54
filtered, 42

are exact for A-modules, 94
commute with cohomology, 56, 655
commute with homology in ModA, 56
in ModA are exact, 54–56
localization as, 43
not always exact, 55

non-filtered, 43
collapse (of spectral sequence) ■, 61
comathematician ■, 41
compatible germs ■, 49, 83, 83, 84, 87, 88, 94,

151, 227, 378, 411, 434
complete intersections ■, 584
complete k-scheme ■, 293
complete intersections ■, 245, 494, 521–523,

531, 532, 585, 766
in affine space

are Cohen-Macaulay, 689
implies no embedded points, 689

in projective space, 494
positive-dimensional ones are connected,

494
complete linear series ■, see linear series,

complete
complete with respect to an ideal I ■, 726
completion ■, 14, 41, 334, 393, 658, 666, 680,

725, 725, 726, 726–730, 732–734, 744
and Cohen-Macaulayness, 691
and exactness, 727
commutes with finite direct sums, 729
is flat, 667, 727, 730
not always exact, 728
of A along I, 725
preserves exact sequences of finitely

generated modules, 727, 729
complex (abelian category) ■, 49, 49

double, 57, 58, 58, 63–65, 69, 243, 244,
629–631, 638, 641
(hyper)cohomology of, 58
first quadrant, 59
total complex of, 58

factorization into short exact sequences, 50
homotopic maps give same map on

homology, 623

complex (affine) n-space, see n-space
complex (affine) plane, see affine plane
complex manifold, see manifold, complex
complex varieties, see also affine complex

varieties, see varieties, complex, 145, 160,
161, 186, 373, 541, 586

component ■
connected, 153
irreducible, 153

component ■
connected, 123, 123–125, 159, 266, 267, 371
irreducible, 123, 123, 125, 269

= minimal primes for SpecA, 128
Noetherian spaces have finitely many,

124
composition series ■, see modules,

composition series
composition-of-functors spectral sequence ■,

see Grothendieck
composition-of-functors spectral
sequence

compositum ■, 308
comultiplication ■, 199
cone, 333

affine, see affine cone
projective, see projective cone

cone over smooth quadric surface, see quadric
surface, 145, 163, 165, 272, 309, 334, 341,
408, 613, 614

cone point, 235, 333, 538, 610, 612, 613
conic, 147, 149, 151, 191–193, 231, 233, 235,

236, 321, 348, 349, 433, 482, 492, 511, 513,
514, 519, 520, 537, 538, 671, 706, 712

universal, 481
connected ■, 119, 153

component, see component, connected
fibers, see fibers, connected

connecting homomorphism ■, 52, 60, 466,
471, 473, 498, 622, 624, 637

conormal
bundle, 567
cone/bundle/sheaf, 597
exact sequence, 567, 574, 676

affine version, 567
for smooth varieties, 577
left-exact in good circumstances, 567, 575,

577
left-exactness, 680

module, 567, 567
sheaf, 567, 568, 569

of regular embedding is locally free, 569
Conrad, B. ■, 25
constant (pre)sheaf ■, 76
constant rank implies locally free for finite

type quasicoherent sheaves ■, see finite
type, quasicoherent sheaves, constant
rank implies locally free
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constructible subsets ■, see also locally
constructible subsets, 217, 218

are finite disjoint unions of locally closed
subsets, 217

in more general situations, 262
locally, 262

contravariant functor ■, see functor,
contravariant

coordinates ■, 102
projective, 151, 533, 581

coproduct ■, see also fibered coproduct, 37, 42
of schemes, 247
of sets, 37

cotangent
bundle, 485
complex, 566, 680
map, 335
sheaf, 561, see also tangent sheaf

relative, 572
space, 73, 331, 331–333, 335, 341, 561, 568,

570, 577, 678, 682
Jacobian criterion, 335

vector, 332, 561, 561
= differential, 332
relative, 561
vertical, 561, 565

cotangent exact sequence
left-exact in good circumstances, 566

counterexamples (list of) ■, 132
covariant functor ■, see functor, covariant
cover, 72

by open subfunctors, 252
covering space ■, 355, 674
Cremona transformation ■, 193, 292, 437, 613,

706
cross-ratio ■, 526
cross-ratio ■, 526

classifies 4 points on P1, 526
cubic, see also twisted cubic curve, see also

nodal cubic, 274, 513, 514, 520, 522,
527–535, 540, 541, 613, 658, 660

curves, see also cuspidal cubic, 613
hypersurface, 230
nodal

normalization of, 658
plane curves, 343
surface, 14, 16, 315, 521, 522, 613, 697–706

Fermat, 699, 703
is blown-up plane, 704
singular, 699

cup product ■, 475, 750, 754
Yoneda, 757, 762

curve singularity, 730
Curve-to-Projective Extension Theorem ■,

435
Curve-to-Projective Extension Theorem ■,

191–193, 436, 460–462, 526, 530
necessity of hypotheses, 436

curves ■
genus 1

classified by j-invariant, 528
genus 3, 521
genus 4, 521
nonhyperelliptic, 521
plane, 519

curves ■, 230, 304
canonical, 521
elliptic, see elliptic curves, 528
exists regular projective birational model of

each, 459
genus, 505
genus 0, 493, 510–512, 514, 517, 518, 523,

588, 593, 711, 731
are conics, 511

genus 1, 493, 514, 517, 518, 521, 523, 524,
528, 535–537, 540, 660
not classified by j-invariant, 528

genus 2, 517–519, 592
hyperelliptic in precisely one way, 517

genus 3, 480, 493, 517, 519–523, 592, 731
not all hyperelliptic, 517

genus 4, 494, 521, 522, 531
genus 5, 521–523
genus 6, 493, 731
hyperelliptic, see hyperelliptic curves
moduli space, 646
non-rational, 193
nonhyperelliptic, 517, 519–522, 531
of every genus, 516
plane, 343, 491, 512, 520, 537, 549, 564, 602,

609, 660, 697, 729, 731
proper implies projective, 495
trigonal, 520, 522
various categories are equivalent, 461

cusp, 274, 343, see also normalization, of cusp,
505, 588, 609, 612, 730, 730

cuspidal cubic, 274, 343, 588, 609
normalization, 663

cycle (homological algebra) ■, 50

de Jong, A.J. ■, 611
de Rham cohomology ■, 578, 579
Dedekind domain ■, 165, 166, 276, 311, 354,

374
unique factorization of ideals, 354

deformation theory ■, 336, 587, 646, 655, 697,
701

deformation to the normal cone ■, 616, 616,
657

deformations (infinitesimal) ■, 587
degenerate linear series ■, see linear series,

(non)degenerate
degree
dmap, 431
algebraic = analytic for maps of curves, 463
in projective space, 491, 645
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additive for unions, 493
constant in flat families, 670
of curve, 431
topological definition, 492

of closed point, 160
of coherent sheaf on curve, 481

additive in exact sequences, 481
of discriminant of degree d polynomials,

594
of divisor on regular curve over k, 479
of finite flat morphism is locally constant,

656
of finite flat morphism is locally constant,

259, 462, 546, 593, 615, 657, 664, 701
of finite map from curve to regular curve is

constant, 463, 479, 514, 527, 670
of finite morphism at point, 393
of generically finite morphism, 664
of generically finite rational map, 309

multiplicative under composition, 309
of homogeneous element, 148
of hypersurface, 230
of line bundle on curve

additive for ⊗, 479
of line bundle on curve, 479, 483, 543, 645

additive in exact sequences, 592
of line bundle on projective space, 405
of projective morphism from curve to

regular curve, 657
of projective morphism of curves, 462, 462

delta-functors ■, 762
universal, 753

delta-functors ■, 627, 763
e.g., derived functors, 628
morphism of, 628
universal, 627, 628, 753, 762

depth ■, 685, 685, 691–694
bounded by dimension of support, 685

derivation ■, 332, 570, 570–574, 580
universal, 570

derived functors
left, 626

derived category ■, 471, 760
derived functor cohomology, 17, 628, 637,

639–641
= Čech cohomology, 621, 635, 637

derived functors, 17, 57, 465, 474, 497, 627,
754, 756

agrees with Čech cohomology, 637
and spectral sequences, 629
computed with acyclic resolutions, 629
left, 625
right, 626

derived pushforward, see higher pushforward
descending chain condition ■, 124, 125, 327,

328, 483
descent ■, 255, 534, 646

desingularization ■, see resolution
(singularities)

determinant (line) bundles ■, 481
determinant (line) bundles ■, 385, 485, 749

behave well in exact sequences, 386
determinant map GLn → Gm ■, 198
dévissage ■, 17, 544
diagonal ∆ (locally closed subscheme of

X×Y X) ■, 280
diagonal morphism δ ■, 279

is a locally closed embedding, 280
diagonalizing quadratic forms ■, 164, 165,

193, 233, 234, 272, 333, 343, 552
diagram indexed by ■, see category, index
Dieudonné, J. ■, 243

completely functorised, 47
different ideal ■, see also relative different and

discriminant ideals, 589
differentiable functions ■

germ, 72
sheaf, 71

differentiable manifolds ■, see manifolds,
differentiable

differentials, 280, 332, see also relative
cotangent sequence, 592

= cotangent vectors, 332
behave well with respect to base change,

571, 575
explicit description, 563
fiber at a rational point, 570
module of (for ring maps), 562
on hyperelliptic curves, 579
on projective space, see Euler exact

sequence
pulling back, 571, 575
universal property, see universal property,

of differentials
dilation ■, see blow-up
dimension

of variety at a point, 313
dimension ■

pure, see equidimensional
dimension ■, 106, 303

= transcendence degree, 308
additive for products of varieties, 311, 663
constant in flat families, 670
of fibers, 322

never lower than expected, 322, 700
of scheme, 14, 155, 162

dimensional cohomology vanishing ■
for quasiprojective schemes, 616

dimensional cohomology vanishing ■, 466,
474, 616, 660, 764

for quasiprojective schemes, 615
more generally, 474
relative, 500

Diophantine equations ■, 185, 191–193, 518,
697
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direct image sheaf, see sheaf, pushforward
direct limits ■, see colimits
discrete valuation ■, 361
discrete topology ■, 76, 76, 84, 144, 212, 640,

726
discrete valuation ■, see also discrete

valuation rings, see also valuations
discrete valuation ■, 351, 359
discrete valuation rings ■

finitely generated modules over, 375
flatness criterion, 668

discrete valuation rings ■, 110, 275, 331, 339,
345, 351, 358–362, 389, 391, 400, 437, 460,
463, 464, 538, 580, 591, 592, 647, 648, 655,
657, 658

classification of finite generated modules
over, 580

differentials over a field, 580, 592
finitely generated modules over, 354, 391,

399, 464, 525, 580, 648
flatness criterion, 655

discriminant ideal ■, see also relative different
and discriminant ideals, 589

disjoint union of schemes ■, see also infinite
disjoint union of schemes, 137, 137, 141,
146, 156, 157, 162, 218, 240, 247, 267, 305,
575, 588, 674, 676, 720

distinguished affine base ■, 377, 377, 378
distinguished open set, see open set,

distinguished
divisible abelian group ■, 627
divisor ■

Q-Cartier, see Q-Cartier divisor
branch, see branch, divisor
Cartier, 17
effective Cartier, see effective Cartier

divisors
exceptional, see exceptional divisor
Weil, see Weil divisor

domain of definition ■, 171, 171, 188, 192, 193,
289, 291, 291, 583

dominant (or dominating) ■, 189
dominant (or dominating) ■, 273
dominant (or dominating) ■, 189, 189–191,

193, 218, 219, 275, 308, 309, 323, 326, 461,
462, 539, 546, 590, 593, 681, 682

Donagi, R. ■, 697
double complex ■, see complex (abelian

category), double
double cover ■, 525, 529
double cover ■, see also branched cover, 111,

211, 514, 514–516, see also hyperelliptic
map, 517–519, 521, 525, 526, 529, 540, 579,
589, 645

dual ■
of OX-module, 80
of coherent sheaf, 389
of locally free sheaf, 372

projective space, 346
variety, 348

dual numbers ■, 104, 112, 113, 133, 134, 138,
156, 186, 225, 237, 290, 304, 336, 393, 418,
655, 674

flatness criterion, 655
dualizing sheaf ■, 467, 485, 522, 749, 751, 761,

765
= canonical sheaf, 763

DVR ■, see discrete valuation rings
Dwork, B. ■, 362
Dynkin diagrams ■, 610, 706

effaceable functor ■, see functor, effaceable
effective Cartier divisors ■, 17, 240, 241, 241,

242, 245, 260, 292, 337, 397, 405–410, 435,
474, 544–547, 549, 569, 598–607, 612–616,
651, 667, 668, 689, 704, 736, 742, 763, 765,
766

have pure codimension 1, 316
normal bundles to, 569
relative, 668
restriction to open sets, 405

effective cone, 552, 552
Eilenberg-Zilber Theorem ■, 475
Eisenbud, D. ■, 276
Eisenstein’s Criterion ■, 343
elimination of quantifiers ■, 221
elimination theory ■, 216, see also

Fundamental Theorem of Elimination
Theory, 222

ellipse ■, 513, 536, 537
elliptic curves ■, 525
elliptic curves ■, 373

group law, 531
elliptic curves ■, 163, 186, 193, 297, 516, 518,

523, 524, 524–527, 529, 532, 535–541, 550,
708

are group varieties, 532
counterexamples and pathologies, 538
degenerate, 536
degree 1 points = degree 0 line bundles, 524
group law, 524, 525, 530–532, 540, 705
level n structure, 525
non-torsion point, 539, 540
not same as genus 1 curves, 524

elliptic fibration ■, 613
embedded points ■, 168, 168, 170, 170, 171,

388, 400, 462, 464, 491, 548, 549, 577, 687,
689, 690, 692, 694, 765

embedding (unwise terminology) ■, 229
enough injectives, 630
enough injectives, 18, 626–630, 634, 642, 754,

758
enough projectives, 625, 626, 629, 636, 754
epimorphisms ■, 37, 38, 47–49, 54, 57, 86, 89,

91, 226
equalizer exact sequence ■, 75, 130, 251
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equidimensional ■, 323
equidimensional ■, 304, 304, 305, 314, 317,

326, 338, 341, 342, 356, 357, 435, 462, 555,
575, 613, 662, 663, 689–691, 751, 760–764,
766

equivalence of categories ■, see category,
equivalence

equivariant morphism ■, 683
espace étalé ■, see sheaf, space of sections
essentially finitely presented ■, 668
essentially surjective ■, 30
étale morphisms ■, 703
étale cohomology ■, 381, 621
étale cover ■, 356, 676
étale morphisms ■, 331, 340, 354, 355, 356,

589, 673, 675, 676, 677, see also formally
étale, 680, 701, 703, 727

closed under composition, 356
differential geometric motivation, 354
form “reasonable” class, 356
not same as “local isomorphism”, 356
open condition, 355

étale topology ■, 381, 674, 727
étale-locally ■, 732
Euclid ■, 105
Euclidean algorithm / Euclidean domain ■,

105, 106, 163
Euclidean domain, 104
Euler exact sequence ■, 582
Euler characteristic ■, 399, 492, 493, 548, 554,

645, 646, 661, 669
additive in exact sequences, 478, 479, 490,

554
constant in projective flat families, 647, 661,

669, 708, 715
constant in proper flat families, 497, 715

without Noetherian conditions, 720
of coherent sheaf, 478
polynomiality, 488, 523

Euler exact sequence ■, 580–583, 586, 587
generalizations, 582

Euler test for projective hypersurfaces ■, 343,
343

exact, 49, 49
exact functor ■, see functor, exact
exact modules, 645
exact morphisms, 645
exact sequence, see also exponential exact

sequence, see also Grassmannian,
universal exact sequence, see also long
exact sequence, see also Euler exact
sequence

closed subscheme, see closed subscheme
exact sequence

equalizer, 75, 130, 251
excision for class groups, 404
grafting, 63
split, 634

excellent rings ■, 327
exceptional divisor ■, 260, 549, 598, 599,

604–607, 609–612, 614–616, 705, 706, 730,
736, 740, 742

normal bundle to, 605
exponential exact sequence ■, 86, 89, 91, 480
Ext functors, 621, 749, 753

composition of, 757
first version, 626
for O-modules, 754

computable by acyclics, 754
long exact sequence, 754

second version, 626
two definitions are same, 629

Ext functors, 754
behaves like derived functor in first

argument, 756
needn’t preserve quasicoherence, 755

extending the base field ■, 255
extension by zero ■, 95, 637, 642, 758
extension of an ideal ■, 254
extension of fields ■, see field extension
extension of scalars ■, 46
exterior algebra ■, 384

factorial ■, 363
factorial ■, 163, 163–165, 334, 363, 403, 405,

406, 410, 538, 547, 558, 579, 685
but no affine open is UFD (example), 538
implies normal, 164
open condition, 163
weaker than regular (example), 363

faithful flatness ■, 661
preserved by base change, 661

faithful functor ■, see functor, faithful
faithful module ■, 207
Faltings’ Theorem (Mordell’s Conjecture) ■,

518
Fano variety (classification theory) ■, 322,

585, 585, 586, 704
Fano variety (of lines) ■, 704
Fermat, 193
Fermat cubic surface, see cubic, surface,

Fermat
Fermat curve ■, 193, 343
Fermat’s Last Theorem ■, 193, 518
Fermat, P. de ■, 193
FHHF Theorem ■, 54, 56, 474, 497–500, 652,

716, 717
fibered product

in category of open sets, 36
fibered product ■, 229
fibered coproduct ■, see also coproduct, see

also universal property, of fibered
coproduct, 37, 248

fibered diagram/square, 36
fibered product

of schemes, 247
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with open embedding, 202
fibered product ■, see also product, 35, 35–38,

40, 127, 195, 201, 247–250, see also
universal property, of fibered product,
251–256, 259, 262, 264, 273, 284, 285, 289,
290, 292, 294, 423, 425, 434, 447, 448, 450,
563, 601, 653

“commutes with localization”, 255
of functors, 251
of schemes, 247

fibered products
of sets, 36

fibers, 201, 256, 257, see also generic fiber
connected, 267, 734, 735

from Zariski’s Connectedness Lemma,
733

dimension of, 322
well-behaved for flat morphisms, 650,

661, 662
geometric, 264, 264, 265, 646, 676–678, 680,

711, 712
properties preserved by base change, 264

geometrically connected (etc.), 264
of OX-module, 139
scheme-theoretic, see scheme-theoretic,

fiber, 702
field ■

perfect, 268, 269
field ■

perfect, 578
field ■

imperfect, 296
perfect, 268, 269, 342, 363, 576–578, 679, 693
separably closed, 264, 267, 268, 270

field extension
finite, 275

field extension ■, 166, 191, 210, 255, 256, 265,
267–269, 273, 276, 277, 314, 339, 342, 345,
357, 415, 463, 474, 479, 494, 508, 510,
532–535, 539, 544, 576, 593, 594, 611, 679

algebraic, 203, 204, 275, 305, 307, 314, 565
finite, 107, 121, 160, 165, 212, 218, 254, 255,

265, 269, 276, 277, 305, 308, 309, 313, 342,
459, 515, 538, 565, 588, 674, 676

finitely generated, 191, 267, 268, see also
transcendence degree, 308, 493, 681

Galois, 254, 255, 313, 593
inseparable, 264
normal, 313
purely inseparable, 270
purely inseparable, 266, 270, 277, 468, 681
purely transcendental, 191, 314
separable, 269, 277, 565, 570, 576, 588, 590,

674, 676
separably generated, 268, 572, 576, 681

filtered, see also colimits, filtered, 42, 42, 43,
54–57, 74, 94, 378, 466, 474, 655

final object ■, see object, final

finite B-algebra ■, 210
finite fibers not preserved by base change ■,

262
finite flat morphisms ■, 259, 462, 546, 656,

664, 699, 701, 720, 760, 762
have locally constant degree, 656
have locally constant degree, 546, 657, 664,

701
finite global generation ■, see global

generation (of quasicoherent sheaf), finite
finite length ■, see length, finite
finite morphisms ■, 210, see also finite flat

morphisms
= integral + finite type, 214
= projective + affine, 469
= projective + finite fibers, 456, 462, 469,

469, 481, 507, 701, 742
= projective + quasifinite, 469
= proper + affine, 296, 469, 501, 739, 739
= proper + finite fibers, 469, 739
= proper + quasifinite, 296, 739
= proper + quasifinite + locally finitely

presented, 739
affine-local on target, 211
are affine, 210
are closed, 213, 232
are integral, 204, 213
are projective, 213, 455
are proper, 294
are quasifinite, 213, 215
are separated, 285
closed under composition, 213
have finite fibers, 213, 257, 259
not same as finite fibers, 213
preserved by base change, 262
separable, 590
to Spec k, 212

finite type implied by quasiprojective, 159
finite type ■
A-scheme, 159
morphisms, 214, 293

are affine-local, 214
preserved by base change, 262

over a ring, 159
quasicoherent sheaves, see also modules,

finitely generated, 388
affine-local, 388
constant rank implies locally free, 392,

464, 656, 670, 681, 718
support is closed, 390

finitely generated ■
domain, 308
field extension, 191
modules, see modules, finitely generated

finitely globally generated ■, see global
generation (of quasicoherent sheaf), finite
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finitely presented, see also local finite
presentation, 214, see finitely presented
morphisms, see finitely presented

= finite type under Noetherian hypotheses,
215, 216, 261

algebra (ring map), 215, 215, 216, 216, 563,
668

essentially, 668
modules, see modules, finitely presented
morphisms, 207, 215, 216, 438, 646, 657, 664,

677, 680, 710, 719–722
= “finite in all ways”, 216
affine-local on source, 216
Chevalley’s Theorem, 218, 261
closed under composition, 216
locally pullbacks of nice morphisms, 261
preserved by base change, 262

finitely presented modules ■, see modules,
finitely presented

finitely presented quasicoherent sheaves ■,
see also modules, finitely presented, 388,
669, 719

affine-local, 388
finitely presented sheaves

flat = locally free, 656
local freeness is stalk-local property, 391

finiteness of zeros and poles ■, 400
finiteness of zeros and poles ■, 353
first algebraic de Rham cohomology group ■,

578, see also genus, geometric
of hyperelliptic curve, 579

first quadrant double complex ■, 59
Five Lemma ■, 49, 50, 63, 64

subtler, 64, 752
flabby sheaf ■, see sheaf, flasque/flabby
flag variety ■, 200, 446, 583

bundles, 583
flasque sheaf ■, see sheaf, flasque/flabby
flatness, 217, 295, 428, 428, 462, 474, 484, 497,

499, 543, see also finite flat morphisms,
555, 616, 621, 622, 624, 625, see also
resolution (complexes), flat, 649, 672, see
also generic flatness, see also Miracle
Flatness Theorem

= free = projective for finitely presented
modules over local rings, 647, 655

= locally free for finitely presented sheaves,
656

= projective for finitely presented modules,
656

= torsion-free for PID, 655
and blowing up, 652
at a point, 649
commutes with base change, 667
constancy of Euler characteristics, see Euler

characteristic, constant ...
constancy of fiber arithmetic genus, 670
constancy of fiber degree, 670

constancy of fiber dimension, 670
equational criterion, 654
faithful, see faithful flatness
fiber dimension well-behaved, 650, 670
fibral, 668, 669
flat limit, 657, 658, 659–661

explicit example, 658
Going-Down Theorem, see Going-Down

Theorem, for flatness
good behavior of fiber dimension, 662
ideal-theoretic criteria, 647, 652, 654, 654,

655, 665, 729
finitely generated version, 654
stronger form, 729

implies constant Euler characteristic, see
Euler characteristic, constant in
projective flat families

implies torsion-free, 648, 652, 655, 665, 667,
691

infinitesimal criterion, 666
local criterion, 647, 665, 665–668, 709, 718,

722
more general version, 665

no higher Tor, 665
no higher Tor, 624, 625, 646, 652–654
of affine space, 647
of completion, 667, 727
of free modules, 647
of localization, 647
of modules, 54, 647
of open embeddings, 649
of projective modules, 647
of quasicoherent sheaf over a base, 649
of relative dimension n, 663, 663, 664, 675,

676, 691
preserved by base change, 663

of ring morphism, 647
open condition, 664, 664
open in good situations, 647, 662
over a field, 647
over Discrete Valuation Rings (criterion),

647, 655, 668
over dual numbers, 647, 649, 655
over integral domains, 647, 648
over principal ideal domains, 647, 648, 655
over regular curves, 657
preserved by base change, 648, 649
sends associated points to associated

points, 650
slicing criterion, see slicing criterion, for

flatness
stalk/prime-local property, 648
topological aspects, 647, 661
transitivity of, 648, 649
valuative criterion, 657
variation of cohomology, 658

flex ■, 528, 530
forgetful functor ■, see functor, forgetful
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formal neighborhood ■, 727, 732, 732, 734,
744

formal power series ■, see power series,
formal

formal scheme ■, 17, 732
formally étale ■, 680, 680, 727
formally smooth ■, 680, 680
formally unramified ■, 588, 680, 680
Four Squares Theorem ■, 193
fraction field ■, see also total fraction ring

(total quotient ring), 32, 138, 139, 156, 162,
191, 273, 274, 351–354, 407, 576

fractional ideal ■, 369, 373, 407
fractional linear transformations ■, 430, 519
free resolution ■, see resolution (complexes),

free
free sheaf ■, 369
Freyd-Mitchell Embedding Theorem ■, 49, 49
Frobenius ■, 505
Frobenius ■, 215, 505

absolute, 215
full functor ■, see functor, full
full rank quadratic form ■, see maximal rank

(quadratic form)
full subcategory ■, see subcategory, full
fully faithful functor ■, see functor, fully

faithful
Fulton, W. ■, 616
function field ■, 189
function field ■, 156, 171, 174, 189–191, 193,

269, 273, 275, 276, 308–310, 325, 353, 361,
375, 459, 460, 463, 511, 515, 554, 590, 593,
611

determines irreducible regular projective
curve, 461

functions ■, see also differentiable functions,
171

= map to A1, 195
multiplicity at regular point, 612
on a scheme, 102
on a ringed space, 77
on a scheme, 136
on projective space, 144
value at a point, 138
value at a point, 102, 138

functor, see also derived functors
additive, 48, 48, 52, 55, 627–630, 638
category, 39, 51, 251
composition of, 28
contravariant, 29
covariant, 28
effaceable, 628
exact, 53
faithful, 29, 30, 39, 46, 49, 290
forgetful, 28
full, 29, 30, 39, 46, 49, 290
fully faithful, 29
identity, 28

left-exact, see left exact
natural isomorphism, 30
natural transformation, 30, 30, 39, 44, 55, 79,

251, 252, 444, 628, 750
of invertible functions, 196
of maps, 29
of points, 29, 184, 185
representable, 38, 39, 195, 195, 251–253
right-exact, see right-exact

functors
right-exact

do not always commute with colimits, 56
fundamental groupoid ■, 26
fundamental point (of rational map) ■, 291
Fundamental Theorem of Elimination Theory

■, 217, 221, 222, 223, 232, 295, 322, 347,
436, 469, 672

GAGA ■, 586, 645
Galois cohomology ■, 381
Galois theory ■, 255
Galois theory ■, 105, 107, 108, 114, 254, 255,

277, 312, 313, 342, 515, 527, 593, 646, 704
Gauss’s Lemma ■, 163, 164
Gaussian integers Z[i] ■, 163, 259, 275, 345,

353
general point ■, 309
general fiber, see also generic fiber, 260
general flatness ■, 664
general point ■, 349
general point ■, 123, 348, 613, 704, 705
general type (variety) ■, 322, see also

trichotomy (classification of varieties),
585, 585, 586

generated by a finite number of global
sections, see global generation (of
quasicoherent sheaf) ,finite

generated by global sections, see global
generation

generated in degree 1, 148, 417, 451
generic smoothness ■

on target, 683
generic fiber, 258, see also general fiber, 260,

327
generic flatness ■, 681
generic flatness ■, 123, 664

improved version, 664
Generic Freeness Lemma ■, 219, 219, 220, 664
generic point ■, 103, 153
generic point ■, 105, 110, 114, 115, 120, 122,

122, 123, 128, 133, 139, 142, 156, 166–168,
170, 171, 173, 189, 191, 213, 218, 219, 226,
255, 258, 260, 261, 303, 306, 308, 311, 316,
325, 353, 373, 375, 386, 391, 392, 400, 422,
423, 437

generic smoothness ■, 123, 576, 681–683
of varieties, 576
on source, 682
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on source, 681, 681, 682
on target, 681

generically finite ■, 260, 611
implies generally finite, 326, 664

generically separable morphisms ■, see also
separable finite morphisms, 590

generization ■, 122, 122, 153, 162, 218, 662
genus ■, 488

arithmetic, 480, 491, 493, 522, 584, 593, 645,
646, 670, 720, 730, 731, 736
= geometric, 584
= topological, 480
constant in projective flat families, 670

geometric, 578, 584, 584, 731
= topological, 593
is birational invariant, 583, 584

topological, 480
geometric fiber ■, see fiber, geometric
geometric genus ■, see genus, geometric
Geometric Nakayama’s Lemma ■, see

Nakayama’s Lemma, geometric version
geometric Noether normalization ■, see

Noether normalization, geometric
geometric point ■, 264, 264, 297, 298, 519, 676,

677
geometrically connected ■, 264, 264, 265, 267,

468, 585, 593, 710
geometrically integral ■, 264, 264, 265, 268,

297, 485, 505, 508, 511, 512, 533
geometrically irreducible ■, 264, 264–266, 298,

461, 485, 508, 554, 585, 588
geometrically reduced ■, 264, 264, 265, 268,

269, 296, 298, 469, 710
Germain, S. ■, 102
germs ■, 74

compatible, see compatible germs
determine section of sheaf, 82
of differentiable functions, 72

global generation (of quasicoherent sheaf) ■
finite

every finite type quasicoherent sheaf on
every affine scheme, 414

global generation (of quasicoherent sheaf) ■,
see also base-point-freeness, 413, 414, 414,
494

at a point, 414
every quasicoherent sheaf on every affine

scheme, 414
finite, 414
open condition, 415
preserved by ⊗, 415, 432
relative, 442, 456

for locally ringed spaces, 456
with respect to π, see globally generation,

relative
global section, 74
gluability axiom ■, 75, see also base gluability

axiom, 131

gluing ringed spaces along open sets ■, 141
gluing schemes ■

along closed subschemes, 433
along open subsets, 140, 433

Gödel-Bernays set theory ■, 30
Godement, R. ■, 635
Going-Down Theorem ■, 206

for finite extensions of integrally closed
domains, 206, 311, 312, 312, 662

for flat morphisms, 312, 661, 662, 662, 663
for integral extensions of integrally closed

domains, 312
Going-Up Theorem ■, 205, 304, 312, 662
graded ideal, see homogeneous ideal
graded modules

saturation, 412
graded rings ■, 46, 146, 147, 186

Z-, 147
= Z≥0-graded ring, 147
assumptions on, 148
finitely generated over A, 148
generated in degree 1, 148
maps of, 186
over A, 148

graph (of a) morphism ■, 286, 288, 503, 550
is a locally closed embedding, 286, 504
to a separated scheme is a closed

embedding, 286, 504
graph of a morphism, 504
graph of a rational map ■, 286, 292, 292, 613
Grassmannian ■, 152, 199, 200, 200, 432, 442,

443, 445, 582, 583, 700, 701, 720–723
G(2, 4) = G(1, 3), 314, 445
G(2, 5), 532
as moduli space, 442
bundle, 445, 445, 583
functor, 442, 443
universal exact sequence, 444
universal vector bundle, 583

Grauert’s Theorem ■, 709, 709, 711, 713, 715,
716, 718, 720

Grothendieck composition-of-functors
spectral sequence ■, 630

Grothendieck composition-of-functors
spectral sequence ■, 630, 630, 631,
633–635, 757

Grothendieck functor ■, 196
Grothendieck group of coherent sheaves on X

(K(X)) ■, 554
Grothendieck topology ■, 380, 381, 646, 674
Grothendieck’s “six operations” ■, 760
Grothendieck’s Coherence Theorem ■, 295,

414, 422, 456, 467, 468, 498, 501, 501, 502,
554, 715, 732, 735, 744–746

for projective morphisms, 469
Grothendieck’s form of Zariski’s Main

Theorem ■, 737
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Grothendieck’s Generic Freeness Lemma ■,
see Generic Freeness Lemma

Grothendieck’s Theorem ■, 486
Grothendieck, A. ■, 11, 12, 14, 17, 23, 25, 47,

57, 65, 98, 99, 112, 122, 152, 186, 201, 208,
219, 251, 280, 362, 363, 454, 475, 486, 621,
635, 645, 720, 736, 753

calls Serre a bastard, 749
Grothendieck-Riemann-Roch Theorem ■, 546
group (perverse definition) ■, 26
group law on elliptic curve ■, see elliptic

curves, group law
group object (in a category) ■, 196, 196, 283
group variety/scheme ■, 195, 196, 197,

197–199, 283, 296, 296, 298, 432, 445, 532,
536, 682, 683, 712

abelian, 197
action, 199, 432, 445, 682

transitive, 682
morphism of, 198
structure on elliptic curves, 535

groupification ■, 45, 46
groupoid ■, 26

Hairy Ball Theorem ■, 579
Harris, J. ■, 646
Hartogs’s Lemma ■, see also Algebraic

Hartogs’s Lemma, 140, 319
Hausdorff ■, 100, 120, 141, 145, 160, 279, 279,

280, 293
height ■, see codimension
Hensel’s Lemma ■, 727
Hermitian metric ■, 438
higher pushforward, 635
higher direct image sheaf, see sheaf, higher

pushforward
Hilbert Basis Theorem ■, 125, 126
Hilbert function ■, 126, 488, 488, 493, 523, 670

of coherent sheaf, 488
of projective scheme, 488

Hilbert polynomial ■, 467, 488, 489, 489–491,
493, 522, 544, 546, 645, 720

locally constant in flat families, 670
Hilbert scheme ■, 646, 704, 720, 723
Hilbert Syzygy Theorem ■, 126, 414, 489
Hilbert’s (Weak) Nullstellensatz ■, see

Nullstellensatz
Hilbert’s fourteenth problem ■, 541
Hilbert, D. ■, 107, 126, 414
Hironaka’s Theorem ■, 584, 611, 614, 743
Hironaka, H. ■, 295, 671
Hirzebruch surface ■, see also ruled surface
Hirzebruch surface ■, 452, 453, 551, 609, 731,

742
Hirzebruch-Riemann-Roch Theorem ■, 546
Hodge bundle ■, 712, 713
Hodge diamond ■, 586, 587, 743
Hodge Index Theorem ■, 484, 552, 553

Hodge numbers ■, 385, 586, 586, 587, 708
invariance of some, 586
not all are birational invariants, 587
of projective space, 586

Hodge theory ■, 583, 586, 587, 708
homogeneous element ■, 148
homogeneous ideal, 148, 163, 334, 412, 417,

418
homogeneous ideal ■, 148
homogeneous space ■, 682
homology ■, 50

commutes with exact functors, see also
FHHF Theorem, 54

commutes with filtered colimits in ModA,
56

homomorphism (in additive category) ■, 48
homotopic maps of complexes ■, 623

give same map on homology, 623
Hopf algebra ■, 199
Horrocks, G. ■, 486
horseshoe construction ■, 624, 633
Hurwitz’s Automorphisms Theorem ■, 594
hypercohomology of double complex ■, 58
hyperelliptic

curves, 505, 514, 514, 516, see also curves,
nonhyperelliptic, 517–521, 529, 531, 532,
579, see also Riemann-Hurwitz formula,
hyperelliptic, 580
differentials on, 579
first algebraic de Rham cohomology, 579
moduli spaces, 517
most not if g > 2, 517

involution, 532
map, 514, 517

unique for g ≥ 2, 517
hyperplane, 147, 230, 231, 310, 315, 316,

346–348, 404, 405, 429, 431, 432, 489, 491,
492, 509, 517, 522, 532, 754

universal, 683
hyperplane class, 403, 492
hypersurface, 107, 145, 147, 171, 230, 230, 231,

234, 241, 306, 310, 312, 314–316, 321, 322,
338–340, 343, 344, 346, 348, 363, 405, 432,
445, 469, 490–492, 494, 532, 543, 585, 689,
692, 699, 700, 720, 722, 723, 760, 766

degree, 230
discriminant, 699
has no embedded points, 171
quadric, see also quadric surface, 230

I-adic completion ■, 725
I-adic filtration ■, 364
I-adically separated ■, 726
I-depth ■, see depth
I-filtration of a module ■, 364
I-stable filtration ■, 364
ideal

graded, see homogeneous ideal
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ideal sheaves ■, 380
ideal ■, see also fractional ideal, see also

different ideal, see also discriminant ideal
extension of, 254
graded, see homogeneous ideal
homogeneous, see homogeneous ideal
irrelevant, 148, 149, 150, 232, 235
minimal prime, see minimal prime ideal
of denominators, 162, 163, 320, 320
of nilpotents, 680
principal, see principal ideal
product of two, 116
symbolic power, 328

ideal sheaves ■, 226
product of, 652
product of, 409, 569, 604

idempotent ■, 119, 267, 695, 734
identity axiom ■, 75, see also base identity

axiom, 131
identity functor ■, 28
identity morphism idA ■, 26
image (of morphism in a category), 49
image (of morphism of schemes)

of proper is proper, 295
scheme-theoretic, see scheme-theoretic,

image
set-theoretic, 217

image presheaf ■, 81
immersion

(differential geometry), 673
of manifolds, 101
of schemes (unwise terminology), 229

incidence correspondence/variety ■, 314, 315,
346, 699, 700

inclusion-exclusion via cohomology of
sheaves ■, 640

index category ■, see category, index
index of symmetric bilinear form ■, 553
indicator sheaf ■, 85
induced reduced subscheme ■, see reduced

subscheme structure
inductive limits ■, see colimits
infinite disjoint union of schemes ■, see also

disjoint union of schemes, 132, 137, 140,
156, 237, 240, 380, 728

infinitesimal neighborhood ■, see formal
neighborhood

initial object ■, see object, initial
injective ■, see also resolution (complexes),

injective
objects

closed under direct product, 635
in abelian category, 626
preserved by right adjoints, 638

injective limits ■, see colimits
injective morphisms of schemes not

preserved by base change ■, see also

universally injective (radicial)
morphisms, 263

integral closure ■, 207, 273, 274, 276, 312, 320,
735

finiteness of, 276, 277, 460, 462
of Noetherian need not be Noetherian, 276

integral element of B-algebra ■, 203
integral extensions of rings ■, 203, 312

does not imply finite, 204
preserved by localization of source, 203

integral homomorphisms of rings ■, 203
closed under composition, 204
preserved by localization of source,

quotient of source and target, 203
integral morphisms ■, 213

affine-local, 213
are affine, 213
are closed, 213
closed under composition, 213
fibers of, 214, 304
need not be finite, 213
preserved by base change, 214, 262

integral scheme ■, 156
= irreducible and reduced, 156
almost stalk-local property, 157, 159

integrally closed ■, see also integral closure,
162

intersection, see scheme-theoretic, intersection
intersection number/product of L1, . . . , Ln

with F ■, 546
intersection number/product of L1, . . . , Ln

with F ■, 543, 543–547, 553–555
deformation invariance, 543
is symmetric multilinear, 544
locally constant in flat families, 671
on a surface, 548

intersection theory ■, 431, 616, 645, 697
on a surface, 547

inverse image
scheme, see scheme-theoretic, pullback
scheme-theoretic, see scheme-theoretic,

inverse image
sheaf, 92, 92, 93, 422, 425

construction, 93
exact, 94
left adjoint to pushforward, 92
right adjoint to extension by zero, 95

inverse limit ■, see limit
invertible sheaf ■, see line bundles
irreducible ■, 119, 119, 153

component, see component, irreducible
criterion to be, 325

irregularity (surface) ■, 587
irrelevant ideal ■, see ideal, irrelevant
Ischebek, F. ■, 688
isomorphism ■

in a category, 26
of ringed spaces, 136
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of schemes, 136, 181

j-invariant ■, 528
j-invariant ■, 516, 523, 526, 527, 528, 530

and cross-ratio, 526
Jacobian

criterion, 335, 338–340, 342–344, 347, 357,
515, 564, 571, 576, 578
for projective hypersurfaces, 343
for smoothness, 678

description ofΩ, 565, 574
map, 335, 344
matrix, 336, 336, 338, 339, 347, 348, 355, 357,

564, 565, 590, 678
Jacobson radical ■, 206
joke (bad) ■, 12
joke (bad) ■, 39, 41, 583

K2 ■, 585
K3 surface ■, 584, 585, 585
Kähler differentials, see differentials, 573

universal property, 563, 571, 573
Kähler, E. ■, 585
Kedlaya, K. ■, 11
kernels ■, 48, see also universal property, of

kernel
are limits, 54
commute with limits, 55
presheaf, 80

Kim, M. ■, 539
Kisin, M. ■, 16
Kleiman’s numerical criterion for ampleness

■, 485, 552, see also Nakai-Moishezon
criterion for ampleness, 556, 558, 558

Kleiman’s Theorem ■, 558, 558
Kleiman, S. ■, 682
Kleiman-Bertini Theorem ■, 346, 682, 683,

683, see also Bertini’s Theorem
poor man’s, 683

Klein quartic curve ■, 521
Klein, F. ■, 303
Knutson, A. ■, 13
Kodaira dimension κ(X) ■, 585

is birational invariant, 585
Kodaira Embedding Theorem ■, 438
Kodaira vanishing ■, 467, 586, 586
Kodaira’s criterion for ampleness ■, 438
Kodaira, K. ■, 438, 585
Koszul complex ■, 243, 581, 685
Krull dimension ■, see dimension
Krull Intersection Theorem ■, 365, 665, 666,

726
Krull’s Height Theorem ■, 244, 307, 318, 318,

329, 337, 345
for irreducible varieties, 318

Krull’s Principal Ideal Theorem ■
for tangent spaces, 333

Krull’s Principal Ideal Theorem ■, 20, 244,
309, 315, 316, 316–318, 321, 328, 329, 332,
337, 338, 345, 349, 357, 482, 490, 685, 690

for tangent spaces, 333
Krull, W. ■, 315, 337
Kummer, E. ■, 585
Künneth formula for quasicoherent sheaves

■, 475, 477

Lasker, E. ■, 174
Lefschetz principle ■, 586, 708
left derived functors ■, see derived functors,

left
left-adjoints, 43

are right-exact, 54
left-exact, 52, 53
T0, 628
Hom, 53
Hom , 92
and derived functors, 465
and FHHF Theorem, 54
and right derived functors, 626
and universal δ-functors, 628
e.g., right adjoint, 55
limits, 54
not ⊗, 34
not pullback, 427
pushforward, 91
right adjoints, 54
sections over U, 91

Leibniz rule ■, 332, 562, 567, 570, 573, 574
length ■, 482, 482

finite, 482, 483, 665, 666
of dimension 0 scheme, 548

Leray spectral sequence ■, 466, 499, 501, 502,
621, 630, 635, 636

Leray, J. ■, 57, 71, 642
Lie groups ■, 297, 299, 697, 698
limits ■, 40, see also universal property, of

limit
are left-exact, 54, 744
commute with kernels, 55
commute with limits, 54, 55
commute with right adjoints, 54, 55
e.g., kernels, 54
projective, 40

line, 14–16, see also affine line, 102–105, 111,
114, 135, 141–143, 145–147, 160, 179, 191,
226, 230, 231, 231–234, 247, 248, 259, 272,
274, 279, 284, 291, 310, 314, 315, 321,
332–334, 341, 344, 348, 349, 359, 360, 403,
406, 408, 433, 445, 449, 482, 491, 492,
512–514, 522, 523, 526–531, 533–538, 540,
549, see also projective line, 597, 598, 607,
609, 611–615, 650, 658, 690, 699–701, 703,
see also Fano variety of lines, 704–706

on cone, 333
tangent, see tangent, line
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with doubled origin, 132, 141, see also affine
space, with doubled origin, 142, 160, 279,
281, 284, 291, 359, 360

line bundles, see also ampleness, 510, 711
semiample, 441

line bundles, 17, 151, 185, 320, 369, 370, 371,
371–374, 380, 384, 386, 397–406, 408–410,
413–417, 426, 429–433, 436, see also very
ampleness, 437–439, 441, 442, 444,
449–455, 457, 458, 463, 474, 475, 479–481,
see also Picard group, 482, 483, see also
Q-line bundle, 484–486, 490–492, 494, 495,
501, 508–513, 517–519, 521–525, 528,
530–532, 535, 538, 539, 541, 542, 544–547,
549–556, 558, 559, 564, 569, 579, 582, 584,
586, 590, 592, 594, 604, 605, 607, 612, 613,
615, 645, 670–672, 683, 708, 711, 712, 723,
740, 749, 750, 752, 765, 766

additive notation, 547
algebraically equivalent, see algebraic

equivalence
and maps to projective schemes, 429
base-point-free, see base-point-freeness
degree, 543

additive in exact sequences, 592
degree 0, 508
degree 2g − 2, 508
globally generated, see global generation (of

quasicoherent sheaf)
nef, 483, see also nef cone, 484, 558

cone, 485, 550
negative degree, 508
numerical equivalence, 484
numerical property, 484
numerically effective, see line bundles, nef
numerically trivial, 483, 483, 484, 552, 553,

671
on projective schemes, 412
on projective space

cohomology, 475
total space, see total space, of line bundle
twisting by, 413
very ample, see very ample

line sheaf ■, 371
linear form ■, 165, 522, 532, 534, 568
linear independence of characters ■, 254, 277
linear series ■, 416, 550, 552, 612, 683, 684, 699

(non)degenerate, 431, 431
anticanonical, 706
canonical, 517
complete, 416, 430, 432, 507, 517, 531, 535,

740, 741
always nondegenerate, 431

linear space ■, 231, 231, 234, 235, 316, 532, 602,
760

Lipman, J. ■, 611
Littlewood, J.E. ■, 113
local ■, see also affine-local, see also stalk-local

on the source, 202
on the target, 201

local finite presentation, see also finite
presentation, 214

morphisms, 207, 215, 216, 355, 588, 589, 662,
665, 669, 674–677, 739
”limit-preserving”, 216
affine-local on target, 216
and semicontinuity, 327
Chevalley’s Theorem, 261
closed under composition, 216
preserved by base change, 262

local freeness of finitely presented sheaf is
stalk-local, 391

local isomorphism, 673
local rings ■, 18

morphisms of, 180, 661
localization ■, see also universal property, of

localization, 31, see also universal
property, of localization, 362

commutes with direct sums, 33
is exact, 53–55, 209, 376, 395, 590, 647
is flat, 647
need not commute with Hom, 33, 53
need not commute with infinite products,

33
of schemes are monomorphisms, 255
preserved by base change, 255

locally closed embeddings ■
finite intersections of, 254

locally closed embeddings ■, 348
locally closed embeddings ■, 202, 225, 228,

228–230, 239, 240, 244, 254, 255, 270, 279,
280, 287, 288, 290, 360, 572, 588, 683

are locally of finite type, 229
are monomorphisms, 255
are separated, 281
closed under composition, 230
finite intersections of, 229, 254
preserved by base change, 254

locally closed immersions ■, see locally closed
embeddings

locally closed subschemes ■, see also locally
closed embeddings, 228

locally closed subset ■, 218
locally constructible subsets ■, see also

constructible subsets, 262
locally factorial ■, 163
locally finite presentation

morphism, 675
locally finite type
A-scheme, 159
morphisms, 214

are affine-local, 214
closed under composition, 214
preserved by base change, 262
to locally Noetherian schemes, 215

over a ring, 159
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locally free resolution ■, see resolution
(complexes), locally free

locally free sheaf ■, see also vector bundle,
369–371, 374

= finitely presented sheaf with free stalks,
391

associated to vector bundle, 449
rational/regular section, 373

locally Noetherian scheme, see scheme, locally
Noetherian

locally of finite presentation, see local finite
presentation

locally of finite type ■, see locally finite type
locally principal closed subscheme, see closed

subscheme, locally principal
locally ringed spaces ■, 102, 138, 138, 179–183,

196, 335, 371, 434
affine schemes as examples, 180
morphisms of, 180, 456

locus of indeterminacy ■, 291
locus where two morphisms agree ■, 290, 291,

298
long exact sequence, 52, 57, 59, 60, 64, 465,

466, 468, 471–473, 477, 478, 480, 486, 487,
497, 498, 509, 555, 557, 566, 623–627, 636,
637, 642, 654, 660, 687, 744, 747, 756, 757

for Ext, 626, 686–688, 754
for Ext-functors of O-modules, 754
for Tor, 622, 623, 653
for higher pushforward sheaves, 498, 722,

723
in cohomology, 752

lower semicontinuity ■, see semicontinuity
Lüroth’s Theorem ■, 527, 593, 593
Lutz-Nagell Theorem ■, 540
Lying Over Theorem ■, 205, 205, 206, 213, 274,

309, 312, 325, 360

MacPherson, R. ■, 616
magic diagram ■, 37, 38, 283, 284, 286, 287
manifolds, 25, 75, 99–102, 138, 180, 186, 195,

199, 200, 279, 303, 369, 373, 404, 541, 562,
568

complex, 101, 111, 140, 186, 187, 193, 293,
388, 539, 576, 598

differentiable, 13, 25, 71, 78, 99–101, 177,
178, 190, 332, 335, 354, 374, 572, 673

immersion, see immersion, of manifolds
morphisms of, 100
smooth, 73, 99, 190
smooth morphisms of, 201
submersion, see submersion
vector bundle on, 369

map (in a category) ■, 26
mapping cone ■, 59, 64, 64, 473, 714, 715
Max Noether’s AF + BG Theorem ■, 690
maximal rank (quadratic form) ■, 165

maximal rank (quadratic form) ■, 234, 272,
343

maximum principle ■, 295
McLarty, C. ■, 9, 98, 99
minimal models of surfaces ■, 743
minimal prime ideal ■, 128, 128, 174, 268, 305,

316, 320, 328, 329, 341, 694
= irreducible component of SpecA, 128
Noetherian ring has finite number, 128

Miracle Flatness Theorem ■, 685, 690, 691,
701, 760

algebraic version, 690
Möbius strip ■, 369
modular curve ■, 526
modular form ■, 526
modules ■

finitely generated
over Discrete Valuation Rings, 375

graded, 417
modules ■

Artinian, 327, 328
category ModA has enough injectives, 626,

627
classification of finitely generated over

DVRs, 580
Cohen-Macaulay, see also

Cohen-Macaulayness, 688
coherent, see also coherent sheaves, 387,

393–395
Homs are coherent, 395
form an abelian category, 395
over non-Noetherian rings, 393

composition series, 172, see module,
composition series, 482, 483

depth, see depth
finitely generated, see also finite type

quasicoherent sheaves, 387
over a Principal Ideal Domain, 18, 391
over Discrete Valuation Rings, 354, 391,

399, 464, 525, 580, 648
finitely presented, 53, 387, 387, 388, 393–395,

563, 655, 656
= coherent for Noetherian rings, 395
“finitely presented implies always

finitely presented”, 387, 388, 656
and commutation of localization and

Hom, 33
graded, 412

flatness, see flatness
free implies projective implies flat, 647
graded, 46, 380, 411, 414, 417, 418, 745, 746

quasicoherent sheaf corresponding to,
411, 417

saturated, see saturated S•-module
Noetherian, see Noetherian, module
of Kähler differentials, see Kähler

differentials
projective, 625
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simple, 482
topological, 726, 744

moduli space ■, 200, see also parameter space,
360, 361, 429, 517, 520, 522, 523, 526, 532,
646, 699, 701, 704, 712, 720

of curves, 523
monoidal transformation ■, see blow-up
monomorphisms ■, 48
monomorphisms ■, 37, 38, 47–50, 85, 86, 91,

255, 258, 270, 281, 628, 629
are separated, 281
closed under composition, 37, 255
diagonal characterization, 38

Mordell’s conjecture (Faltings’ Theorem) ■,
518

Mordell-Weil Theorem, group, and rank ■,
525, 539

morphisms, 26, 177
and tangent spaces, 335
criterion to be a closed embedding, 505, 506
diagonal, see diagonal morphism
dominant, 189
from Spec of local ring, 184
manifolds, 100
of (pre)sheaves, 78, 79
of graded rings, 186
of group schemes, 198
of local rings, 180
of locally ringed spaces, 180

glue, 180
of ringed spaces, 178

glue, 178
of schemes, 14, 179, 181

glue, 180, 182, 249, 251
of sheaves

determined by stalks, 83
of topological spaces

glue, 76
quasiaffine, see quasiaffine morphisms

multiplicative group, 196
multiplicative subset ■, 31
multiplicity of function at regular point ■, 612
multiplicity of zero or pole ■, see order of

pole/zero
Mumford, D. ■, 11, 112, 558, 645, 713

Nagata’s Compactification Theorem ■, 738
Nagata’s Lemma ■, 163, 407, 407, 408
Nagata, M. ■, 307, 310
Nagell-Lutz Theorem ■, 540
Nakai-Moishezon criterion for ampleness ■,

510, 543, 547, see also Kleiman’s numerical
criterion for ampleness, 556, 556, 558, 559

Nakayama’s Lemma ■, 203, 206, 207, 207, 244,
329, 337, 341, 350, 351, 358, 365, 390–392,
415, 507, 580, 589, 615, 655, 656, 679, 688,
710, 711

geometric version, 390, 392

natural isomorphism of functors ■, 30
natural transformation of functors ■, see

functor, natural transformation
nef, see line bundles, nef, 558
nef cone, 483, 484, 485, 550, 552, 558
Néron-Severi group NS(X) ■, 483, 484, 671
Néron-Severi Theorem ■, see Theorem of the

Base (Néron-Severi Theorem)
Nietzsche, F. ■, 23
nilpotent ■, 13, 112, 113, 113, 117, 119, 133,

144, 155, 166, 174, 186, 240, 304, 352, 380,
390, 514, 680, 692

nilradical ■, 113, 116, 121, 155, 190, 206, 240,
380

is intersection of all primes, 113
nodal cubic, 274, 606, 609, 646, 656, 658–660

normalization of, 274, 658
node, 274, 343, 612, 725, 729, 729, 730

normalization, 506
Noether normalization ■, 459

geometric, 309
Noether normalization ■, 277, 307, 309,

309–312, 324, 325
Noether, E. ■, 174, 276
Noether, M. ■, see also Max Noether’s

AF + BG Theorem, 690
Noether-Lefschetz Theorem ■, 315
Noetherian, see also scheme, locally

Noetherian
conditions, 497
hypotheses, 14, 17, 127, 152, 168, 173, 174,

220, 221, 243–245, 315, 350, 422, 439, 458,
467, 469, 494, 496, 589, 657, 658, 662, 665,
668, 669, 675, 709–711, 715, 718, 719, 722,
735, 738–740

induction, 124, 220
local ring, 243, 307, 311, 316, 318, 337, 349,

350, see also discrete valuation rings, 351,
352, 363, 365, 483, 589, 650, 665–667,
685–689, 691, 693, 726, 734
has finite dimension, 307, 318

module, 126, 126
rings, 120, 124, 125, 125–128, 148, 158, 159,

163, 167, 171–174, 219, see also Noetherian,
local ring, 243, 244, 261, 275–277, 304,
316–318, 320, 328, 337, 353, 364, 365, 387,
388, 393, 483, 494, 685, 692, 716, 726, 727
finite number of minimal primes, 128
finitely generated module over, 172
important facts about, 125, 126
infinite-dimensional, 304, 307, 318

scheme, 158, 159, 162, 163, 170, see scheme,
Noetherian, 288
fibered product need not be Noetherian,

248
finite number of irreducible components,

159
finitely many associated points, 169
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with ring of sections not Noetherian, 542
topological space, 124, 124–126, 153, 159,

217, 218, 474
finitely many irreducible components,

124
Noetherian topological space, 153
non-affine scheme (example) ■, 137, 140,

142–144
non-archimedean ■, 351, 381, 388, 393
non-zerodivisor ■, 32, 241–244, 409, 601, 605,

607, 608, 612, 647, 650, 667, 686, 687,
689–691, 694

nondegenerate linear series ■, see linear
series, (non)degenerate

nonprojective proper variety ■, see proper
nonprojective variety (examples)

nonquasiseparated scheme (example) ■, 154
nonreduced scheme (example) ■ , 155
nonsingular ■, see regular
normal form for quadrics, see diagonalizing

quadratic forms
normal (scheme) ■, 140, see also

normalization, 161–165, 273, 275–277,
320, 334, 352, 353, 363, 373, 400–406, 408,
515, see also Serre’s criterion for
normality, 685, 692, 694, 735, 739

implied by factorial, 164
may not be UFD, 165
need not be integral, 162

normal bundle, 550, 551, 569, 573, 582,
605–607, 610, 740

projectivized, 604, 607
to effective Cartier divisor, 569
to exceptional divisors, 605
to regular embedding, 569

normal cone, 606, 616
projective completion, 616

normal exact sequence for smooth varieties ■,
577

normal sheaf to subscheme ■, see also normal
bundle

normal sheaf to subscheme ■, 569, 766
to regular embedding is locally free, 569

normalization ■, 211, see also universal
property, of normalization, 273, 273–275,
277, 305, 353, 360, 447, 448, 450, 451, 461,
462, 495, 515, 520, 584, 588, 656, 658, 659,
731, 735, 741, 754

in field extension, 276
in field extension, 275, 276, 277, 345, 459
is birational morphism, 274, 277
is integral and surjective, 274
not flat, 656
of cusp, 505, 588, 663
of node, 462, 506

Nullstellensatz ■, 107, 107, 108, 114, 115, 121,
128, 154, 160, 217, 218, 221, 248, 263, 308,
342, 524

from dimension theory, 308
number field ■, see also ring, of integers in

number field, 276
numerical criterion ■

for ampleness, see Kleiman’s numerical
criterion for ampleness

for line bundle on curve to be
base-point-free, 509, 510

for line bundle on curve to be very ample,
510

numerical equivalence, 483, 484, 545, 556
implied by algebraic equivalence, 671

numerically effective, see line bundles, nef
numerically trivial line bundles Picτ X, see

line bundle, numerically trivial, 484

object ■
initial, 40

object ■
acyclic, 754, 757
final, 31, 31, 36, 75, 76, 94, 182, 196, 208, 255,

280, 416, 442, 600
in category of schemes, 182

in a category, 26
initial, 31, 31, 47
zero, 31, 31, 47, 48, 198

Oka’s Theorem ■, 388, 393
open set

distinguished, 118, 377
open cover ■, 72
open embeddings ■, 202, 739

are flat, 649
are locally finitely presented, 216
are locally of finite type, 214
are monomorphisms, 255
are separated, 281, 286
base change by, 253
of ringed spaces, 178
preserved by base change, 262

open immersion ■, see open embeddings
open set

distinguished, 109, 114, 118, 119, 130, 131,
137, 139, 140, 143, 151, 157, 158, 166, 169,
181, 188, 210, 237, 255, 266, 276, 291, 323,
375, 377, 379, 380, 383, 405, 411, 424, 473,
497, 540
form base for Zariski topology, 118

projective distinguished, 150, 150
open subfunctors, 252
open subscheme, 137, 202
opposite category ■, see category, opposite
orbifolds ■, 14, see also stacks, 523
order of pole/zero ■, 353
order of pole/zero ■, 352
ordinary double point ■, 730
ordinary multiple (m-fold) point ■, 730
orientation of spectral sequence ■

rightward, 58
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upward, 61

page of spectral sequence ■, 58
paleolithic era ■, 349
Pappus of Alexandria ■, 512
Pappus’s Theorem ■, 512, 513, 514
parabola ■, 106, 109–111, 123, 135, 258, 259,

264, 464, 492, 673
parameter space ■, see also moduli space, 314,

315, 321, 482, 699, 712, 721, 723
partial flag variety ■, see flag variety
partially ordered set ■, 27, 27, 28, 40, 42, 123,

319
partition of unity ■, 130, 161, 203, 472
Pascal’s “Mystical Hexagon” Theorem ■,

512–514, 697
Pascal, B. ■, 512
perfect pairing of vector bundles ■, 385
Pfaffian ■, 532
Picard group ■, 372, 373, 374, 397, 398, 401,

403–406, 409, 480, see also line bundles,
482, 484, 493, 525, 535, 538, 539, 541,
547–552, 555, 614, 671, 712

of Spec of UFD is 0, 404
of cone, 406
torsion example, 405

Picard number ρ(X) ■, 484, 587, 743
finiteness of, see also Theorem of the Base

(Néron-Severi Theorem), 484
complex case, 484

PID ■, see principal ideal domain
pinched plane ■, 353, 354, 413, 692

normalization of, 275, 354
not Cohen-Macaulay, 693

plane, 231
pinched, see pinched plane
with doubled origin, see affine space, with

doubled origin
plane curves, see curves, plane

Bézout’s Theorem, 491
Plücker ■

embedding, 200, 444, 445, 532
equations, 445

plurigenus ■, 585
is birational invariant, 585

Poincaré, H. ■, 136
point ■

closed, see closed point
field-valued/ring-valued/scheme-valued,

184
general, see general point
generic, see generic point
geometric, see geometric point

pole ■
of order n

for Noetherian scheme, 353
pole ■, 162, 320, 352, 352, 353, 353, 373, 398,

400–403, 405, 463, 479, 508, 511, 540, 579

of order n
for DVR, 352

Poncelet’s Porism ■, 536, 536, 538
Poonen, B. ■, 11, 520
poset ■, see partially ordered set
power series ■, 610, 725, 726, 740

formal, 725
preimage, see also scheme-theoretic preimage,

257
presheaf ■

section of, 73
presheaf ■, 73

cokernel, 81
espace étalé, see sheaf, space of sections
germ, see germ, 74
image, 81
kernel, 80
not necessarily sheaf, 75
on a base, 87

stalk, 87
quotient, 81
separated, 75
stalk, 74

prevariety (complex analytic) ■, 160
primary ■

decomposition, 167, 169, 174
ideal, 174

prime avoidance ■, 312, 313, 317, 318, 650
principal divisor, see Weil divisor, principal
principal fractional ideal ■, 374
principal ideal ■, see also Krull’s Principal

Ideal Theorem, 105, 140, 241, 333, 334, 374
principal ideal domain ■, 18, 105, 345, 351,

354, 375, 399, 484, 525, 647, 655
finitely generated modules over, 18, 391

Principal Ideal Theorem ■, see Krull’s
Principal Ideal Theorem

principality not affine-local, 241, 540
product ■, see also fibered product, 23, 24, see

also universal property, of product, 40
of irreducible varieties over k is irreducible,

263
of quasicoherent ideal sheaves, see ideal

sheaves, product of
of schemes, 247

isn’t products of sets, 247
projection formula ■, 428, 490, 499, 546, 555

more general, 547
projective

module
= free for finitely generated over local

rings, 655
is flat, 625

moduleu
= direct summand of free module, 625

object in an abelian category, 625
projective module ■, see modules, projective
projective S-scheme, 435
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projective Y-scheme, 454
projective bundle, 347
projective bundle ■, 186, 314, 347, 452, 482,

551, 582, 605–607, 672, 700, 711, 712, 721,
742, 743

projective completion, 236, 616, 660
of normal cone, 616

projective cone, 146, 152, 235, 236, 236
relative version, 453

projective coordinates ■, see coordinates,
projective

projective limit ■, see limit
projective line, 142, see also line, 578, 598, 613
projective morphisms ■, 435, 447, 453, 454,

454, 455, 460, 462, 469, 498, 500, 502, 503,
506, 507, 657, 669, 670, 672, 701, 735, 742,
760

“sort of” local on the base, 453
are proper, 455
not a “reasonable” class, 456
notion not local on target, 672
preserved by base change, 453, 455
usually closed under composition, 453, 455,

456, 460, 503, 603, 672
usually preserved by product, 456

projective over Y, 454
projective resolution ■, see resolution

(complexes), projective
projective schemes, see scheme, projective

are proper, 295
line bundles on, 412

projective space ■, 143, 151, 397
automorphisms, 430, 519
cohomology of line bundles on, 475
coordinates, see coordinates, projective
functions on, 144
functorial definition, 429
is finite type, 214
is separated, 281
Serre duality for, 751, 753
tautological bundle, 450

projective variety ■, see variety, projective
projectivization ■

of finite type sheaf, 452
of finite type quasicoherent sheaf, see also

normal bundle, projectivized, see also
tangent cone, projectivized

of vector space, 152
proper nonprojective variety (examples), 295,

433, 550, 671
proper transform (of blow-up) ■, 549, 598,

600, 600, 602, 609, 610, 615, 671, 706, 742,
743

of nodal curve, 609
properness ■, 120, 146, 279, 293, 293, 455

closed under composition, 294
closed under product, 294
local on target, 294

of projective schemes, 295
preserved by base change, 294, 298

property Rk, see regular, in codimension k
property R0 means generically reduced, 692

property Sk, 692, 692
S1 means no embedded points, 692

pseudo-morphisms ■, 189
Puiseux series ■, 351
pullback, see also base change

construction via affines, 423
in cohomology, 466
is not left-exact, 427
is right-exact, 427
of ideal sheaves, 428

= pullback as sheaf for flat morphisms,
428

of quasicoherent sheaves, 421, 422
explicit construction, 425
universal property, 424
various properties, 426–427

of schemes, 256
scheme-theoretic, see scheme-theoretic,

pullback
universal property, 424–426

pullback diagram/square, 36, see Cartesian
diagram/square

pure dimension, see equidimensional
purely inseparable ■, see field extension,

purely inseparable
push-pull formula ■, 427
push-pull formula ■, 499
pushforward

occasional right-adjoint π!, 764
occasional right-adjoint π!, 759, 760
occasional right-adjoint of, 759
of O-modules, 178
of coherents

need not be coherent, 422
of quasicoherent sheaves, 421
of quasicoherents

is exact for affine morphisms, 422
is usually quasicoherent, 422

right adjoint to inverse image, 92
sheaf, see sheaf, pushforward

Pythagorean triples ■, 191, 192, 194, 511

qcqs (quasicompact and quasiseparated) ■,
17, 154, 207, 207–210, 216, 362, 379, 380,
422, 426–428, 439, 456, 458, 459, 466, 738,
740

Qcqs Lemma ■, 207, 209, 209, 210, 379
quadratic trasformation ■, see blow-up
quadric hypersurface, 147, 234, 445, 522
quadric surface, 132, 145, 163, 164, 193, 234,

272, 309, 334, 341, 354, 408, 521, 522, 537,
613, 614

cone over, see cone over quadric surface
quartic, 266, 519–522, 530, 584, 607, 697
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hypersurface, 230
Klein, 521
surface, 315, 584, 607

most contain no lines, 315, 607
quasiaffine ■

morphisms, 439, 458, 459
properties of, 459

schemes, 458
= OX ample, 459

quasicoherent sheaves ■, 14, see also finite
type quasicoherent sheaf, 131, 369, 374,
375, 375, 377, see also finitely presented
quasicoherent sheaves

characterization by distinguished
inclusions, 379

corresponding to graded modules, 411, 417
corresponding to modules, 375
form an abelian category, 381
globally generated, see global generation
Künneth formula, 475, 477
local nature of, 411
morphisms of, 381
not all locally free, 375
not necessarily preserved by Hom , 389
on affines have no derived functor

cohomology, 640
on projective schemes, 411
on ringed spaces, 382
pullback of, 425
pushforwards usually quasicoherent, 380
restriction of, 423

quasicompact ■
schemes, 153

quasicompact ■
morphisms, 207

affine-local on the target, 208, 285
closed under composition, 207
preserved by base change, 262

schemes
have closed points, 153

topological space, 120
quasifinite morphisms ■, 212, 215, 739

from proper to separated is finite, 296
how to picture, 215, 739
most are open subsets of finite morphisms,

739
need not be finite, 215
preserved by base change, 262
to fields are finite, 215, 219, 260, 263, 739

quasiinverse ■, 31
quasiisomorphism ■, 471, 713, 714
quasiprojective

morphisms, 454
scheme, see scheme, quasiprojective
variety, see variety, quasiprojective

quasiprojective implies finite type, 159
quasiseparatedness, 17, 154, 155, 159, 201,

207–210, 216, 284, 284–286, 288, 289, 361,

362, 379, 380, 422, 426–428, 439–442, 456,
458, 459, 466, 642, 738, 740

affine-local on target, 208
all locally Noetherian schemes, 159
closed under composition, 207, 216, 285
closed under product, 286
e.g., affine schemes, 154
e.g., locally Noetherian schemes, 159, 208
e.g., morphisms from locally Noetherian

schemes, 208
local on the target, 285
of topological space, 154
preserved by base change, 262, 284

Quillen, D. ■, 404
Quillen-Suslin Theorem ■, 404
quotient ■, 49

object, 48
presheaf, 81
sheaf, see sheaf, quotient

radical ideal ■, 116, 128, 133, 160, 239
radical of ideal ■, 116

= intersection of primes containing ideal,
116

commutes with finite intersections, 116
radicial morphisms ■, see universally

injective morphisms
ramification

points, 525
ramification ■

divisor, 590, 593, 594
and number of preimages, 592

locus, 588
order, 592
point, 514, 591, 591
tame, 592
wild, 592

rank ■
of coherent sheaf, 392

additive in exact sequences, 480
of finite type quasicoherent sheaf at point,

392
of quadratic form, 165, see also maximal

rank (quadratic form)
of vector bundle on manifold, 370

rational function ■, 463
rational function ■, 77, 102–104, 140, 156, 162,

171, 171, 173, 188, 189, 191, 194, 195, 291,
320, 353, 400–402, 479, 482, 533, 540

rational map ■, 188
rational map ■, 188, see also dominant, 189,

see also birational, (rational) map,
190–193, 195, 286, 289, 291, 292, see also
degree, of rational map, see also graph of
a rational map, 309, 430, 437, 461, 463,
530, 539, 583, 597, 612–614, 664, 704

rational normal curve ■, 120, 233, 431, 494,
517, see also twisted cubic curve
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not complete intersection for d > 2, 494
rational section of locally free sheaf ■, 373
rational variety ■, 190, 607
Raynaud, M. ■, 586
“reasonable” class of morphisms ■, 201
reduced subscheme structure ■, 240, 240, 616
Reduced-to-Separated Theorem ■, 188, 289,

291, 291, 292, 358, 359, 435, 705
reducedness ■, 155

is stalk-local, 155
not open condition in general, 155
of ring, 113
often open condition, 240, 390

reducible ■, 153
reducible ■, see irreducible
reduction (of scheme) ■, 240
Rees algebra ■, 364, 604, 745
reflexive sheaf ■, 389, 569
regular ■

does not imply smooth, 340
e.g., An

k
, 345

in codimension 1 (property R1), 353, 400
in codimension k (property Rk), 692
local rings, 337

are Cohen-Macaulay, 689
are Cohen-Macaulay, 364, 685, 693
are integral domains, 340
are integrally closed, 363, 685, 693
are unique factorization domains, see

Auslander-Buchsbaum Theorem
preserved by localization, 338, 362, 363,

564, 576, 578, 692, 693
of An

k
, 346

ring, 337
scheme, 337

regular embeddings ■, 240, 244, 244, 245, 317,
335, 341, 569, 570, 577, 604, 606, 607, 651,
685, 689, 692, 750, 766

open condition, 244
regular function ■, see function, 171
regular section of locally free sheaf ■, 373
regular sequence ■, 569
regular sequence ■, 240, 241, 242, 242–245,

569, 606, 608, 685–687, 689
cohomological criterion for existence, 686
maximal, 686
order matters, 242

relative Proj ■
universal property, 453

relative Proj ■, 447, 450, 451
O(1), 451
and affine base change, 450
commutes with base change, 452
finite generation in degree 1, 451
universal property, 450

relative Spec ■, 447, 447
and base change, 449
universal property, 447, 448

relative i-forms, see sheaf of (relative) i-forms
relative conormal exact sequence, 566
relative cotangent exact sequence, 566, 574,

677
affine version, 565, 566
left-exact in good circumstances, 575, 590
left-exactness, 680

relative cotangent sheaf, 572
relative different and discriminant ideals ■,

589
relative dimension, 326, 354, 355
relative tangent sheaf, 572
relatively ample, 437, see ampleness, in

relative setting
relatively base-point-free, see

base-point-freeness, in relative setting
relatively globally generated ■, see global

generation (of quasicoherent sheaf),
relative

relatively very ample ■, see very ample,
relatively

Remainder Theorem ■, 608
representable functor ■, 195, see functor,

representable
residue field ■, 138
Residue Theorem ■, 463, 753
resolution (complexes) ■, see also

Cartan-Eilenberg resolution
acyclic, 629
flat, 629, 668
free, 622, 629, 652, 667, 756
injective, 629, 631–634, 638, 640, 686, 755,

756, 758, 764
locally free, 755, 756, 765
projective, 625, 626, 630

resolution (singularities) ■, see also
Hironaka’s Theorem, 597, 598, 609, 610,
see also Alteration Theorem, 611, see also
Weak Factorization Theorem, 730, 743

for surfaces, 743
for curves, 735
for surfaces, 736
of indeterminacy of rational maps, 597
small, 591, 614, 614

non-isomorphic, 614
restriction map, 74
restriction of a quasicoherent sheaf ■, 423

seealsoquasicoherent sheaves, restriction of,
423

restriction of scalars, 46
restriction of sheaf to open subset G |U, 76
resultant ■, 222
Riemann surface ■, 101, 462, 518, 593, 753

genus, 480
Riemann-Hurwitz formula ■

hyperelliptic, 525
Riemann-Hurwitz formula ■, 505, 514, 528,

579, 580, 584, 589, 592, 592–594
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applications, 592
hyperelliptic, 514, 516, 518, 580

Riemann-Roch ■
for surfaces, 553

Riemann-Roch ■, 477, 479, 479, 485, 486, 491,
508, 519, 521, 524, 528, 546, 549

Asymptotic, 546, 546, 548, 557
common formulation, 480
for coherent sheaves, 481
for nonreduced curves, 482, 483
for surfaces, 546, 549
in higher dimension, see

Hirzebruch-Riemann-Roch Theorem
restatement using Serre duality, 485
vast generalization, see

Grothendieck-Riemann-Roch Theorem
right adjoints ■, 43, 758

are left-exact, 54
commute with limits, 55

right derived functors ■, see derived functors,
right

right-exact, 34, 52, 53
π−1, 94
and derived functors, 465
and FHHF Theorem, 54
and left derived functors, 626
e.g., left adjoint, 55
left adjoints, 54
need not commute with colimit, 56
pullback, 427
tensor product, 34, 53

rightward orientation (of spectral sequence)
■, 58

rigid ■, 588
Rigidity Lemma ■, 296, 297, 298, 469
ring

local, 655
ring ■, see also local rings, see also graded ring,

see also Noetherian ring
Artinian, 327, 328, 483
catenary, 311, 327, 691

examples, 311
excellent, 327
of integers in number field, 276, 276, 369,

373, 407, 589
topological, 726

ring scheme ■, 197, 199
ring-theoretic

branch locus, 589
ramification locus, see different ideal

ringed spaces, 13, 77, 78, 79, 92, 99, 100, 136,
see also locally ringed spaces, 138, 141,
149, 177, 178, 180, 214, 227, 369, 371, 374,
385, 398, 421, 451, 635–637, 754–758

(locally) free sheaf on, 369, 371
(quasi)coherent sheaves on, 374, 382
functions on, 77, 102, 138
higher pushforwards for, 635

isomorphism of, 136, 136, 137, 178, 738
Leray spectral sequence, 635
morphisms of, 177, 178, 178–181, 424, 425,

448, 635, 636
glue, 178

open embedding of, 78, 178, 181, 202, 425
Picard functor for, 372
pullback for, 423
pushforward of O-modules, 178
structure sheaf, see structure sheaf

Rosenbluth, A. ■, 133
ruled surface ■, see also Hirzebruch surface,

452, 550, 551, 743
elementary transformation, 742, 743
self-intersection of section of, 551

ruling ■, 145, 233, 234, 234, 272, 315, 341, 408,
445, 537

of higher-dimensional quadrics, 235
of quadrics in P5, 445

Salmon, G. ■, 697
Samuel, P. ■, 363
saturated S•-module ■, 419
saturation functor ■, 417, 417, 418

adjoint to forgetful functor, 417, 418
need not be injective or surjective, 418

scheme-theoretic
base locus, 415, 416
closure, 236, 239, 239, 292, 460, 503, 601, 602,

657, 658
fiber, 201, 257, 258, 259, 266, 677, 702
image, 236, 236–240, 292, 295, 296, 431

and set-theoretic image, 238
computable affine-locally, 238

intersection, 136, 227, 245, 333, 348, 415, 435,
492, 548, 600, 602

inverse image, see scheme-theoretic,
pullback

preimage, 463, 549
preimage [right name?], 393
pullback, 256, 256, 599, 600, 603, 604, 741
support, 240, 483, 502
union, 227, 333, 435, 575, 616, 676

scheme-theoretically dense, 168, 168
schemes, 136

affine, 129, 136
cohomological criterion, see Serre’s

cohomological criterion for affineness
is quasiseparated, 154

disjoint union, 380
finite type, see finite type, 159
functions on, 136
gluing, 249
isomorphism, see isomorphism, scheme
locally Noetherian, 154, 158, 159

are quasiseparated, 159
associated points, 169
implies quasiseparated, 159
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locally of finite type, see locally of finite
type

morphisms, see morphisms, of schemes
Noetherian, 17, 153, 202, 208, 209, 218, 220,

229, 239, 260, 261, 304, 320, 340, 352, 353,
358, 363, 404, 405, 422, 435, 501, 506, 589,
658
finiteness of zeros and poles, 353

non-affine, 137
nonquasiseparated (example), 154
normal, see normal scheme
over a ring, 159
projective, 46, 145–147, 151, 185, 186, 191,

231, 235, 279, 291, 293, 429, 501, 546, 583,
605, 612, 766
are qcqs, 154
maps to, 429

quasiaffine, see quasiaffine, schemes
quasiprojective, 145, 151, 159
regular, 337
visualizing, 106, 110, 113, 133, 170, 186, 215,

236, 393
Schubert cell ■, 199, 200
Second Riemann Extension Theorem ■, 320
section ■

of a morphism, 289
section ■

of a sheaf, see sheaf, section of
sections of F

sometimes means sections of F over X, 74
Segre embedding ■, 271, 272, 282, 432, 437,

507
as complete linear series, 432
coordinate-free description, 272

Segre variety ■, 272
semiample line bundle, 441
semicontinuity ■, 322

(lower) rank of matrix, 327
(lower) rank of matrix, 713
(upper) degree of finite morphism, 327, 393,

507
(upper) dimension of tangent space, 571
(upper) dimension of tangent space at

closed points, 327
(upper) fiber dimension, 326
(upper) fiber dimension, 325, 327, 469, 507,

701
(upper) of fiber dimension, 322
(upper) rank of cohomology groups, 327,

see Semicontinuity Theorem
(upper) rank of sheaf, 327, 392, 393, 576,

681, 708
list of examples, 326

Semicontinuity Theorem ■, 658, 661, 669, 708,
708, 709, 713, 715, 720

separable extension ■, see field extension,
separable

separable finite morphisms ■, 590

separable generation ■, see field extension,
separably generated

separably closed ■, see field, separably closed
separated presheaf ■, 75
separatedness ■, 284, 498
separatedness ■, 142, 145, 154, 160, see also

Associated-to-Separated Theorem, see
also Reduced-to-Separated Theorem, 189,
207, 270, 279, 280, 280, 281, 283–286,
288–296, 298, 331, 358–361, 435, 439, 441,
442, 455–459, 461, 465, 466, 470–475,
496–499, 501, 503, 504, 572, 598, 603, 621,
628, 635, 637, 642, 643, 651, 680, 705,
738–740

closed under composition, 285, 286
closed under product, 286
implies quasiseparated, 284
local on target, 285
preserved by base change, 284
topological characterization, 280

Serre duality ■
for Hom

functorial, 761
for Ext

functorial, 761
for Hom

trace version, 761
Serre duality ■, 467, 477, 485, 487, 505, 508,

519, 521, 524, 549, 553, 579, 584, 586, 587,
626, 627, 685, 690, 749, 753, 754

for Ext, 749, 763
functorial, 753, 753, 757, 760, 762–766
functorial (for projective space), 753
trace version, 753, 754

for Hom, 749, 751, 753
for projective space, 751
functorial, 750, 751, 761, 763
trace version, 750, 751, 761

for Cohen-Macaulay projective schemes,
486

for projective schemes, 758
for smooth projective varieties, 485
for vector bundles, 749, 753

functorial, 750, 753, 757, 760–762
functorial (for projective space), 757
trace version, 750, 753, 762
weak, 750

trace version
for Ext, 758
for vector bundles, 750

Serre vanishing ■, 467, 478, 487, 489, 495, 557,
669, 740, 754, 762, 764

relative, 501
Serre’s cohomological criterion for ampleness,

494
Serre’s cohomological criterion for affineness,

466, 475, 496
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Serre’s cohomological criterion for affineness
■, 466, 475, 496

Serre’s cohomological criterion for ampleness,
see ampleness, Serre’s cohomological
criterion

Serre’s criterion for normality ■, 320, 685, 691,
692, 693, 695

Serre’s Theorem A ■, 416, 416, 438, 764
Serre, J.-P. ■, 11, 17, 47, 57, 71, 99, 130, 186,

362, 404, 416, 438, 497, 621, 645, 749, 753
sextic, 230, 521, 527, 528
sheaf, see also subsheaf, 13, 75

coherent, see coherent sheaf
determined by sheaf on affine base, 87, 378
direct image, see sheaf, pushforward
dualizing, see dualizing sheaf
espace étalé, see sheaf, space of sections
extension by zero, 95

left adjoint to inverse image, 95
fiber, 422
finite type, see finite type, quasicoherent

sheaf
finitely presented, see finite presentation,

quasicoherent sheaf
flasque (flabby), 635, 757

have no Čech cohomology, 640
implies acyclic, 636
preserved by pushforward, 636

germ, see germs
gluability axiom, 75
higher pushforward, 669
higher pushforward, 413, 497–502, 555, 637,

642, 651, 669, 707, 709, 713, 723
and base change, 499
commutes with affine flat base change,

499
commutes with flat base change, 651

ideal, see also pullback, of ideal sheaves
identity axiom, 75
indicator, 85
injective

have no Čech cohomology, 639
implies flasque, 636

inverse image, see inverse image sheaf
invertible, see line bundle
locally free, see locally free sheaf
of (relative) i-formsΩi

X/Y
, 583

of differentiable functions, 71, 100
of nilpotents, 380

has closed support for locally Noetherian
X, 390

is coherent for locally Noetherian X, 390
of relative differentials, 561, 677
of sections, 370
on a base, 87, 87

determines sheaf, 87
on the big Zariski site, see Zariski sheaf

pushforward, 77, 77, 79, 91, 92, 100, 178,
380, 421, 422, 424, 425, 427, 469, 499, 555,
635, 709, 711, 744, 746, 758
preserves coherence for projective

morphisms, 469
preserves coherence for proper

morphisms, see Grothendieck’s
Coherence Theorem

quasicoherent, see quasicoherent sheaves
quotient, 86
restriction to open subset G |U, 422
section of, see section of sheaf, 73

determined by germs, 82
support of, see support, of section

skyscraper, 76, 76, 77, 86, 94, 375, 635, 660
space of sections, 71, 73, 77, 85, 94
stalk, 75
structure, see structure sheaf

sheaf Hom, 79
sheaf Proj, see relative Proj

universal property, 450
sheaf Spec, see relative Spec
sheafification ■, 46, 81, see also universal

property, of sheafification, 84
construction, 84
induces isomorphism of stalks, 85
is a functor, 84
universal property, 84

short exact sequence ■, 49
should be (x + y)/(x − y), someone said —

maybe Aaron L? 2015, 536
should we have π♯B/J?, 213
signature of symmetric bilinear form ■, 553
simple group of order 168 ■, 521
singular (point), see regular
singularities, see also resolution (singularities),

337, 725, 729
site ■, see Grothendieck topology
skyscraper sheaf ■, see sheaf, skyscraper
slicing criterion ■

for Cohen-Macaulayness, 689, 689
geometric interpretation, 689

for flatness, 667, 667, 668, 675, 689, 690
in source, 668, 676
in source (more general version), 668

for regularity, 338, 533, 607, 676, 689
small category ■, see category, small
small resolution ■, see resolution

(singularities), small
Smith, R. ■, 697
smooth quadric surface, 165, 334
smoothness ■, 14, 101, 110, 295, 296, 331, 354,

355, 355, 663, 673, 676, 677, see also
formally smooth, see also generic
smoothness, 682

closed under product, 356
differential geometric motivation, 354
form “reasonable” class, 356
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of relative dimension n, 355, 355–357, 574,
589, 675, 675, 677, 683
open condition, 355

of varieties preserved by base field
extension, 339

open condition, 520
over a field

= geometrically regular, 576
over a field, 338, 338, 575, 598

of dimension d, 338
over a ring, 356

Smoothness-Regularity Comparison Theorem
■, 691

Smoothness-Regularity Comparison Theorem
■, 340, 342, 607, 676

Snake Lemma ■, 50, 52, 60, 62, 62, 63, 387,
394, 717

source (of morphism in category) ■, 26
space of sections of sheaf ■, see sheaf, space of

sections
specialization ■, 122, 122, 123, 153, 218, 319
spectral functor ■, 65, 642
spectral sequence ■, 52, 57, 58, 58–65, 69, 243,

244, 472, 501, 629–631, 634, 635, 637–639,
641, 642, 756, 757

and derived functors, 629
collapse of, 61
convergence, 61
Grothendieck composition-of-functors, see

Grothendieck composition-of-functors
spectral sequence

Leray, see Leray spectral sequence
local-to-global for Ext, 757, 757, 764
orientation, see orientation of spectral

sequence
page, 58

spectrum of ring (Spec) ■, 101
split exact sequence ■, 634
stacks ■, 14, 89, 381, see also orbifolds, 523, 526
stalk-local ■, 155

implies affine-local, 158
stalkification ■

doesn’t commute with Hom , 80
is exact, 55, 91

stalks ■
determine isomorphisms, 83
determine morphisms, 83
of (pre)sheaf on base, 87
of a sheaf, 75
of presheaf, 74

Stein factorization ■, 733, 734, 735, 735, 737
Stein Factorization Theorem ■, 725, 734, 735
Stein space ■, 497, 539
Stillwell, J. ■, 136
strict transform (of blow-up) ■, see proper

transform (of blow-up)
structure morphism ■, 183
structure sheaf ■, 129

of ringed space, 77
subcategory ■, 28

full, 29, 29, 45, 49, 79, 381
fully faithful, 29, 46, 251

submersion ■, 25, 101, 562, 673, 674
subobject ■, 48
subscheme

closed, see closed subschemes
cut out by section of locally free sheaf, 372
locally closed, see locally closed subschemes
open, 137

subsheaf ■, 85
subtler Five Lemma ■, see Five Lemma,

subtler
subvariety (incl. open and closed), 283
support ■

of a section s
is closed, 83

of a sheaf, 390
support ■

of a section s, 82, 83, 390
of a sheaf, 94
of finite type quasicoherent sheaf is closed,

390
of Weil divisor, 400
scheme-theoretic, see scheme-theoretic,

support
surfaces, 231, 304, 584, see also cubic, surface

cubic
Fermat, 701, 703

Enriques-Kodaira classification, 743
intersection theory, 547
minimal (model), 743
proper but no nontrivial line bundles, 540
proper nonprojective, 550
quadric, 494
smooth projective, 406

surjective morphisms ■, 205
checking on closed points, 219
preserved by base change, 263

Sylvester’s law of intertia, 553
Sylvester, J. ■, 553
symbolic power of an ideal ■, 328
symmetric algebra ■, 148, 384
system of parameters ■, 318, 323

tacnode ■, 343, 611, 730, 730
tame ramification ■, 592
tangent

bundle, 369
cone, 606, 606

= tangent space for regular point, 606,
607

projectivized, 606
line, 332, 333, 344, 348, 528, 530, 533, 536,

538
map, 505
plane, 344, 344
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sheaf, see also cotangent, sheaf
relative, 566, 572

space, 101, 327, 331–333, 335–337, 341, 344,
347, 353, 357, 403, 506, 561, 562, 566, 567,
571, 578, 606, 607, 673, 674, 678
and morphisms, 335

vector, 332, 561, 561
relative, 561
vertical, 561, 564, 565

tangent cone
projectivized, 606

Taniyama-Shimura Conjecture ■, 518
Tao, T. ■, 13
target (of morphism in category) ■, 26
Tarski, A. ■, 221
Tate curve ■, 527
Tate, J. ■, 362, 381
tautological bundle ■

Grassmannian, 583
on projective space, 450

Taylor, R. ■, 518
tensor algebra ■, 384
tensor product ■, 33, see also universal

property, of tensor product, see also
universal property, of tensor product

as fibered coproduct of rings, 248
commutes with direct sum, 35, 56, 622, 729
is not left-exact, 34
is right-exact, 34, 53, 648, 729
of OX-modules, 92

tensor-finiteness trick ■, 266, 267, 269
Theorem of the Base (Néron-Severi Theorem)

■, see also Picard number ρ(X), 484, 484
Theorem on Formal Functions ■, 725, 732,

733, 733, 740–744
thickening ■, see formal neighborhood
topological ring/module ■, 726
topology ■

base of, 87
discrete, see discrete topology
étale, see étale topology
Grothendieck, see Grothendieck topology
profinite, 255
Zariski, see Zariski topology

topos ■, 23, 381
Tor functors, 646, 647, 652

long exact sequence, 623
symmetry of, 629, 653

torsion ■
(sub)module, 386
quasicoherent sheaf on reduced scheme,

386
sheaf, 391

torsion-freeness ■
= flat for PID, 655
implied by flatness, 648, 652, 655, 665, 667,

691
module, 386

sheaf, 386, 391
torsor ■, 255
total complex (of a double complex) ■, 58
total fraction ring (total quotient ring) ■, see

also fraction field, 171, 607, 694, 695
total space ■

of line bundle, 539, 541, 551, 741
of vector bundle, 371, 449, 542, 606

total transform (of blow-up) ■, 600, 602, 609
trace map ■, 389, 582, 749, 750, 751, 751, 752,

754, 761, 763
transcendence basis ■, 681
transcendence basis ■, 308, 314, 572
transcendence degree ■, 310
transcendence degree ■, 307, 308, 308–312,

324, 461, 493, 576, 681
= dimension, 308

transcendence theory ■, 204, 268, 307, 324,
576, 681

transition functions/matrices ■, 370, 370–372,
383, 385, 397–400, 413, 423, 426, 427, 429,
449, 450, 480, 488

trichotomy (classification of varieties) ■, 518,
585, 586

triple point ■, 730, 730
trivial bundle/sheaf of rank n ■, 370
trivialization of vector bundle■, 370
tropical geometry ■, 127
Tsen’s Theorem ■, 712
twisted cubic curve ■, 490
twisted cubic curve ■, see also rational normal

curve, 120, 231, 231, 233, 308, 343, 412,
490, 491, 658, 661

two planes meeting at a point ■, 691
two planes meeting at a point ■, 132, 486, 494,

657, 668, 687–689, 692, 754
not S2 or Cohen-Macaulay, 692

ultrafilter ■, 121
uniformizer ■, 350, 351, 354, 389, 436, 463,

464, 580, 591, 592, 655
union (scheme-theoretic), see

scheme-theoretic, union
unique factorization domain ■, 406
unique factorization and class groups ■, 407
unique factorization domain ■, 102, 104,

163–166, 171, 194, 275, 315, 317, 334, 349,
352, 354, 363, 403–408, 538, 693

= all codimension 1 primes principal, 163,
307, 317, 334, 403, 404, 407

codimension 1 primes are principal, 306,
307

how to check, 163
not affine-local condition, 166

uniruled ■, 321
universal delta-functor ■, see delta-functors,

universal
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universal hyperplane, see hyperplane,
universal

universal property ■, 24, 31, 32, 35, 40, 45,
195, 196, 250, 251, 253, 273, 290, 384, 424,
447, 448, 451, 570, 604, 613, 628, 646, 751

and Yoneda’s Lemma, 38
of Sym and ∧, 384
of blow-up, 597, 598, 599, 600–604, 652, 742
of cokernel, 48, 81, 90
of colimit, 90
of differentials, 570
of fibered coproduct, 37
of fibered product, 35, 36, 248–251, 262
of inverse image sheaf, 93
of Kähler differentials, 563, 571, 573
of kernel, 48, 81, 82
of limit, 40, 55
of localization, 31, 32, 33, 209, 379
of normalization, 273, 273, 274, 460, 741
of product, 24, 31
of projective space, 723
of pullback, 423, 424, 424–426
of relative Proj, 453
of relative Proj, 450
of relative Spec, 447, 447, 448
of sheafification, 84, 84, 85, 90
of stalks, 77
of tensor product, 33, 34, 35, 44, 573

universally closed morphisms ■, 293, 293,
361, 362, 435, 455, 503

universally injective (radicial) morphisms ■,
270, 270, 271, 289

= “injective on geometric points”, 271
and the diagonal morphism, 271, 289
are separated, 289
preserved by composition, base change,

products, 271
universally open morphisms ■, 266
“universally P” ■, 293
unramifiedness ■, 101, 225, 229, 506, 583, 588,

588, 592, 673, 674, 676, 737
characterizations by fibers, 588
closed under composition, 588
diagonal characterization, 589
examples, 588
formal, see formally unramified
in number theory, 588
open condition, 589

upper semicontinuity ■, see semicontinuity
upward orientation (of spectral sequence) ■,

61

Valéry, P. ■, 767
valuation rings ■, 127, 320, see also discrete

valuation rings, 351, 358, 361, 362, 393
importance of, 362

valuations ■, see also discrete valuations, 351,
see also valuation rings, 400, 460, 579

valuative criteria ■, 17, 331, 358
for flatness, 657
for properness, 361, 361, 362, 436, 680
for separatedness, 359, 360, 361, 362, 680
for universal closedness, 361, 361, 362

value of a function at a point ■, see functions,
value at a point

vanishing theorems ■, 500
vanishing scheme ■, 151, 151, 227, 230, 590
vanishing set ■, 115, 149
vanishing theorems ■, see also dimensional

cohomology vanishing
vanishing theorems ■, see also Kodaira

vanishing, see also Serre vanishing, 478
varieties, 160, 283

affine, 160
affine complex, 108
classically, 121
complex, 99
projective, 160
quasiprojective, 160
with non-finitely-generated ring of global

sections, 541
Vaserstein, L. ■, 404
vector bundles ■, 14, 77, 78, 152, 369–371, 374,

375, 382, 388, 389, 393, 413, 449, 452, 481,
488, 550, 568, 569, 582, 604, 646, 653, 709,
712, 713, see also Serre duality, for vector
bundles, 749, 750, 753, 757, 760–762

ample, 458
associated to locally free sheaves, 449
classification on P1, 486
not always direct sum of line bundles, 582
on manifold, 369
perfect pairing, 385
pulling back, 423, 426
total space, see total space, of vector

bundles
trivialization, 370

Veronese embedding ■, see also rational
normal curve, see also twisted cubic
curve, 120, 232, 233, 272, 282, 346, 430,
431, 490–492, 507, 517, 760

as complete linear series, 430, 507
Veronese subring Sn• ■, 188, 188, 232
Veronese surface ■, 233, 233
very ample ■, 437, 489, 545–547, 553, 554, 556,

557, 559, 672, 684, 740
⊗ base-point-free is very ample, 437
behaves worse than ample, 438
implies base-point-free, 437
in relative setting, 456
preserved by ⊠, 437
preserved by ⊗, 437
relatively, 437, 452
with respect to π, see very ample, relatively

very general ■, 315
Viète’s formula ■, 533
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Voevodsky, V. ■, 381

Weak Factorization Theorem ■, 614
Weak Nullstellensatz ■, see Nullstellensatz
weakly associated prime ■, 168
Weierstrass coordinates ■, 530
Weierstrass normal form ■, 529, 531, 532, 535
weighted projective space ■, 235
Weil divisor ■

locally principal, 403
Weil divisor ■, 397, 400, 400, 401, 403–408,

549, 579, 614
effective, 400
irreducible, 400
locally principal, 403, 405, see also closed

subscheme, locally principal, 614
not necessarily locally principal, 403
not necessarily locally principal, 407
of zeros and poles, 400
principal, 403
restriction to open set, 400
support of, 400

Weil, A. ■, 362, 532, 585
Weyl group ■, 698, 704, 706
Weyl, H. ■, 144
Wiener, N. ■, 133
wild ramification ■, 592
Wiles, A. ■, 518
Włodarczyk, W. ■, 614

Yoda embedding ■, 39
Yoneda cup product ■, see cup product,

Yoneda
Yoneda embedding ■, 39
Yoneda’s Lemma ■, 13, 38, 39, 185, 195, 248,

251, 358, 429, 444, 599

Zariski cotangent space ■, see cotangent,
space

Zariski sheaf (sheaf on the big Zariski site) ■,
251, 252, 252, 253, 443

Zariski site ■, 251
Zariski tangent space ■, see tangent space
Zariski topology ■, 114–119, 133, 136, 137,

142, 150, 221, 222, 255, 304, 377, 378, 402,
418, 571

on Proj S•, 150
on SpecA, 115
on kn, 221, 313
on scheme, 136

Zariski’s Lemma, see also Nullstellensatz
Zariski’s Connectedness Lemma ■, 710, 725,

733, 733–737
Zariski’s Lemma ■, 107
Zariski’s Main Theorem ■, 215, 296, 705, 736,

739, 740
for birational morphisms, 735, 736
Grothendieck’s form, 725, 737, 738
misnamed, 736

topological and power series forms, 740
Zariski, O. ■, 295, 337, 736, 743
zero of order n ■

for Noetherian scheme, 353
zero object ■, see object, zero
zero of order n ■

for discrete valuation rings, 352
zerodivisor (for ring or module) ■, 32
Zorn’s Lemma ■, 113, 123, 627
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