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Je pourrais illustrer la ... approche, en gardant l'image de la noix qu’il s’agit d’ouvrir.
La premiere parabole qui m’est venue a 'esprit tantét, c’est qu’on plonge la noix dans
un liquide émollient, de I'eau simplement pourquoi pas, de temps en temps on frotte pour
qu’elle pénetre mieux, pour le reste on laisse faire le temps. La coque s’assouplit au fil des
semaines et des mois — quand le temps est milr, une pression de la main suffit, la coque
s’ouvre comme celle d’un avocat miir a point! ...

L'image qui m’était venue il y a quelques semaines était différente encore, la chose
inconnue qu’il s’agit de connaitre m’apparaissait comme quelque étendue de terre ou de
marnes compactes, réticente a se laisser pénétrer. ... La mer s’avance insensiblement et
sans bruit, rien ne semble se casser rien ne bouge I'eau est si loin on l'entend a peine...
Pourtant elle finit par entourer la substance rétive...

I can illustrate the ... approach with the ... image of a nut to be opened. The first
analogy that came to my mind is of immersing the nut in some softening liguid, and why
not simply water? From time to time you rub so the liquid penetrates better, and otherwise
you let time pass. The shell becomes more flexible through weeks and months — when the
time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado! ...

A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it ... yet finally it surrounds the resistant substance.

— A. Grothendieck [Gr6, p. 552-3], translation by C. McLarty [Mc, p. 1]






Preface

This book is intended to give a serious and reasonably complete introduction
to algebraic geometry, not just for (future) experts in the field. The exposition
serves a narrow set of goals (see §0.4), and necessarily takes a particular point of
view on the subject.

It has now been four decades since David Mumford wrote that algebraic ge-
ometry “seems to have acquired the reputation of being esoteric, exclusive, and
very abstract, with adherents who are secretly plotting to take over all the rest of
mathematics! In one respect this last point is accurate ...” ([Mu4, preface] and
[Mu?, p. 227]). The revolution has now fully come to pass, and has fundamentally
changed how we think about many fields of pure mathematics. A remarkable
number of celebrated advances rely in some way on the insights and ideas force-
fully articulated by Alexander Grothendieck, Jean-Pierre Serre, and others.

For a number of reasons, algebraic geometry has earned a reputation of being
inaccessible. The power of the subject comes from rather abstract heavy machin-
ery, and it is easy to lose sight of the intuitive nature of the objects and methods.
Many in nearby fields have only a vague sense of the fundamental ideas of the
subject. Algebraic geometry itself has fractured into many parts, and even within
algebraic geometry, new researchers are often unaware of the basic ideas in sub-
fields removed from their own.

But there is another more optimistic perspective to be taken. The ideas that al-
low algebraic geometry to connect several parts of mathematics are fundamental,
and well-motivated. Many people in nearby fields would find it useful to develop
a working knowledge of the foundations of the subject, and not just at a super-
ficial level. Within algebraic geometry itself, there is a canon (at least for those
approaching the subject from this particular direction), that everyone in the field
can and should be familiar with. The rough edges of scheme theory have been
sanded down over the past half century, although there remains an inescapable
need to understand the subject on its own terms.

0.0.1. The importance of exercises. This book has a lot of exercises. I have found
that unless I have some problems I can think through, ideas don’t get fixed in my
mind. Some exercises are trivial — some experts find this offensive, but I find
this desirable. A very few necessary ones may be hard, but the reader should have
been given the background to deal with them — they are not just an excuse to push
hard material out of the text. The exercises are interspersed with the exposition,
not left to the end. Most have been extensively field-tested. The point of view here
is one I explored with Kedlaya and Poonen in [KPV], a book that was ostensibly
about problems, but secretly a case for how one should learn and do and think
about mathematics. Most people learn by doing, rather than just passively reading.

11



12 The Rising Sea: Foundations of Algebraic Geometry

Judiciously chosen problems can be the best way of guiding the learner toward
enlightenment.

0.0.2. Structure. You will quickly notice that everything is numbered by chapter
and section, and everything is numbered the same way after that (for ease of refer-
ence), except exercises are indicated by letters (and are sprinkled throughout the
text, rather than at the end of sections). Individual paragraphs often get numbers
for ease of reference, or to indicate a new topic. Definitions are in bold, and are
sometimes given in passing.

0.0.3. Acknowledgments.

This one is going to be really hard, so I'll write this later. (Mike Stay is the au-
thor of Jokes 1.3.11 and 21.5.2.) The phrase “The Rising Sea” is due to Grothendieck
[Gr6, p. 552-3], with this particular translation by McLarty [Mc, p. 1], and popu-
larized as the title of Daniel Murfet’s excellent blog [Mur].

0.1 For the reader

This is your last chance. After this, there is no turning back. You take the blue pill,
the story ends, you wake up in your bed and believe whatever you want to believe. You
take the red pill, you stay in Wonderland and I show you how deep the rabbit-hole goes.

— Morpheus

The contents of this book are intended to be a collection of communal wisdom,
necessarily distilled through an imperfect filter. I wish to say a few words on how
you might use it, although it is not clear to me if you should or will follow this
advice.

Before discussing details, I want to say clearly at the outset: the wonderful
machine of modern algebraic geometry was created to understand basic and naive
questions about geometry (broadly construed). The purpose of this book is to
give you a thorough foundation in these powerful ideas. Do not be seduced by the
lotus-eaters into infatuation with untethered abstraction. Hold tight to your geometric
motivation as you learn the formal structures which have proved to be so effective
in studying fundamental questions. When introduced to a new idea, always ask
why you should care. Do not expect an answer right away, but demand an answer
eventually. Try at least to apply any new abstraction to some concrete example
you can understand well.

Understanding algebraic geometry is often thought to be hard because it con-
sists of large complicated pieces of machinery. In fact the opposite is true; to switch
metaphors, rather than being narrow and deep, algebraic geometry is shallow but
extremely broad. It is built out of a large number of very small parts, in keeping
with Grothendieck’s vision of mathematics. It is a challenge to hold the entire
organic structure, with its messy interconnections, in your head.

A reasonable place to start is with the idea of “affine complex varieties”: sub-
sets of C™ cut out by some polynomial equations. Your geometric intuition can im-
mediately come into play — you may already have some ideas or questions about
dimension, or smoothness, or solutions over subfields such as R or Q. Wiser heads
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would counsel spending time understanding complex varieties in some detail be-
fore learning about schemes. Instead, I encourage you to learn about schemes
immediately, learning about affine complex varieties as the central (but not exclu-
sive) example. This is not ideal, but can save time, and is surprisingly workable.
An alternative is to learn about varieties elsewhere, and then come back later.

The intuition for schemes can be built on the intuition for affine complex vari-
eties. Allen Knutson and Terry Tao have pointed out that this involves three differ-
ent simultaneous generalizations, which can be interpreted as three large themes
in mathematics. (i) We allow nilpotents in the ring of functions, which is basically
analysis (looking at near-solutions of equations instead of exact solutions). (ii) We
glue these affine schemes together, which is what we do in differential geometry
(looking at manifolds instead of coordinate patches). (iii) Instead of working over
C (or another algebraically closed field), we work more generally over a ring that
isn’t an algebraically closed field, or even a field at all, which is basically number
theory (solving equations over number fields, rings of integers, etc.).

Because our goal is to be comprehensive, and to understand everything one
should know after a first course, it will necessarily take longer to get to interesting
sample applications. You may be misled into thinking that one has to work this
hard to get to these applications — it is not true! You should deliberately keep an
eye out for examples you would have cared about before. This will take some time
and patience.

As you learn algebraic geometry, you should pay attention to crucial stepping
stones. Of course, the steps get bigger the farther you go.

Chapter 1. Category theory is only language, but it is language with an em-
bedded logic. Category theory is much easier once you realize that it is designed
to formalize and abstract things you already know. The initial chapter on cate-
gory theory prepares you to think cleanly. For example, when someone names
something a “cokernel” or a “product”, you should want to know why it deserves
that name, and what the name really should mean. The conceptual advantages of
thinking this way will gradually become apparent over time. Yoneda’s Lemma —
and more generally, the idea of understanding an object through the maps to it —
will play an important role.

Chapter 2. The theory of sheaves again abstracts something you already un-
derstand well (see the motivating example of §2.1), and what is difficult is under-
standing how one best packages and works with the information of a sheaf (stalks,
sheafification, sheaves on a base, etc.).

Chapters 1 and 2 are a risky gamble, and they attempt a delicate balance. Attempts
to explain algebraic geometry often leave such background to the reader, refer to
other sources the reader won’t read, or punt it to a telegraphic appendix. Instead,
this book attempts to explain everything necessary, but as little as possible, and
tries to get across how you should think about (and work with) these fundamental
ideas, and why they are more grounded than you might fear.

Chapters 3-5. Armed with this background, you will be able to think cleanly
about various sorts of “spaces” studied in different parts of geometry (includ-
ing differentiable real manifolds, topological spaces, and complex manifolds), as
ringed spaces that locally are of a certain form. A scheme is just another kind
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of “geometric space”, and we are then ready to transport lots of intuition from
“classical geometry” to this new setting. (This also will set you up to later think
about other geometric kinds of spaces in algebraic geometry, such as complex an-
alytic spaces, algebraic spaces, orbifolds, stacks, rigid analytic spaces, and formal
schemes.) The ways in which schemes differ from your geometric intuition can be
internalized, and your intuition can be expanded to accomodate them. There are
many properties you will realize you will want, as well as other properties that
will later prove important. These all deserve names. Take your time becoming
familiar with them.

Chapters 6-10. Thinking categorically will lead you to ask about morphisms
of schemes (and other spaces in geometry). One of Grothendieck’s fundamental
lessons is that the morphisms are central. Important geometric properties should
really be understood as properties of morphisms. There are many classes of mor-
phisms with special names, and in each case you should think through why that
class deserves a name.

Chapters 11-12. You will then be in a good position to think about fundamen-
tal geometric properties of schemes: dimension and smoothness. You may be sur-
prised that these are subtle ideas, but you should keep in mind that they are subtle
everywhere in mathematics.

Chapters 13-21. Vector bundles are ubiquitous tools in geometry, and algebraic
geometry is no exception. They lead us to the more general notion of quasicoher-
ent sheaves, much as free modules over a ring lead us to modules more generally.
We study their properties next, including cohomology. Chapter 19, applying these
ideas to study curves, may help make clear how useful they are.

Chapters 23-30. With this in hand, you are ready to learn more advanced tools
widely used in the subject. Many examples of what you can do are given, and
the classical story of the 27 lines on a smooth cubic surface (Chapter 27) is a good
opportunity to see many ideas come together.

The rough logical dependencies among the chapters are shown in Figure 0.1.
(Caution: this should be taken with a grain of salt. For example, you can avoid
using much of Chapter 19 on curves in later chapters, but it is a crucial source of
examples, and a great way to consolidate your understanding. And Chapter 29 on
completions uses Chapters 19, 20 and 22 only in the discussion of Castelnuovo’s
Criterion 29.7.1.)

In general, I like having as few hypotheses as possible. Certainly a hypothesis
that isn’t necessary to the proof is a red herring. But if a reasonable hypothesis can
make the proof cleaner and more memorable, I am willing to include it.

In particular, Noetherian hypotheses are handy when necessary, but are oth-
erwise misleading. Even Noetherian-minded readers (normal human beings) are
better off having the right hypotheses, as they will make clearer why things are
true.

We often state results particular to varieties, especially when there are tech-
niques unique to this situation that one should know. But restricting to alge-
braically closed fields is useful surprisingly rarely. Geometers needn’t be afraid
of arithmetic examples or of algebraic examples; a central insight of algebraic ge-
ometry is that the same formalism applies without change.
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bz

FIGURE 0.1. Important logical dependences among chapters (or
more precisely, a directed graph showing which chapter should
be read before which other chapter)

Pathological examples are useful to know. On mountain highways, there are
tall sticks on the sides of the road designed for bad weather. In winter, you cannot
see the road clearly, and the sticks serve as warning signs: if you cross this line,
you will die! Pathologies and (counter)examples serve a similar goal. They also
serve as a reality check, when confronting a new statement, theorem, or conjecture,
whose veracity you may doubt.

When working through a book in algebraic geometry, it is particularly helpful
to have other algebraic geometry books at hand, to see different approaches and
to have alternate expositions when things become difficult. This book may serve
as a good secondary book. If it is your primary source, then two other excellent
books with what I consider a similar philosophy are [Liu] and [GW]. De Jong’s
encyclopedic online reference [Stacks] is peerless. There are many other outstand-
ing sources out there, perhaps one for each approach to the subject; you should
browse around and find one you find sympathetic.

If you are looking for a correct or complete history of the subject, you have
come to the wrong place. This book is not intended to be a complete guide to
the literature, and many important sources are ignored or left out, due to my own
ignorance and laziness.
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Finally, if you attempt to read this without working through a significant num-
ber of exercises (see §0.0.1), I will come to your house and pummel you with
[Gr-EGA] until you beg for mercy. It is important to not just have a vague sense of
what is true, but to be able to actually get your hands dirty. To quote Mark Kisin:
“You can wave your hands all you want, but it still won’t make you fly.” Note: The
hints may help you, but sometimes they may not.

0.2 For the expert

If you use this book for a course, you should of course adapt it to your own
point of view and your own interests. In particular, you should think about an
application or theorem you want to reach at the end of the course (which may
well not be in this book), and then work toward it. You should feel no compulsion
to sprint to the end; I advise instead taking more time, and ending at the right
place for your students. (Figure 0.1, showing large-scale dependencies among the
chapters, may help you map out a course.) I have found that the theory of curves
(Chapter 19) and the 27 lines on the cubic surface (Chapter 27) have served this
purpose well at the end of winter and spring quarters. This was true even if some
of the needed background was not covered, and had to be taken by students as
some sort of black box.

Faithfulness to the goals of §0.4 required a brutal triage, and I have made a
number of decisions you may wish to reverse. I will briefly describe some choices
made that may be controversial.

Decisions on how to describe things were made for the sake of the learners.
If there were two approaches, and one was “correct” from an advanced point of
view, and one was direct and natural from a naive point of view, I went with the
latter.

On the other hand, the theory of varieties (over an algebraically closed field,
say) was not done first and separately. This choice brought me close to tears, but
in the end I am convinced that it can work well, if done in the right spirit.

Instead of spending the first part of the course on varieties, I spent the time
in a different way. It is tempting to assume that students will either arrive with
great comfort and experience with category theory and sheaf theory, or that they
should pick up these ideas on their own time. I would love to live in that world.
I encourage you to not skimp on these foundational issues. I have found that
although these first lectures felt painfully slow to me, they were revelatory to a
number of the students, and those with more experience were not bored and did
not waste their time. This investment paid off in spades when I was able to rely
on their ability to think cleanly and to use these tools in practice. Furthermore, if
they left the course with nothing more than hands-on experience with these ideas,
the world was still better off for it.

For the most part, we will state results in the maximal generality that the proof
justifies, but we will not give a much harder proof if the generality of the stronger
result will not be used. There are a few cases where we work harder to prove
a somewhat more general result that many readers may not appreciate. For ex-
ample, we prove a number of theorems for proper morphisms, not just projective
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morphisms. But in such cases, readers are invited or encouraged to ignore the
subtleties required for the greater generality.

I consider line bundles (and maps to projective space) more fundamental than
divisors. General Cartier divisors are not discussed (although effective Cartier divi-
sors play an essential role).

Cohomology is done first using the Cech approach (as Serre first did), and de-
rived functor cohomology is introduced only later. I am well aware that Grothendieck
thinks of the fact that the agreement of Cech cohomology with derived functor co-
homology “should be considered as an accidental phenomenon”, and that “it is
important for technical reasons not to take as definition of cohomology the Cech
cohomology”, [Gr4, p. 108]. But I am convinced that this is the right way for most
people to see this kind of cohomology for the first time. (It is certainly true that
many topics in algebraic geometry are best understood in the language of derived
functors. But this is a view from the mountaintop, looking down, and not the best
way to explore the forests. In order to appreciate derived functors appropriately,
one must understand the homological algebra behind it, and not just take it as a
black box.)

We restrict to the Noetherian case only when it is necessary, or (rarely) when it
really saves effort. In this way, non-Noetherian people will clearly see where they
should be careful, and Noetherian people will realize that non-Noetherian things
are not so terrible. Moreover, even if you are interested primarily in Noetherian
schemes, it helps to see “Noetherian” in the hypotheses of theorems only when
necessary, as it will help you remember how and when this property gets used.

There are some cases where Noetherian readers will suffer a little more than
they would otherwise. As an inflammatory example, instead of using Noetherian
hypotheses, the notion of quasiseparatedness comes up early and often. The cost
is that one extra word has to be remembered, on top of an overwhelming number
of other words. But once that is done, it is not hard to remember that essentially
every scheme anyone cares about is quasiseparated. Furthermore, whenever the
hypotheses “quasicompact and quasiseparated” turn up, the reader will immedi-
ately guess a key idea of the proof. As another example, coherent sheaves and
finite type (quasicoherent) sheaves are the same in the Noetherian situation, but
are still worth distinguishing in statements of the theorems and exercises, for the
same reason: to be clearer on what is used in the proof.

Many important topics are not discussed. Valuative criteria are not proved
(see §12.7), and their statement is relegated to an optional section. Completely
omitted: dévissage, formal schemes, and cohomology with supports. Sorry!

0.3 Background and conventions

“Should you just be an algebraist or a geometer?” is like saying “Would you rather
be deaf or blind?”
— M. Atiyah, [At2, p. 659]

All rings are assumed to be commutative unless explicitly stated otherwise.
All rings are assumed to contain a unit, denoted 1. Maps of rings must send 1 to
1. We don’t require that 0 # 1; in other words, the “0-ring” (with one element)
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is a ring. (There is a ring map from any ring to the O-ring; the 0-ring only maps
to itself. The 0-ring is the final object in the category of rings.) The definition of
“integral domain” includes 1 # 0, so the 0-ring is not an integral domain. We
accept the Axiom of Choice. In particular, any proper ideal in a ring is contained
in a maximal ideal. (The Axiom of Choice also arises in the argument that the
category of A-modules has enough injectives, see Exercise 23.2.G.)

The reader should be familiar with some basic notions in commutative ring
theory, in particular the notion of ideals (including prime and maximal ideals) and
localization. Tensor products and exact sequences of A-modules will be important.
We will use the notation (A, m) or (A, m, k) for local rings (rings with a unique
maximal ideal) — A is the ring, m its maximal ideal, and k = A /m its residue field.
We will use the structure theorem for finitely generated modules over a principal
ideal domain A: any such module can be written as the direct sum of principal
modules A/(a). Some experience with field theory will be helpful from time to
time.

0.3.1. Caution about foundational issues. We will not concern ourselves with subtle
foundational issues (set-theoretic issues, universes, etc.). It is true that some peo-
ple should be careful about these issues. But is that really how you want to live
your life? (If you are one of these rare people, a good start is [KS2, §1.1].)

0.3.2. Further background. It may be helpful to have books on other subjects at
hand that you can dip into for specific facts, rather than reading them in advance.
In commutative algebra, [E] is good for this. Other popular choices are [AtM] and
[Mat2]. The book [Al] takes a point of view useful to algebraic geometry. For
homological algebra, [Weib] is simultaneously detailed and readable.

Background from other parts of mathematics (topology, geometry, complex
analysis, number theory, ...) will of course be helpful for intuition and grounding.
Some previous exposure to topology is certainly essential.

0.3.3. Nonmathematical conventions. “Unimportant” means “unimportant for the
current exposition”, not necessarily unimportant in the larger scheme of things.
Other words may be used idiosyncratically as well.

There are optional starred sections of topics worth knowing on a second or
third (but not first) reading. They are marked with a star: . Starred sections are
not necessarily harder, merely unimportant. You should not read double-starred
sections (xx) unless you really really want to, but you should be aware of their
existence. (It may be strange to have parts of a book that should not be read!)

Let’s now find out if you are taking my advice about double-starred sections.

0.4 »x The goals of this book

There are a number of possible introductions to the field of algebraic geome-
try: Riemann surfaces; complex geometry; the theory of varieties; a nonrigorous
examples-based introduction; algebraic geometry for number theorists; an abstract
functorial approach; and more. All have their place. Different approaches suit dif-
ferent students (and different advisors). This book takes only one route.
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Our intent is to cover a canon completely and rigorously, with enough exam-
ples and calculations to help develop intuition for the machinery. This is often
the content of a second course in algebraic geometry, and in an ideal world, peo-
ple would learn this material over many years, after having background courses
in commutative algebra, algebraic topology, differential geometry, complex analy-
sis, homological algebra, number theory, and French literature. We do not live in
an ideal world. For this reason, the book is written as a first introduction, but a
challenging one.

This book seeks to do a very few things, but to try to do them well. Our goals
and premises are as follows.

The core of the material should be digestible over a single year. After a
year of blood, sweat, and tears, readers should have a broad familiarity with the
foundations of the subject, and be ready to attend seminars, and learn more ad-
vanced material. They should not just have a vague intuitive understanding of
the ideas of the subject; they should know interesting examples, know why they
are interesting, and be able to work through their details. Readers in other fields
of mathematics should know enough to understand the algebro-geometric ideas
that arise in their area of interest.

This means that this book is not encyclopedic, and even beyond that, hard
choices have to be made. (In particular, analytic aspects are essentially ignored,
and are at best dealt with in passing without proof. This is a book about algebraic
algebraic geometry.)

This book is usable (and has been used) for a course, but the course should
(as always) take on the personality of the instructor. With a good course, people
should be able to leave early and still get something useful from the experience.
With this book, it is possible to leave without regret after learning about category
theory, or about sheaves, or about geometric spaces, having become a better per-
son.

The book is also usable (and has been used) for learning on your own. But
most mortals cannot learn algebraic geometry fully on their own; ideally you
should read in a group, and even if not, you should have someone you can ask
questions to (both stupid and smart questions).

There is certainly more than a year’s material here, but I have tried to make
clear which topics are essential, and which are not. Those teaching a class will
choose which “inessential” things are important for the point they wish to get
across, and use them.

There is a canon (at least for this particular approach to algebraic geometry). I
have been repeatedly surprised at how much people in different parts of algebraic
geometry agree on what every civilized algebraic geometer should know after a
first (serious) year. (There are of course different canons for different parts of the
subject, e.g., complex algebraic geometry, combinatorial algebraic geometry, com-
putational algebraic geometry, etc.) There are extra bells and whistles that different
instructors might add on, to prepare students for their particular part of the field
or their own point of view, but the core of the subject remains unified, despite the
diversity and richness of the subject. There are some serious and painful compro-
mises to be made to reconcile this goal with the previous one.
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Algebraic geometry is for everyone (with the appropriate definition of “ev-
eryone”). Algebraic geometry courses tend to require a lot of background, which
makes them inaccessible to all but those who know they will go deeply into the
subject. Algebraic geometry is too important for that; it is essential that many of
those in nearby fields develop some serious familiarity with the foundational ideas
and tools of the subject, and not just at a superficial level. (Similarly, algebraic ge-
ometers uninterested in any nearby field are necessarily arid, narrow thinkers. Do
not be such a person!)

For this reason, this book attempts to require as little background as possible.
The background required will, in a technical sense, be surprisingly minimal — ide-
ally just some commutative ring theory and point-set topology, and some comfort
with things like prime ideals and localization. This is misleading of course — the
more you know, the better. And the less background you have, the harder you will
have to work — this is not a light read. On a related note...

The book is intended to be as self-contained as possible. I have tried to
follow the motto: “if you use it, you must prove it”. I have noticed that most
students are human beings: if you tell them that some algebraic fact is in some late
chapter of a book in commutative algebra, they will not immediately go and read
it. Surprisingly often, what we need can be developed quickly from scratch, and
even if people do not read it, they can see what is involved. The cost is that the
book is much denser, and that significant sophistication and maturity is demanded
of the reader. The benefit is that more people can follow it; they are less likely to
reach a point where they get thrown. On the other hand, people who already have
some familiarity with algebraic geometry, but want to understand the foundations
more completely, should not be bored, and can focus on more subtle issues.

As just one example, Krull’s Principal Ideal Theorem 11.3.3 is an important
tool. I have included an essentially standard proof (§11.5). I do not want people
to read it (unless they really really want to), and signal this by a double-star in the
title: ». Instead, I want people to skim it and realize that they could read it, and
that it is not seriously hard.

This is an important goal because it is important not just to know what is true,
but to know why things are true, and what is hard, and what is not hard. Also,
this helps the previous goal, by reducing the number of prerequisites.

The book is intended to build intuition for the formidable machinery of al-
gebraic geometry. The exercises are central for this (see §0.0.1). Informal language
can sometimes be helpful. Many examples are given. Learning how to think
cleanly (and in particular categorically) is essential. The advantages of appropriate
generality should be made clear by example, and not by intimidation. The mo-
tivation is more local than global. For example, there is no introductory chapter
explaining why one might be interested in algebraic geometry, and instead there
is an introductory chapter explaining why you should want to think categorically
(and how to actually do this).

Balancing the above goals is already impossible. We must thus give up any
hope of achieving any other desiderata. There are no other goals.
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CHAPTER 1

Some category theory

The introduction of the digit O or the group concept was general nonsense too, and
mathematics was more or less stagnating for thousands of years because nobody was
around to take such childish steps...

— A. Grothendieck, [BP, p. 4-5]

That which does not kill me, makes me stronger.
— F. Nietzsche

1.1 Motivation

Before we get to any interesting geometry, we need to develop a language
to discuss things cleanly and effectively. This is best done in the language of
categories. There is not much to know about categories to get started; it is just
a very useful language. Like all mathematical languages, category theory comes
with an embedded logic, which allows us to abstract intuitions in settings we know
well to far more general situations.

Our motivation is as follows. We will be creating some new mathematical
objects (such as schemes, and certain kinds of sheaves), and we expect them to
act like objects we have seen before. We could try to nail down precisely what
we mean by “act like”, and what minimal set of things we have to check in order
to verify that they act the way we expect. Fortunately, we don’t have to — other
people have done this before us, by defining key notions, such as abelian categories,
which behave like modules over a ring.

Our general approach will be as follows. I will try to tell you what you need to
know, and no more. (This I promise: if I use the word “topoi”, you can shoot me.) I
will begin by telling you things you already know, and describing what is essential
about the examples, in a way that we can abstract a more general definition. We
will then see this definition in less familiar settings, and get comfortable with using
it to solve problems and prove theorems.

For example, we will define the notion of product of schemes. We could just
give a definition of product, but then you should want to know why this precise
definition deserves the name of “product”. As a motivation, we revisit the notion
of product in a situation we know well: (the category of) sets. One way to define
the product of sets U and V is as the set of ordered pairs {(u,v) : ue U,v e V}L
But someone from a different mathematical culture might reasonably define it as
the set of symbols {V: u € U,v € V}. These notions are “obviously the same”.
Better: there is “an obvious bijection between the two”.

23
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This can be made precise by giving a better definition of product, in terms
of a universal property. Given two sets M and N, a product is a set P, along with
maps p: P — Mand v: P — N, such that for any set P’ with maps u': P’ — M and
v’: P’ — N, these maps must factor uniquely through P:

(1.1.0.1)

(The symbol 3 means “there exists”, and the symbol | here means “unique”.) Thus
a product is a diagram

P—->N

!

M

and not just a set P, although the maps p and v are often left implicit.

This definition agrees with the traditional definition, with one twist: there
isn’t just a single product; but any two products come with a unigue isomorphism
between them. In other words, the product is unique up to unique isomorphism.
Here is why: if you have a product

P; =N

g

M
and I have a product
P2 2. N
H2 \L
M

then by the universal property of my product (letting (P2, u2,v2) play the role of
(P, v), and (Py, 11, vy) play the role of (P’,pu’,v’) in (1.1.0.1)), there is a unique
map f: Py — P, making the appropriate diagram commute (i.e., p; = p o f and
vq = v of). Similarly by the universal property of your product, there is a unique
map g: P, — P; making the appropriate diagram commute. Now consider the
universal property of my product, this time letting (P2, u2,v2) play the role of
both (P, i, v) and (P’,pn’,v’) in (1.1.0.1). There is a unique map h: P, — P, such
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that
P2
\h V2
AN
M2 P> T> N
\L H2
M

commutes. However, I can name two such maps: the identity map idp,, and f o g.
Thus f o g = idp,. Similarly, g o f = idp,. Thus the maps f and g arising from
the universal property are bijections. In short, there is a unique bijection between
P; and P; preserving the “product structure” (the maps to M and N). This gives
us the right to name any such product M x N, since any two such products are
uniquely identified.

This definition has the advantage that it works in many circumstances, and
once we define categories, we will soon see that the above argument applies ver-
batim in any category to show that products, if they exist, are unique up to unique
isomorphism. Even if you haven’t seen the definition of category before, you can
verify that this agrees with your notion of product in some category that you have
seen before (such as the category of vector spaces, where the maps are taken to
be linear maps; or the category of differentiable manifolds, where the maps are
taken to be submersions, i.e., differentiable maps whose differential is everywhere
surjective).

This is handy even in cases that you understand. For example, one way of
defining the product of two manifolds M and N is to cut them both up into charts,
then take products of charts, then glue them together. But if I cut up the manifolds
in one way, and you cut them up in another, how do we know our resulting mani-
folds are the “same”? We could wave our hands, or make an annoying argument
about refining covers, but instead, we should just show that they are “categorical
products” and hence canonically the “same” (i.e., isomorphic). We will formalize
this argument in §1.3.

Another set of notions we will abstract are categories that “behave like mod-
ules”. We will want to define kernels and cokernels for new notions, and we
should make sure that these notions behave the way we expect them to. This
leads us to the definition of abelian categories, first defined by Grothendieck in his
Tohoku paper [Gr1].

In this chapter, we will give an informal introduction to these and related no-
tions, in the hope of giving just enough familiarity to comfortably use them in
practice.

1.2 Categories and functors

Before functoriality, people lived in caves. — B. Conrad

We begin with an informal definition of categories and functors.

1.2.1. Categories.
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A category consists of a collection of objects, and for each pair of objects, a
set of morphisms (or arrows) between them. (For experts: technically, this is the
definition of a locally small category. In the correct definition, the morphisms need
only form a class, not necessarily a set, but see Caution 0.3.1.) Morphisms are often
informally called maps. The collection of objects of a category ¥ is often denoted
obj(¢’), but we will usually denote the collection also by &. If A, B € ¥, then the
set of morphisms from A to B is denoted Mor(A, B). A morphism is often written
f: A — B, and A is said to be the source of f, and B the target of f. (Of course,
Mor(A, B) is taken to be disjoint from Mor(A’,B’) unless A = A’ and B = B’.)

Morphisms compose as expected: there is a composition Mor(B, C) xMor(A, B)
Mor(A, C), and if f € Mor(A, B) and g € Mor(B, C), then their composition is de-
noted g o f. Composition is associative: if f € Mor(A,B), g € Mor(B, C), and
h € Mor(C,D), thenho (gof) = (hog)of. For each object A € €, there is always
an identity morphism ida : A — A, such that when you (left- or right-)compose a
morphism with the identity, you get the same morphism. More precisely, for any
morphisms f: A — Band g: B — C, idgof = fand goidg = g. (If you wish,
you may check that “identity morphisms are unique”: there is only one morphism
deserving the name id ».) This ends the definition of a category.

We have a notion of isomorphism between two objects of a category (a mor-
phism f: A — B such that there exists some — necessarily unique — morphism
g: B — A, where f o g and g o f are the identity on B and A respectively), and a
notion of automorphism of an object (an isomorphism of the object with itself).

1.2.2. Example. The prototypical example to keep in mind is the category of sets,
denoted Sets. The objects are sets, and the morphisms are maps of sets. (Because
Russell’s paradox shows that there is no set of all sets, we did not say earlier that
there is a set of all objects. But as stated in §0.3, we are deliberately omitting all
set-theoretic issues.)

1.2.3. Example. Another good example is the category Vecy of vector spaces over
a given field k. The objects are k-vector spaces, and the morphisms are linear
transformations. (What are the isomorphisms?)

1.2.A. UNIMPORTANT EXERCISE. A category in which each morphism is an iso-
morphism is called a groupoid. (This notion is not important in what we will
discuss. The point of this exercise is to give you some practice with categories, by
relating them to an object you know well.)

(a) A perverse definition of a group is: a groupoid with one object. Make sense of
this.

(b) Describe a groupoid that is not a group.

1.2.B. EXERCISE. If A is an object in a category ¢, show that the invertible ele-
ments of Mor(A, A) form a group (called the automorphism group of A, denoted
Aut(A)). What are the automorphism groups of the objects in Examples 1.2.2
and 1.2.3? Show that two isomorphic objects have isomorphic automorphism
groups. (For readers with a topological background: if X is a topological space,
then the fundamental groupoid is the category where the objects are points of X,
and the morphisms x — y are paths from x to y, up to homotopy. Then the auto-
morphism group of xo is the (pointed) fundamental group 7 (X, xo). In the case
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where X is connected, and 717 (X) is not abelian, this illustrates the fact that for
a connected groupoid — whose definition you can guess — the automorphism
groups of the objects are all isomorphic, but not canonically isomorphic.)

1.2.4. Example: abelian groups. The abelian groups, along with group homomor-
phisms, form a category Ab.

1.2.5. Important Example: Modules over a ring. 1f A is a ring, then the A-modules
form a category Moda. (This category has additional structure; it will be the pro-
totypical example of an abelian category, see §1.6.) Taking A = k, we obtain Exam-
ple 1.2.3; taking A = Z, we obtain Example 1.2.4.

1.2.6. Example: rings. There is a category Rings, where the objects are rings, and
the morphisms are maps of rings in the usual sense (maps of sets which respect
addition and multiplication, and which send 1 to 1 by our conventions, §0.3).

1.2.7. Example: topological spaces. The topological spaces, along with continuous
maps, form a category Top. The isomorphisms are homeomorphisms.

In all of the above examples, the objects of the categories were in obvious
ways sets with additional structure (a concrete category, although we won't use
this terminology). This needn’t be the case, as the next example shows.

1.2.8. Example: partially ordered sets. A partially ordered set, (or poset), is a set S
along with a binary relation > on S satisfying:
(i) x > x (reflexivity),
(if) x > yand y > zimply x > z (transitivity), and
(iif) if x >y and y > x then x =y (antisymmetry).
A partially ordered set (S,>) can be interpreted as a category whose objects are
the elements of S, and with a single morphism from x to y if and only if x > y (and
no morphism otherwise).
A trivial example is (S, >) where x > y if and only if x = y. Another example
is

(1.2.8.1)

|

oe<—0

Here there are three objects. The identity morphisms are omitted for convenience,
and the two non-identity morphisms are depicted. A third example is

(1.2.8.2)

_—

o<—20
oe<—-0

_—

Here the “obvious” morphisms are again omitted: the identity morphisms, and
the morphism from the upper left to the lower right. Similarly,

depicts a partially ordered set, where again, only the “generating morphisms” are
depicted.
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1.2.9. Example: the category of subsets of a set, and the category of open subsets of a topo-
logical space. 1f X is a set, then the subsets form a partially ordered set, where the
order is given by inclusion. Informally, if U C V, then we have exactly one mor-
phism U — V in the category (and otherwise none). Similarly, if X is a topological
space, then the open sets form a partially ordered set, where the order is given by
inclusion.

1.2.10. Definition. A subcategory </ of a category % has as its objects some of the
objects of %, and some of the morphisms, such that the morphisms of 2 include
the identity morphisms of the objects of #7, and are closed under composition.
(For example, (1.2.8.1) is in an obvious way a subcategory of (1.2.8.2). Also, we
have an obvious “inclusion functor” i: & — 4.)

1.2.11. Functors.

A covariant functor F from a category 7 to a category %, denoted F: &/ — %,
is the following data. It is a map of objects F: obj(</) — obj(4), and for each A;,
A, € o/, and morphism m: A; — A, amorphism F(m): F(A;) — F(A;) in . We
require that F preserves identity morphisms (for A € &7, F(ida) = idf(a)), and that
F preserves composition (F(m; o m;) = F(m;) o F(my)). (You may wish to verify
that covariant functors send isomorphisms to isomorphisms.) A trivial example is
the identity functor id: &/ — </, whose definition you can guess. Here are some
less trivial examples.

1.2.12. Example: a forgetful functor. Consider the functor from the category of
vector spaces (over a field k) Vecy to Sets, that associates to each vector space its
underlying set. The functor sends a linear transformation to its underlying map of
sets. This is an example of a forgetful functor, where some additional structure is
forgotten. Another example of a forgetful functor is Modx — Ab from A-modules
to abelian groups, remembering only the abelian group structure of the A-module.

1.2.13. Topological examples. Examples of covariant functors include the funda-
mental group functor 717, which sends a topological space X with choice of a point
xo € X to a group 71 (X, x0) (What are the objects and morphisms of the source cat-
egory?), and the ith homology functor Top — Ab, which sends a topological space
X to its ith homology group H;(X, Z). The covariance corresponds to the fact that
a (continuous) morphism of pointed topological spaces ¢: X — Y with ¢(x0) =yo
induces a map of fundamental groups m;(X,xo) — (Y, yo), and similarly for
homology groups.

1.2.14. Example. Suppose A is an object in a category ¥. Then there is a func-
tor h*: € — Sets sending B € ¢ to Mor(A, B), and sending f: By — B> to
Mor(A,B1) — Mor(A, B2) described by

[g: A= Byl — [fog: A — By — Bl

This seemingly silly functor ends up surprisingly being an important concept.

1.2.15. Definitions. If F: &/ — % and G: & — € are covariant functors, then we
define a functor G o F: &/ — ¥ (the composition of G and F) in the obvious way.
Composition of functors is associative in an evident sense.
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A covariant functor F: &/ — 2 is faithful if for all A,A’ € </, the map
Mor (A, A’) — Morg(F(A),F(A’)) is injective, and full if it is surjective. A func-
tor that is full and faithful is fully faithful. A subcategory i: & — % is a full
subcategory if i is full. (Inclusions are always faithful, so there is no need for the
phrase “faithful subcategory”.) Thus a subcategory <7’ of <7 is full if and only if for
all A,B € obj(</’), Mor.,(A,B) = Mor (A, B). For example, the forgetful func-
tor Vecy, — Sets is faithful, but not full; and if A is a ring, the category of finitely
generated A-modules is a full subcategory of the category Mod s of A-modules.

1.2.16. Definition. A contravariant functor is defined in the same way as a covari-
ant functor, except the arrows switch directions: in the above language, F(A; —
A>) is now an arrow from F(A;) to F(A1). (Thus F(m; o m;) = F(m4) o F(m;), not
F(m2) o F(my).)

It is wise to state whether a functor is covariant or contravariant, unless the
context makes it very clear. If it is not stated (and the context does not make it
clear), the functor is often assumed to be covariant.

(Sometimes people describe a contravariant functor ¥ — % as a covariant
functor €°PP — 2, where ¢°PP is the same category as % except that the arrows
go in the opposite direction. Here ¢°PP is said to be the opposite category to ¢.)
One can define fullness, etc. for contravariant functors, and you should do so.

1.2.17. Linear algebra example. If Vecy is the category of k-vector spaces (introduced
in Example 1.2.3), then taking duals gives a contravariant functor (-)¥: Vecx —
Vecy.. Indeed, to each linear transformation f: V — W, we have a dual transforma-
tion f¥: WY — VY, and (fog)Y =g¥ ofY.

1.2.18. Topological example (cf. Example 1.2.13) for those who have seen cohomology. The
ith cohomology functor H*(-,Z): Top — Ab is a contravariant functor.

1.2.19. Example. There is a contravariant functor Top — Rings taking a topological
space X to the ring of real-valued continuous functions on X. A morphism of
topological spaces X — Y (a continuous map) induces the pullback map from
functions on Y to functions on X.

1.2.20. Example (the functor of points, cf. Example 1.2.14). Suppose A is an object
of a category 4. Then there is a contravariant functor ha: ¢ — Sets sending
B € ¥ to Mor(B, A), and sending the morphism f: By — B, to the morphism
Mor(B;,A) — Mor(Bq,A) via

[g: B, = Al—[gof: By — By, — Al

This example initially looks weird and different, but Examples 1.2.17 and 1.2.19
may be interpreted as special cases; do you see how? What is A in each case? This
functor might reasonably be called the functor of maps (to A), but is actually known
as the functor of points. We will meet this functor again in §1.3.10 and (in the
category of schemes) in Definition 6.3.9.

1.2.21. x Natural transformations (and natural isomorphisms) of covariant func-
tors, and equivalences of categories.

(This notion won’t come up in an essential way until at least Chapter 6, so you
shouldn’t read this section until then.) Suppose F and G are two covariant functors
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from o/ to %. A natural transformation of covariant functors F — G is the data
of a morphism ma: F(A) — G(A) for each A € &/ such that for each f: A — A’ in
o/, the diagram

FIA) — 7 FAn

ml lm,\,

G(A) ——= G(A")

commutes. A natural isomorphism of functors is a natural transformation such
that each ma is an isomorphism. (We make analogous definitions when F and G
are both contravariant.)

The data of functors F: &/ — Z and F': # — & such that F o F/ is naturally
isomorphic to the identity functor idg on % and F’ o F is naturally isomorphic to
id is said to be an equivalence of categories. “Equivalence of categories” is an
equivalence relation on categories. The right notion of when two categories are
“essentially the same” is not isomorphism (a functor giving bijections of objects and
morphisms) but equivalence. Exercises 1.2.C and 1.2.D might give you some vague
sense of this. Later exercises (for example, that “rings” and “affine schemes” are
essentially the same, once arrows are reversed, Exercise 6.3.D) may help too.

Two examples might make this strange concept more comprehensible. The
double dual of a finite-dimensional vector space V is not V, but we learn early to
say that it is canonically isomorphic to V. We can make that precise as follows. Let
f.d.Vec, be the category of finite-dimensional vector spaces over k. Note that this
category contains oodles of vector spaces of each dimension.

1.2.C. EXERCISE. Let (-)VY: fd.Vec, — f.d.Vec, be the double dual functor from
the category of finite-dimensional vector spaces over k to itself. Show that (-)¥"
is naturally isomorphic to the identity functor on f.d.Vec,. (Without the finite-
dimensionality hypothesis, we only get a natural transformation of functors from
idto (1)VV)

Let ¥ be the category whose objects are the k-vector spaces k™ for eachn > 0
(there is one vector space for each n), and whose morphisms are linear transfor-
mations. The objects of ¥ can be thought of as vector spaces with bases, and the
morphisms as matrices. There is an obvious functor 7" — f.d.Vec, , as each k™ is a
finite-dimensional vector space.

1.2.D. EXERCISE. ~ Show that ¥* — f.d.Vec, gives an equivalence of categories,
by describing an “inverse” functor. (Recall that we are being cavalier about set-
theoretic assumptions, see Caution 0.3.1, so feel free to simultaneously choose
bases for each vector space in f.d.Vec, . To make this precise, you will need to use
Godel-Bernays set theory or else replace f.d. Vec, with a very similar small category,
but we won’t worry about this.)

1.2.22. »x Aside for experts. Your argument for Exercise 1.2.D will show that (mod-
ulo set-theoretic issues) this definition of equivalence of categories is the same as
another one commonly given: a covariant functor F: &/ — 2 is an equivalence
of categories if it is fully faithful and every object of 4 is isomorphic to an object
of the form F(A) for some A € & (F is essentially surjective, a term we will not
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need). Indeed, one can show that such a functor has a quasiinverse (another term
we will not use later), i.e., a functor G: ## — & (necessarily also an equivalence
and unique up to unique isomorphism) for which Go F = id,y and Fo G = idg,
and conversely, any functor that has a quasiinverse is an equivalence.

1.3 Universal properties determine an object up to unique
isomorphism

Given some category that we come up with, we often will have ways of pro-
ducing new objects from old. In good circumstances, such a definition can be
made using the notion of a universal property. Informally, we wish that there were
an object with some property. We first show that if it exists, then it is essentially
unique, or more precisely, is unique up to unique isomorphism. Then we go about
constructing an example of such an object to show existence.

Explicit constructions are sometimes easier to work with than universal prop-
erties, but with a little practice, universal properties are useful in proving things
quickly and slickly. Indeed, when learning the subject, people often find explicit
constructions more appealing, and use them more often in proofs, but as they be-
come more experienced, they find universal property arguments more elegant and
insightful.

1.3.1. Products were defined by a universal property. We have seen one im-
portant example of a universal property argument already in §1.1: products. You
should go back and verify that our discussion there gives a notion of product in
any category, and shows that products, if they exist, are unique up to unique iso-
morphism.

1.3.2. Initial, final, and zero objects. Here are some simple but useful concepts
that will give you practice with universal property arguments. An object of a
category % is an initial object if it has precisely one map to every object. It is a
final object if it has precisely one map from every object. It is a zero object if it is
both an initial object and a final object.

1.3.A. EXERCISE. Show that any two initial objects are uniquely isomorphic. Show
that any two final objects are uniquely isomorphic.

In other words, if an initial object exists, it is unique up to unique isomorphism,
and similarly for final objects. This (partially) justifies the phrase “the initial object”
rather than “an initial object”, and similarly for “the final object” and “the zero
object”. (Convention: we often say “the”, not “a”, for anything defined up to
unique isomorphism.)

1.3.B. EXERCISE. What are the initial and final objects in Sets, Rings, and Top (if
they exist)? How about in the two examples of §1.2.9?

1.3.3. Localization of rings and modules. Another important example of a defi-
nition by universal property is the notion of localization of a ring. We first review a
constructive definition, and then reinterpret the notion in terms of universal prop-
erty. A multiplicative subset S of a ring A is a subset closed under multiplication
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containing 1. We define a ring S~'A. The elements of S~'A are of the form a/s
where a € A and s € S, and where a;/s1 = ax/s; if (and only if) for some s € S,
s(spa; —sjaz) = 0. We define (a;/s1) + (az/s2) = (s2a7 + s1az)/(s1s2), and
(a1/s1) x (az/s2) = (araz)/(s1s2). (If you wish, you may check that this equal-
ity of fractions really is an equivalence relation and the two binary operations on
fractions are well-defined on equivalence classes and make S~'A into a ring.) We
have a canonical ring map

(1.3.3.1) A—STTA

given by a — a/1. Note thatif 0 € S, S™' A is the O-ring.

There are two particularly important flavors of multiplicative subsets. The
first is {1,f, f2,...}, where f € A. This localization is denoted A;. The second is
A — p, where p is a prime ideal. This localization S~'A is denoted A,,. (Notational
warning: If p is a prime ideal, then A, means you're allowed to divide by elements
not in p. However, if f € A, Af means you're allowed to divide by f. This can be
confusing. For example, if (f) is a prime ideal, then A¢ # A (¢).)

Warning: sometimes localization is first introduced in the special case where A
is an integral domain and 0 ¢ S. In that case, A — S—TA, but this isn’t always true,
as shown by the following exercise. (But we will see that noninjective localizations
needn’t be pathological, and we can sometimes understand them geometrically,
see Exercise 3.2.L.)

1.3.C. EXERCISE. Show that A — S™'A is injective if and only if S contains no
zerodivisors. (A zerodivisor of a ring A is an element a such that there is a nonzero
element b with ab = 0. The other elements of A are called non-zerodivisors. For
example, an invertible element is never a zerodivisor. Counter-intuitively, 0 is a
zerodivisor in every ring but the 0-ring. More generally, if M is an A-module, then
a € Ais a zerodivisor for M if there is a nonzero m € M with am = 0. The other
elements of A are called non-zerodivisors for M.)

If A is an integral domain and S = A—{0}, then S~" A is called the fraction field
of A, which we denote K(A). The previous exercise shows that A is a subring of its
fraction field K(A). We now return to the case where A is a general (commutative)
ring.

1.3.D. EXERCISE. Verify that A — S~'A satisfies the following universal property:
S~'A is initial among A-algebras B where every element of S is sent to an invert-
ible element in B. (Recall: the data of “an A-algebra B” and “a ring map A — B”
are the same.) Translation: any map A — B where every element of S is sent to an
invertible element must factor uniquely through A — S~TA. Another translation:
a ring map out of S~'A is the same thing as a ring map from A that sends every
element of S to an invertible element. Furthermore, an S~'A-module is the same
thing as an A-module for which s x -: M = M is an A-module isomorphism for
alls € S.

In fact, it is cleaner to define A — S~'A by the universal property, and to
show that it exists, and to use the universal property to check various properties
S~TA has. Let’s get some practice with this by defining localizations of modules
by universal property. Suppose M is an A-module. We define the A-module map
$: M — S~'M as being initial among A-module maps M — N such that elements
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of S are invertible in N (s x - N — N is an isomorphism for all s € S). More
precisely, any such map a: M — N factors uniquely through ¢:

M—2s51Mm

3!
x v

N

(Translation: M — S~ "M is universal (initial) among A-module maps from M to
modules that are actually S~'A-modules. Can you make this precise by defining
clearly the objects and morphisms in this category?)

Notice: (i) this determines ¢: M — S~'M up to unique isomorphism (you
should think through what this means); (ii) we are defining not only S~'M, but
also the map ¢ at the same time; and (iii) essentially by definition the A-module
structure on S~'M extends to an S~! A-module structure.

1.3.E. EXERCISE. Show that ¢: M — S~'M exists, by constructing something
satisfying the universal property. Hint: define elements of S™'M to be of the
form m/s where m € M and s € S, and m;/s; = my/s; if and only if for some
s €S, s(samy —symyz) = 0. Define the additive structure by (m;/s1) + (m2/sz2) =
(somy 4+ s1m2)/(s1s2), and the S~! A-module structure (and hence the A-module
structure) is given by (ai/s1) - (m2/s2) = (aym2)/(s152).

1.3.F. EXERCISE.

(a) Show that localization commutes with finite products, or equivalently, with
finite direct sums. In other words, if My, ..., M,, are A-modules, describe an iso-
morphism (of A-modules, and of ST A-modules) S~' (M x - - x My ) — S™'M; x
o x STTM,.

(b) Show that localization commutes with arbitrary direct sums.

(c) Show that “localization does not necessarily commute with infinite products”:
the obvious map S~'([T; Mi) — [, S~ "M, induced by the universal property of
localization is not always an isomorphism. (Hint: (1,1/2,1/3,1/4,...) € Q x Q x

)

1.3.4. Remark. Localization does not always commute with Hom, see Exam-
ple 1.6.8. But Exercise 1.6.G will show that in good situations (if the first argument
of Hom is finitely presented), localization does commute with Hom.

1.3.5. Tensor products. Another important example of a universal property con-
struction is the notion of a tensor product of A-modules

A obj(Moda) x obj(Moda) —— obj(Moda)

(MyUN)———> M ®a N

The subscript A is often suppressed when it is clear from context. The tensor prod-
uct is often defined as follows. Suppose you have two A-modules M and N. Then
elements of the tensor product M®a N are finite A-linear combinations of symbols
men(m e M, n € N), subject to relations (m; + mz) ®n =m; @n+m; ®n,
mR M +n2) =men;+men,, amen) = (am)®n =m® (an) (wherea € A,
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my, my € M, ny,n, € N). More formally, M ®a N is the free A-module generated
by M x N, quotiented by the submodule generated by (m; + my,n) — (my,n) —
(m2,n), (myng+nz2)—(m,ny)—(m,nz), a(m,n)—(am,n),and a(m,n)—(m, an)
fora € A, mymy,my € M, n,ny,n,; € N. The image of (m,n) in this quotient is
m® n.

If A is a field k, we recover the tensor product of vector spaces.

1.3.G. EXERCISE (IF YOU HAVEN’T SEEN TENSOR PRODUCTS BEFORE). Show that
Z/(10) ®z Z/(12) = Z/(2). (This exercise is intended to give some hands-on prac-
tice with tensor products.)

1.3.H. IMPORTANT EXERCISE: RIGHT-EXACTNESS OF (-) ®a N. Show that (-)®a N
gives a covariant functor Moda — Moda. Show that (-) ®a N is a right-exact
functor, i.e., if

M —-M-M"=0
is an exact sequence of A-modules (which means f: M — M" is surjective, and
M surjects onto the kernel of f; see §1.6), then the induced sequence

M'@AN =>MRAN-M"@aN =0

is also exact. This exercise is repeated in Exercise 1.6.F, but you may get a lot out of
doing it now. (You will be reminded of the definition of right-exactness in §1.6.5.)

In contrast, you can quickly check that tensor product is not left-exact: tensor
the exact sequence of Z-modules

0 72257, 7/(2) 0

with Z/(2).

The constructive definition ® is a weird definition, and really the “wrong”
definition. To motivate a better one: notice that there is a natural A-bilinear map
M xN = M®a N. (If M,N,P € Moda, amap f: M x N — P is A-bilinear if
f(m] + mZ)n) = f(ml »n) + f(m2$n)r f(m» ny + le) = f(m) Tl]) + f(m) le), and
flam,n) = f(m, an) = af(m,n).) Any A-bilinear map M x N — P factors through
the tensor product uniquely: M x N — M ®a N — P. (Think this through!)

We can take this as the definition of the tensor product as follows. It is an
A-module T along with an A-bilinear map t: M x N — T, such that given any
A-bilinear map t': M x N — T/, there is a unique A-linear map f: T — T’ such

thatt' =fot.
t

M x N

\ 3

Tl

T

1.3.I. EXERCISE. Show that (T,t: M x N — T) is unique up to unique isomorphism.
Hint: first figure out what “unique up to unique isomorphism” means for such
pairs, using a category of pairs (T, t). Then follow the analogous argument for the
product.

In short: given M and N, there is an A-bilinear map t: M X N — M ®a N,
unique up to unique isomorphism, defined by the following universal property:
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for any A-bilinear map t’: M x N — T’ there is a unique A-linear map f: M ®x
N — T’ such thatt’ =fot.

As with all universal property arguments, this argument shows uniqueness
assuming existence. To show existence, we need an explicit construction.

1.3.J. EXERCISE. Show that the construction of §1.3.5 satisfies the universal prop-
erty of tensor product.

The three exercises below are useful facts about tensor products with which
you should be familiar.

1.3.K. IMPORTANT EXERCISE.

(a) If M is an A-module and A — B is a morphism of rings, give B®a M the struc-
ture of a B-module (this is part of the exercise). Show that this describes a functor
Moda — Modg.

(b) If further A — C is another morphism of rings, show that B ® C has a natural
structure of a ring. Hint: multiplication will be given by (by ® c1)(b2 ® ¢3) =
(b1b2) ® (c1c2). (Exercise 1.3.U will interpret this construction as a fibered coprod-
uct.)

1.3.L. IMPORTANT EXERCISE. If S is a multiplicative subset of A and M is an A-
module, describe a natural isomorphism (S~TA)®a M = S~'M (as S~' A-modules
and as A-modules).

1.3.M. EXERCISE (® COMMUTES WITH @). Show that tensor products commute
with arbitrary direct sums: if M and {Nj}i¢1 are all A-modules, describe an isomor-
phism

M ® (®ie1Ni) —— Dier (M @ Ny).

1.3.6. Essential Example: Fibered products. = Suppose we have morphisms
a: X — Zand B:Y — Z (in any category). Then the fibered product (or fi-
bred product) is an object X xz Y along with morphisms prx: X xz Y — X and
prv: X xzY = Y, where the two compositions x o prx, B opry: X xz Y — Z agree,
such that given any object W with maps to X and Y (whose compositions to Z
agree), these maps factor through some unique W — X xz Y:

(Warning: the definition of the fibered product depends on & and f3, even though
they are omitted from the notation X xz Y.)

By the usual universal property argument, if it exists, it is unique up to unique
isomorphism. (You should think this through until it is clear to you.) Thus the use
of the phrase “the fibered product” (rather than “a fibered product”) is reasonable,
and we should reasonably be allowed to give it the name X xz Y. We know what
maps to it are: they are precisely maps to X and maps to Y that agree as maps to Z.
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Depending on your religion, the diagram

XXZY4>Y
PTY

.

X—* >7

is called a fibered/pullback/Cartesian diagram/square (six possibilities — even
more are possible if you prefer “fibred” to “fibered”).

The right way to interpret the notion of fibered product is first to think about
what it means in the category of sets.

1.3.N. EXERCISE (FIBERED PRODUCTS OF SETS). Show that in Sets,
XxzY={(xy) eXXY : «(x) =By

More precisely, show that the right side, equipped with its evident maps to X and
Y, satisfies the universal property of the fibered product. (This will help you build
intuition for fibered products.)

1.3.0. EXERCISE. If X is a topological space, show that fibered products always
exist in the category of open sets of X, by describing what a fibered product is.
(Hint: it has a one-word description.)

1.3.P. EXERCISE. If Z is the final object in a category %, and X,Y € ¥, show that
“XxzY =XxY" “the” fibered product over Z is uniquely isomorphic to “the”
product. Assume all relevant (fibered) products exist. (This is an exercise about
unwinding the definition.)

1.3.Q. USEFUL EXERCISE: TOWERS OF CARTESIAN DIAGRAMS ARE CARTESIAN DI-
AGRAMS. If the two squares in the following commutative diagram are Cartesian
diagrams, show that the “outside rectangle” (involving U, V, Y, and Z) is also a
Cartesian diagram.

—_—

N<—X<—<L

.
L

1.3.R. EXERCISE. Given morphisms X; = Y, X; — Y, and Y — Z, show that there
is a natural morphism X; xy X2 — X; Xz X3, assuming that both fibered products
exist. (This is trivial once you figure out what it is saying. The point of this exercise
is to see why it is trivial.)

1.3.S. USEFUL EXERCISE: THE MAGIC DIAGRAM. Suppose we are given mor-
phisms X7,X; — Yand Y — Z. Show that the following diagram is a Cartesian
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square.

X1 Xy Xo —= X7 xz X3

l |

Y——YXxzY

Assume all relevant (fibered) products exist. This diagram is surprisingly useful
— so useful that we will call it the magic diagram.

1.3.7. Coproducts. Define coproduct in a category by reversing all the arrows in
the definition of product. Define fibered coproduct in a category by reversing all
the arrows in the definition of fibered product.

1.3.T. EXERCISE. Show that coproduct for Sets is disjoint union. This is why we
use the notation [ [ for disjoint union.

1.3.U. EXERCISE. Suppose A — B and A — C are two ring morphisms, so in
particular B and C are A-modules. Recall (Exercise 1.3.K) that B ®a C has a ring
structure. Show that there is a natural morphism B — B ®a C givenby b= b ® 1.
(This is not necessarily an inclusion; see Exercise 1.3.G.) Similarly, there is a natural
morphism C — B®a C. Show that this gives a fibered coproduct on rings, i.e., that

Boar C=——C

]

B A

satisfies the universal property of fibered coproduct.
1.3.8. Monomorphisms and epimorphisms.

1.3.9. Definition. A morphism 71: X — Y is a monomorphism if any two mor-
phisms p: Z — Xand py: Z — X such that 7t o py = o g, must satisfy g = p,.
In other words, there is at most one way of filling in the dotted arrow so that the

diagram
<1 \
Y

commutes — for any object Z, the natural map Mor(Z,X) — Mor(Z,Y) is an in-
jection. Intuitively, it is the categorical version of an injective map, and indeed
this notion generalizes the familiar notion of injective maps of sets. (The reason
we don’t use the word “injective” is that in some contexts, “injective” will have
an intuitive meaning which may not agree with “monomorphism”. One example:
in the category of divisible groups, the map Q — Q/Z is a monomorphism but
not injective. This is also the case with “epimorphism” (to be defined shortly) vs.
“surjective”.)

1.3.V. EXERCISE. Show that the composition of two monomorphisms is a monomor-
phism.
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1.3.W. EXERCISE. Prove that a morphism 7t: X — Y is a monomorphism if and
only if the fibered product X xy X exists, and the induced morphism X — X xy X
is an isomorphism. We may then take this as the definition of monomorphism.
(Monomorphisms aren’t central to future discussions, although they will come up
again. This exercise is just good practice.)

1.3.X. EASY EXERCISE. We use the notation of Exercise 1.3.R. Show thatif Y — Z
is a monomorphism, then the morphism X; xy X, — Xj xz X, you described in
Exercise 1.3.R is an isomorphism. (Hint: for any object V, give a natural bijection
between maps from V to the first and maps from V to the second. It is also possible
to use the magic diagram, Exercise 1.3.5.)

The notion of an epimorphism is “dual” to the definition of monomorphism,
where all the arrows are reversed. This concept will not be central for us, although
it turns up in the definition of an abelian category. Intuitively, it is the categori-
cal version of a surjective map. (But be careful when working with categories of
objects that are sets with additional structure, as epimorphisms need not be surjec-
tive. Example: in the category Rings, Z — Q is an epimorphism, but obviously not
surjective.)

1.3.10. Representable functors and Yoneda’s Lemma. Much of our discussion
about universal properties can be cleanly expressed in terms of representable func-
tors, under the rubric of “Yoneda’s Lemma”. Yoneda’s lemma is an easy fact stated
in a complicated way. Informally speaking, you can essentially recover an object
in a category by knowing the maps into it. For example, we have seen that the
data of maps to X x Y are naturally (canonically) the data of maps to X and to Y.
Indeed, we have now taken this as the definition of X x Y.

Recall Example 1.2.20. Suppose A is an object of category ¢. For any object
C € €, we have a set of morphisms Mor(C, A). If we have a morphism f: B — C,
we get a map of sets

(1.3.10.1) Mor(C, A) — Mor(B, A),

by composition: given a map from C to A, we get a map from B to A by precom-
posing with f: B — C. Hence this gives a contravariant functor ha: € — Sets.
Yoneda’s Lemma states that the functor ha determines A up to unique isomor-
phism. More precisely:

1.3.Y. IMPORTANT EXERCISE THAT YOU SHOULD DO ONCE IN YOUR LIFE (YONEDA'S
LEMMA).
(a) Suppose you have two objects A and A’ in a category ¢, and morphisms

(1.3.10.2) ic: Mor(C,A) — Mor(C,A’)

that commute with the maps (1.3.10.1). Show that the ic (as C ranges over the ob-
jects of €’) are induced from a unique morphism g: A — A’. More precisely, show
that there is a unique morphism g: A — A’ such thatforall C € %, icisu+— gou.
(b) If furthermore the ic are all bijections, show that the resulting g is an isomor-
phism. (Hint for both: This is much easier than it looks. This statement is so
general that there are really only a couple of things that you could possibly try.
For example, if you're hoping to find a morphism A — A’, where will you find
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it? Well, you are looking for an element Mor(A,A’). So just plugin C = A to
(1.3.10.2), and see where the identity goes.)

There is an analogous statement with the arrows reversed, where instead of
maps into A, you think of maps from A. The role of the contravariant functor ha
of Example 1.2.20 is played by the covariant functor h* of Example 1.2.14. Because
the proof is the same (with the arrows reversed), you needn’t think it through.

The phrase “Yoneda’s Lemma” properly refers to a more general statement.
Although it looks more complicated, it is no harder to prove.

1.3.Z. « EXERCISE.

(@) Suppose A and B are objects in a category &. Give a bijection between the nat-
ural transformations h* — h® of covariant functors ¢ — Sets (see Example 1.2.14
for the definition) and the morphisms B — A.

(b) State and prove the corresponding fact for contravariant functors ha (see Ex-
ample 1.2.20). Remark: A contravariant functor F from % to Sets is said to be
representable if there is a natural isomorphism

E,ZF%}IA.

Thus the representing object A is determined up to unique isomorphism by the
pair (F,&). There is a similar definition for covariant functors. (We will revisit
this in §6.6, and this problem will appear again as Exercise 6.6.C. The element
& '(ida) € F(A) is often called the “universal object”; do you see why?)

(c) Yoneda’s Lemma. Suppose F is a covariant functor ¥ — Sets, and A € €.
Give a bijection between the natural transformations h* — F and F(A). (The
corresponding fact for contravariant functors is essentially Exercise 9.1.C.)

In fancy terms, Yoneda’s lemma states the following. Given a category ¢, we
can produce a new category, called the functor category of ¢, where the objects are
contravariant functors ¥ — Sets, and the morphisms are natural transformations
of such functors. We have a functor (which we can usefully call h) from % to its
functor category, which sends A to ha. Yoneda’s Lemma states that this is a fully
faithful functor, called the Yoneda embedding. (Fully faithful functors were defined
in §1.2.15.)

1.3.11. Joke. The Yoda embedding, contravariant it is.

1.4 Limits and colimits

Limits and colimits are two important definitions determined by universal
properties. They generalize a number of familiar constructions. I will give the def-
inition first, and then show you why it is familiar. For example, fractions will be
motivating examples of colimits (Exercise 1.4.C(a)), and the p-adic integers (Exam-
ple 1.4.3) will be motivating examples of limits.

1.4.1. Limits. We say that a category is a small category if the objects and the
morphisms are sets. (This is a technical condition intended only for experts.) Sup-
pose .# is any small category, and ¢ is any category. Then a functor F: % — ¢
(i.e., with an object A; € ¢ for each element i € .#, and appropriate commuting
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morphisms dictated by .#) is said to be a diagram indexed by .#. We call .# an
index category. Our index categories will usually be partially ordered sets (Ex-
ample 1.2.8), in which in particular there is at most one morphism between any
two objects. (But other examples are sometimes useful.) For example, if (J is the
category

||

and 7 is a category, then a functor 0 — <7 is precisely the data of a commuting
square in .
Then the limit of the diagram is an object lim A; of 4" along with morphisms

7
fj: @Ai — A;j for each j € .#, such that if m: j — k is a morphism in ., then

4
(1.4.1.1) %iilAi
i f
"IN
F(m)
Aj Ax

commutes, and this object and maps to each A; are universal (final) with respect to
this property. More precisely, given any other object W along with maps g;: W —
Ai commuting with the F(m) (if m: j — kis a morphismin .#, then g = F(m)og;),
then there is a unique map
g: W — @ Ai
7

so that g; = f; o g for all i. (In some cases, the limit is sometimes called the inverse
limit or projective limit. We won't use this language.) By the usual universal
property argument, if the limit exists, it is unique up to unique isomorphism.

1.4.2. Examples: products. For example, if .# is the partially ordered set

we obtain the fibered product.
If 7 is

we obtain the product.

If .7 is a set (i.e., the only morphisms are the identity maps), then the limit is
called the product of the A;, and is denoted | [; Ai. The special case where .# has
two elements is the example of the previous paragraph.

1.4.A. EXERCISE (REALITY CHECK). Suppose that the partially ordered set .# has
an initial object e. Show that the limit of any diagram indexed by .# exists.

1.4.3. Example: the p-adic integers. For a prime number p, the p-adic integers
(or more informally, p-adics), Zp, are often described informally (and somewhat
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unnaturally) as being of the form Z, = ap + aip + (12p2 + -+ (where 0 < a; < p).
They are an example of a limit in the category of rings:

Ly

D

> 7/p ——=ZL/p? —=ZL/p.

(Warning: Z, is sometimes is used to denote the integers modulo p, but Z/(p) or
Z/pZ is better to use for this, to avoid confusion. Worse: by §1.3.3, Z,, also denotes
those rationals whose denominators are a power of p. Hopefully the meaning
of Z, will be clear from the context.) The p-adic integers are an example of a
completion, the topic of Chapter 29.

Limits do not always exist for any index category .#. However, you can often
easily check that limits exist if the objects of your category can be interpreted as
sets with additional structure, and arbitrary products exist (respecting the set-like
structure).

1.4.B. IMPORTANT EXERCISE. Show that in the category Sets,

{(ai)iey € HAi :F(m)(a;) = ax forall m € Mor #(j, k) € Mor(ﬂ)} ,

1

along with the obvious projection maps to each Aj, is the limit %%n Aj.

This clearly also works in the category Moda of A-modules (in particular Vecy
and Ab), as well as Rings.

From this point of view, 2 4+ 3p + 2p% + -+ € Z, can be understood as the
sequence (2,2 +3p,2 +3p + 2p2,...).

1.4.4. Colimits. = More immediately relevant for us will be the dual (arrow-
reversed version) of the notion of limit (or inverse limit). We just flip the arrows
f; in (1.4.1.1), and get the notion of a colimit, which is denoted liL)nyAi. (You
should draw the corresponding diagram.) Again, if it exists, it is unique up to
unique isomorphism. (In some cases, the colimit is sometimes called the direct
limit, inductive limit, or injective limit. We won't use this language. I prefer us-
ing limit/colimit in analogy with kernel/cokernel and product/coproduct. This
is more than analogy, as kernels and products may be interpreted as limits, and
similarly with cokernels and coproducts. Also, I remember that kernels “map to”,
and cokernels are “mapped to”, which reminds me that a limit maps fo all the ob-
jects in the big commutative diagram indexed by .#; and a colimit has a map from
all the objects.)

1.4.5. Joke. A comathematician is a device for turning cotheorems into ffee.

Even though we have just flipped the arrows, colimits behave quite differently
from limits.
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1.4.6. Example. The set 5~>°Z of rational numbers whose denominators are powers
of 5 is a colimit lim 5~*Z. More precisely, 5~ *°Z is the colimit of the diagram

7 ——5"72 —>527 —>...

The colimit over an index set I is called the coproduct, denoted [ [; A;, and is
the dual (arrow-reversed) notion to the product.

1.4.C. EXERCISE.

(a) Interpret the statement “Q = h_rr)l %Z”.

(b) Interpret the union of some subsets of a given set as a colimit. (Dually, the
intersection can be interpreted as a limit.) The objects of the category in question
are the subsets of the given set.

Colimits do not always exist, but there are two useful large classes of examples
for which they do.

1.4.7. Definition. A nonempty partially ordered set (S, >) is filtered (or is said to
be a filtered set) if for each x,y € S, there is a z such that x > zand y > z. More
generally, a nonempty category .# is filtered if:

(i) foreachx,y € ., thereisaz € .# and arrows x — zand y — z, and
(ii) for every two arrows u: x — y and v: x — y, there is an arrow w: y — z
such thatwou =wowv.

(Other terminologies are also commonly used, such as “directed partially ordered
set” and “filtered index category”, respectively.)

1.4.D. EXERCISE. Suppose .¥ is filtered. (We will almost exclusively use the case
where .7 is a filtered set.) Recall the symbol [ ] for disjoint union of sets. Show
that any diagram in Sets indexed by .# has the following, with the obvious maps
to it, as a colimit:

(au,i) € H A (ai,i) ~ (aj,j) if and only if there are f: A; — Ay and
v b ' g: Aj — Ay in the diagram for which f(a;) = g(aj) in Ay

(You will see that the “filtered” hypothesis is there is to ensure that ~ is an equiva-
lence relation.)

For example, in Example 1.4.6, each element of the colimit is an element of
something upstairs, but you can’t say in advance what it is an element of. For
instance, 17/125 is an element of the 5737 (or 5-%Z, or later ones), but not 5 2Z.

This idea applies to many categories whose objects can be interpreted as sets
with additional structure (such as abelian groups, A-modules, groups, etc.). For
example, the colimit lim M; in the category of A-modules Moda can be described
as follows. The set underlying lim M; is defined as in Exercise 1.4.D. To add the
elements m; € M; and m; € M;, choose an { € . with arrows u: i — ¢ and
v:j — {, and then define the sum of m; and m; to be F(u)(m;) + F(v)(m;) € M,.
The element m; € M, is 0 if and only if there is some arrow u: i — k for which
F(u)(my) =0, i.e,, if it becomes 0 “later in the diagram”. Last, multiplication by an
element of A is defined in the obvious way. (You can now reinterpret Example 1.4.6
as a colimit of groups, not just of sets.)
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1.4.E. EXERCISE. Verify that the A-module described above is indeed the colimit.
(Make sure you verify that addition is well-defined, i.e., is independent of the
choice of representatives m; and m;, the choice of {, and the choice of arrows u
and v. Similarly, make sure that scalar multiplication is well-defined.)

1.4.F. USEFUL EXERCISE (LOCALIZATION AS A COLIMIT). Generalize Exercise 1.4.C(a)
to interpret localization of an integral domain as a colimit over a filtered set: sup-
pose S is a multiplicative set of A, and interpret S™'A = lim %A where the limit

is over s € S, and in the category of A-modules. (Aside?an you make some
version of this work even if A isn’t an integral domain, e.g., S'A = lim A? This
will work in the category of A-algebras.)

A variant of this construction works without the filtered condition, if you have
another means of “connecting elements in different objects of your diagram”. For
example:

1.4.G. EXERCISE: COLIMITS OF A-MODULES WITHOUT THE FILTERED CONDITION.
Suppose you are given a diagram of A-modules indexed by .#: F: . — Moda,
where we let M; := F(i). Show that the colimit is ®;c_»M; modulo the relations
my—F(n)(my) foreveryn: i — jin .# (i.e., for every arrow in the diagram). (Some-
what more precisely: “modulo” means “quotiented by the submodule generated

byl/.)

1.4.8. Summary. One useful thing to informally keep in mind is the following. In
a category where the objects are “set-like”, an element of a limit can be thought of
as a family of elements of each object in the diagram, that are “compatible” (Ex-
ercise 1.4.B). And an element of a colimit can be thought of (“has a representative
that is”) an element of a single object in the diagram (Exercise 1.4.D). Even though
the definitions of limit and colimit are the same, just with arrows reversed, these
interpretations are quite different.

1.4.9. Small remark. In fact, colimits exist in the category of sets for all reasonable
(“small”) index categories (see for example [E, Thm. A6.1]), but that won’t matter
to us.

1.5 Adjoints

We next come to a very useful notion closely related to universal properties.
Just as a universal property “essentially” (up to unique isomorphism) determines
an object in a category (assuming such an object exists), “adjoints” essentially de-
termine a functor (again, assuming it exists). Two covariant functors F: &/ — %
and G: # — «/ are adjoint if there is a natural bijection for all A € &/ and B € #

(1.5.0.1) Tap: Morg(F(A),B) — Mory (A, G(B)).

We say that (F, G) form an adjoint pair, and that F is left-adjoint to G (and G is
right-adjoint to F). We say Fis a left adjoint (and G is a right adjoint). By “natural”
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we mean the following. For all f: A — A’ in </, we require

(1.5.0.2) Mor(F(A'),B) — > Morz(F(A), B)

iTA/B \LTAB
*

Mor,,(A’, G(B)) —— Mor. (A, G(B))

to commute, and for all g: B — B’ in % we want a similar commutative diagram to
commute. (Here f* is the map induced by f: A — A’, and Ff* is the map induced
by Ff: F(A) — F(A').)

1.5.A. EXERCISE. Write down what this diagram should be.

1.5.B. EXERCISE. Show that the map tag (1.5.0.1) has the following properties.
For each A there is a map na: A — GF(A) so that for any g: F(A) — B, the corre-
sponding Tag(g): A — G(B) is given by the composition

A2 GR(A) 595

G(B).
Similarly, there is a map eg: FG(B) — B for each B so that for any f: A — G(B),
the corresponding map T:\}g (f): F(A) — B is given by the composition

Ff €B

F(A) ——FG(B) —— B.
Here is a key example of an adjoint pair.

1.5.C. EXERCISE. Suppose M, N, and P are A-modules (where A is a ring). De-
scribe a bijection Homa (M ®a N, P) < Homa (M, Homa (N, P)). (Hint: try to use
the universal property of ®.)

1.5.D. EXERCISE. Show that (-) ®a N and Homa (N, -) are adjoint functors.

1.5.E. EXERCISE. Suppose B — A is a morphism of rings. If M is an A-module,
you can create a B-module Mg by considering it as a B-module. This gives a
functor -g: Moda — Modg. Show that this functor is right-adjoint to - ®p A. In
other words, describe a bijection

Homa (N ®p A, M) = Homg (N, M5)

functorial in both arguments. (This adjoint pair is very important, and is the key
player in Chapter 16.)

1.5.1.  Fancier remarks we won’t use.  You can check that the left adjoint deter-
mines the right adjoint up to natural isomorphism, and vice versa. The maps
na and ep of Exercise 1.5.B are called the unit and counit of the adjunction. This
leads to a different characterization of adjunction. Suppose functors F: &/ — %
and G: # — & are given, along with natural transformations n: id,; — GF and
€: FG — idg with the property that Ge o NG = idg (for each B € %, the compo-
sition of ng(g): G(B) — GFG(B) and G(eg): GFG(B) — G(B) is the identity) and
eFoFn = idr. Then you can check that T is left-adjoint to G. These facts aren’t hard
to check, so if you want to use them, you should verify everything for yourself.
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1.5.2. Examples from other fields. ~ For those familiar with representation theory:
Frobenius reciprocity may be understood in terms of adjoints. Suppose V is a
finite-dimensional representation of a finite group G, and W is a representation of
asubgroup H < G. Then induction and restriction are an adjoint pair (Indg}, Res)
between the category of G-modules and the category of H-modules.

Topologists’ favorite adjoint pair may be the suspension functor and the loop
space functor.

1.5.3. Example: groupification of abelian semigroups. Here is another motivat-
ing example: getting an abelian group from an abelian semigroup. (An abelian
semigroup is just like an abelian group, except we don’t require an identity or an
inverse. Morphisms of abelian semigroups are maps of sets preserving the binary
operation. One example is the non-negative integers 72° =1{0,1,2,...} under ad-
dition. Another is the positive integers 1,2,... under multiplication. You may
enjoy groupifying both.) From an abelian semigroup, you can create an abelian
group. In our examples, from the nonnegative (Z=°, +), we create the integers Z,
and from the positive integers under multiplication (Z>°, x), we create the posi-
tive rationals Q~°. Here is a formalization of that notion. A groupification of a
semigroup S is a map of abelian semigroups 7: S — G such that G is an abelian
group, and any map of abelian semigroups from S to an abelian group G’ factors

uniquely through G:
\ 3

v
G !/
(Perhaps “abelian groupification” would be more precise than “groupification”.)

1.5.F. EXERCISE (AN ABELIAN GROUP IS GROUPIFIED BY ITSELF). Show that if an
abelian semigroup is already a group then the identity morphism is the groupifi-
cation. (More correct: the identity morphism is a groupification.) Note that you
don’t need to construct groupification (or even know that it exists in general) to
solve this exercise.

1.5.G. EXERCISE.  Construct the “groupification functor” H from the category
of nonempty abelian semigroups to the category of abelian groups. (One possible
construction: given an abelian semigroup S, the elements of its groupification H(S)
are ordered pairs (a,b) € S x S, which you may think of as a — b, with the equiva-
lence that (a,b) ~ (c,d) if a+d+e = b+c+e for some e € S. Describe addition in
this group, and show that it satisfies the properties of an abelian group. Describe
the abelian semigroup map S — H(S).) Let F be the forgetful functor from the
category of abelian groups Ab to the category of abelian semigroups. Show that H
is left-adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category.
We want to “project” from the category to the subcategory. We have

Morcategory (S) H) = Morsubcategory ( G ) H)

automatically; thus we are describing the left adjoint to the forgetful functor. How
the argument worked: we constructed something which was in the smaller cate-
gory, which automatically satisfies the universal property.)
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1.5.H. EXERCISE (CF. EXERCISE 1.5.E). The purpose of this exercise is to give
you more practice with “adjoints of forgetful functors”, the means by which we
get groups from semigroups, and sheaves from presheaves. Suppose A is a ring,
and S is a multiplicative subset. Then S~'A-modules are a fully faithful subcate-
gory (§1.2.15) of the category of A-modules (via the obvious inclusion Mods—1 5 —
Moda). Then Moda — Mods—1, can be interpreted as an adjoint to the forgetful
functor Mods—1 5, — Mod . State and prove the correct statements.

(Here is the larger story. Every S~!A-module is an A-module, and this is an
injective map, so we have a covariant forgetful functor F: Mods—1 5, — Moda. In
fact this is a fully faithful functor: it is injective on objects, and the morphisms
between any two S~! A-modules as A-modules are just the same when they are con-
sidered as S~'A-modules. Then there is a functor G: Moda — Modg 1 5, which
might reasonably be called “localization with respect to S”, which is left-adjoint
to the forgetful functor. Translation: If M is an A-module, and N is an S~'A-
module, then Mor(GM, N) (morphisms as S~! A-modules, which are the same as
morphisms as A-modules) are in natural bijection with Mor(M, FN) (morphisms
as A-modules).)

Here is a table of most of the adjoints that will come up for us.

situation category category | left adjoint | right adjoint
of B Fiod - A8 G:AB— o

A-modules (Ex. 1.5.D) | Moda Mod A (\)®a N Homa (N, -)

ring maps ()@ A M — Mg

B — A (Ex. 1.5.E) Modg Mod (extension (restriction

of scalars) of scalars)

(pre)sheaves on a presheaves | sheaves

topological space on X on X sheafification forgetful

X (Ex.2.4.L)

(semi)groups (§1.5.3) | semigroups | groups | groupification | forgetful

sheaves, sheaves sheaves ! T,

m: X — Y (Ex. 2.7.B) onY on X

sheaves of abelian

groups or 0-modules, | sheaves sheaves 3 !

open embeddings on U onY

m: U— Y (Ex.2.7.G)

quasicoherent sheaves, | QCohy QCohy T T,

m: X — Y (Prop. 16.3.6)

ring maps M — Mg N —

B — A (Ex. 30.3.A) Mod Modg (restriction | Hompg (A, N)

of scalars)

quasicoherent sheaves, | QCohy QCohy

affinem: X =Y T, T,

(Ex. 30.3.B(b))

Other examples will also come up, such as the adjoint pair (~,I,) between
graded modules over a graded ring, and quasicoherent sheaves on the correspond-
ing projective scheme (§15.4).
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1.5.4. Useful comment for experts. One last comment only for people who have seen
adjoints before: If (F, G) is an adjoint pair of functors, then F commutes with col-
imits, and G commutes with limits. Also, limits commute with limits and colimits
commute with colimits. We will prove these facts (and a little more) in §1.6.12.

1.6 An introduction to abelian categories

Ton papier sur I’Algebre homologique a été lu soigneusement, et a converti tout le
monde (méme Dieudonné, qui semble complétement fonctorisé!) a ton point de vue.

Your paper on homological algebra was read carefully and converted everyone (even
Dieudonné, who seems to be completely functorised!) to your point of view.

— |.-P. Serre, letter to A. Grothendieck, Jul 13, 1955 [Gr1S, p. 17-18]

Since learning linear algebra, you have been familiar with the notions and
behaviors of kernels, cokernels, etc. Later in your life you saw them in the category
of abelian groups, and later still in the category of A-modules.

We will soon define some new categories (certain sheaves) that will have familiar-
looking behavior, reminiscent of that of modules over a ring. The notions of ker-
nels, cokernels, images, and more will make sense, and they will behave “the way
we expect” from our experience with modules. This can be made precise through
the notion of an abelian category. Abelian categories are the right general setting
in which one can do “homological algebra”, in which notions of kernel, cokernel,
and so on are used, and one can work with complexes and exact sequences.

We will see enough to motivate the definitions that we will see in general:
monomorphism (and subobject), epimorphism, kernel, cokernel, and image. But
in this book we will avoid having to show that they behave “the way we expect”
in a general abelian category because the examples we will see are directly inter-
pretable in terms of modules over rings. In particular, it is not worth memorizing
the definition of abelian category.

Two central examples of an abelian category are the category Ab of abelian
groups, and the category Moda of A-modules. The first is a special case of the
second (just take A = Z). As we give the definitions, you should verify that Moda
is an abelian category.

We first define the notion of additive category. We will use it only as a stepping
stone to the notion of an abelian category. Two examples you can keep in mind
while reading the definition: the category of free A-modules (where A is a ring),
and real (or complex) Banach spaces.

1.6.1. Definition. A category ¥ is said to be additive if it satisfies the following
properties.

Adl. Foreach A,B € €, Mor(A, B) is an abelian group, such that composition
of morphisms distributes over addition. (You should think about what
this means — it translates to two distinct statements.)

Ad2. € has a zero object, denoted 0. (This is an object that is simultaneously
an initial object and a final object, Definition 1.3.2.)

Ad3. It has products of two objects (a product A x B for any pair of objects),
and hence by induction, products of any finite number of objects.
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In an additive category, the morphisms are often called homomorphisms, and
Mor is denoted by Hom. In fact, this notation Hom is a good indication that you're
working in an additive category. A functor between additive categories preserving
the additive structure of Hom, is called an additive functor.

1.6.2. Remarks. It is a consequence of the definition of additive category that finite
direct products are also finite direct sums (coproducts) — the details don’t matter
to us. The symbol @ is used for this notion. Also, it is quick to show that additive
functors send zero objects to zero objects (show that Z is a 0-object if and only if
idz = 0z; additive functors preserve both id and 0), and preserve products.

One motivation for the name 0-object is that the O-morphism in the abelian
group Hom(A, B) is the composition A — 0 — B. (We also remark that the notion
of 0-morphism thus makes sense in any category with a 0-object.)

The category of A-modules Modx is clearly an additive category, but it has
even more structure, which we now formalize as an example of an abelian cate-

gory.

1.6.3. Definition. Let % be a category with a 0-object (and thus 0O-morphisms). A
kernel of a morphism f: B — Cisamap i: A — B such that foi = 0, and that is
universal with respect to this property. Diagramatically:

Z
3!\\\
v i f

A—s>B—=C
0

(Note that the kernel is not just an object; it is a morphism of an object to B.) Hence
it is unique up to unique isomorphism by universal property nonsense. The kernel
is written ker f — B. A cokernel (denoted coker f) is defined dually by reversing
the arrows — do this yourself. The kernel of f: B — C is the limit (§1.4) of the
diagram

(1.6.3.1) 0

fl

B——=C

and similarly the cokernel is a colimit (see (2.6.0.1)).

Ifi: A — B is a monomorphism, then we say that A is a subobject of B, where
the map 1iis implicit. There is also the notion of quotient object, defined dually to
subobject.

An abelian category is an additive category satisfying three additional prop-
erties.

(1) Every map has a kernel and cokernel.
(2) Every monomorphism is the kernel of its cokernel.
(3) Every epimorphism is the cokernel of its kernel.

It is a nonobvious (and imprecisely stated) fact that every property you want
to be true about kernels, cokernels, etc. follows from these three. (Warning: in
part of the literature, additional hypotheses are imposed as part of the definition.)
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The image of a morphism f: A — B is defined as im(f) = ker(coker f) when-
ever it exists (e.g., in every abelian category). The morphism f: A — B factors
uniquely through imf — B whenever imf exists, and A — imf is an epimor-
phism and a cokernel of kerf — A in every abelian category. The reader may
want to verify this as a (hard!) exercise.

The cokernel of a monomorphism is called the quotient. The quotient of a
monomorphism A — B is often denoted B/A (with the map from B implicit).

We will leave the foundations of abelian categories untouched. The key thing
to remember is that if you understand kernels, cokernels, images and so on in
the category of modules over a given ring, you can manipulate objects in any
abelian category. This is made precise by Freyd-Mitchell Embedding Theorem
(Remark 1.6.4).

However, the abelian categories we will come across will obviously be related
to modules, and our intuition will clearly carry over, so we needn’t invoke a the-
orem whose proof we haven’t read. For example, we will show that sheaves of
abelian groups on a topological space X form an abelian category (§2.6), and the
interpretation in terms of “compatible germs” will connect notions of kernels, cok-
ernels etc. of sheaves of abelian groups to the corresponding notions of abelian
groups.

1.6.4. Small remark on chasing diagrams. It is useful to prove facts (and solve ex-
ercises) about abelian categories by chasing elements. This can be justified by
the Freyd-Mitchell Embedding Theorem: If % is an abelian category such that
Hom(X,Y)is asetforall X,Y € ¢, then there is a ring A and an exact, fully faithful
functor from % into Mod A, which embeds % as a full subcategory. (Unfortunately,
the ring A need not be commutative.) A proof is sketched in [Weib, §1.6], and
references to a complete proof are given there. A proof is also given in [KS1, §9.7].
The upshot is that to prove something about a diagram in some abelian category,
we may assume that it is a diagram of modules over some ring, and we may then
“diagram-chase” elements. Moreover, any fact about kernels, cokernels, and so on
that holds in Mod o holds in any abelian category.

If invoking a theorem whose proof you haven’t read bothers you, a short al-
ternative is Mac Lane’s “elementary rules for chasing diagrams”, [Mac, Thm. 3,
p- 200]; [Mac, Lem. 4, p. 201] gives a proof of the Five Lemma (Exercise 1.7.6) as an
example.

But in any case, do what you need to do to put your mind at ease, so you can
move forward. Do as little as your conscience will allow.

1.6.5. Complexes, exactness, and homology.
(In this entire discussion, we assume we are working in an abelian category.)
We say a sequence

f.p—%.¢

(1.6.5.1) - A

is a complex at B if g o f = 0, and is exact at B if ker g = im f. (More specifically,
g has a kernel that is an image of f. Exactness at B implies being a complex at B
— do you see why?) A sequence is a complex (resp. exact) if it is a complex (resp.
exact) at each (internal) term. A short exact sequence is an exact sequence with
five terms, the first and last of which are zeros — in other words, an exact sequence
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of the form
0 A B C 0.

For example, 0 —— A —— 0 is exactif and only if A = 0;

0— >A— 5B

is exact if and only if f is a monomorphism (with a similar statement for A SELING : S );

f

0 A B 0
is exact if and only if f is an isomorphism; and

f

0 A B—2.¢C

f

is exactif and only if f is a kernel of g (with a similar statement for A B—2-cC 0).
To show some of these facts it may be helpful to prove that (1.6.5.1) is exact at B if
and only if the cokernel of f is a cokernel of the kernel of g.

If you would like practice in playing with these notions before thinking about
homology, you can prove the Snake Lemma (stated in Example 1.7.5, with a stronger
version in Exercise 1.7.B), or the Five Lemma (stated in Example 1.7.6, with a
stronger version in Exercise 1.7.C). (I would do this in the category of A-modules,
but see [KS1, Lem. 12.1.1, Lem. 8.3.13] for proofs in general.)

If (1.6.5.1) is a complex at B, then its homology at B (often denoted by H) is
ker g /imf. (More precisely, there is some monomorphism im f — ker g, and that
H is the cokernel of this monomorphism.) Therefore, (1.6.5.1) is exact at B if and
only if its homology at B is 0. We say that elements of ker g (assuming the ob-
jects of the category are sets with some additional structure) are the cycles, and
elements of im f are the boundaries (so homology is “cycles mod boundaries”). If
the complex is indexed in decreasing order, the indices are often written as sub-
scripts, and Hj is the homology at Ai+1 — A; — Ai_1. If the complex is indexed
in increasing order, the indices are often written as superscripts, and the homology
H'at At=T — At — A1 is often called cohomology.

An exact sequence

fi fi{1

Ai+1

. i—1 .

(1.6.5.2) A®: . AT LAl
can be “factored” into short exact sequences

0 ——=kerft —= Al — > kerfi*! — =0

which is helpful in proving facts about long exact sequences by reducing them to
facts about short exact sequences.

More generally, if (1.6.5.2) is assumed only to be a complex, then it can be
“factored” into short exact sequences.

(1.6.5.3) 0 ker ft Al im ft 0

0 ——=imf ! — = kerft —= H}(A®) ——=0
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1.6.A. EXERCISE. Describe exact sequences

(1.6.5.4) 0 ——imft A1 coker ft ——= 0

0 — H*(A*) — coker fi~! im ft 0

(These are somehow dual to (1.6.5.3). In fact in some mirror universe this might
have been given as the standard definition of homology.) Assume the category is
that of modules over a fixed ring for convenience, but be aware that the result is
true for any abelian category.

1.6.B. EXERCISE AND IMPORTANT DEFINITION. Suppose

O dO A_I d1 o dn71 An an O

is a complex of finite-dimensional k-vector spaces (often called A*® for short). De-
fine h'(A®) := dimH'(A®). Show that } (—1)'dimA' = 5 (—1)'hi(A®). In par-
ticular, if A® is exact, then Y (—1)'dim A' = 0. (If you haven’t dealt much with
cohomology, this will give you some practice.)

1.6.C. IMPORTANT EXERCISE. Suppose € is an abelian category. Define the cate-
gory Come of complexes as follows. The objects are infinite complexes

fiel . £t . fi
1 At A1+1

A*: s AL

in ¢, and the morphisms A®* — B*® are commuting diagrams

fi+l

) i—1 ) i )
(1.6.5.5) AT At oAt

]

i i+1
Bi—1 9 Bi 9 Bit? 9

Show that Comy is an abelian category. Feel free to deal with the special case
of modules over a fixed ring. (Remark for experts: Essentially the same argument
shows that the ¥ is an abelian category for any small category .# and any abelian
category ¢. This immediately implies that the category of presheaves on a topo-
logical space X with values in an abelian category %’ is automatically an abelian
category, cf. §2.3.5.)

1.6.D. IMPORTANT EXERCISE. Show that (1.6.5.5) induces a map of homology
HY(A®) — HY(B®). Show furthermore that H! is a covariant functor Comy — %.
(Again, feel free to deal with the special case Mod )

We will later define when two maps of complexes are homotopic (§23.1), and
show that homotopic maps induce the same map on cohomology (Exercise 23.1.A),
but we won’t need that any time soon.
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1.6.6. Theorem (Long exact sequence). — A short exact sequence of complexes

0° : cee 0 0 0
A. A]_—] fif] A‘i, fi A‘i_+] fi+]
B. Bli] 9171 Bl 91 Bl+] g'l+1
Ce ci-1 hi! ci M it hit!
(0 : . 0 0 0

induces a long exact sequence in cohomology

Hi—l (C.)

HY(A®) — H{(B*) — H{(C*) ——

Hi—H (Ao)

(This requires a definition of the connecting homomorphism H'"'(C*) —
H(A®), which is “natural” in an appropriate sense.) In the category of modules
over a ring, Theorem 1.6.6 will come out of our discussion of spectral sequences,
see Exercise 1.7.F, but this is a somewhat perverse way of proving it. For a proof
in general, see [KS1, Theorem 12.3.3]. You may want to prove it yourself, by first
proving a weaker version of the Snake Lemma (Example 1.7.5), where in the hy-
potheses (1.7.5.1), the 0’s in the bottom left and top right are removed, and in the
conclusion (1.7.5.2), the first and last 0’s are removed.

1.6.7. Exactness of functors. If F: o/ — 28 is a covariant additive functor from one
abelian category to another, we say that F is right-exact if the exactness of

A’ A A" 0,
in &/ implies that
F(A’) F(A) F(A") 0

is also exact. Dually, we say that F is left-exact if the exactness of

0 A’ A A" implies

0 F(A') F(A) F(A") is exact.
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A contravariant functor is left-exact if the exactness of

A’ A A’ 0 implies

0 F(A") F(A) —— F(A’) is exact.

The reader should be able to deduce what it means for a contravariant functor to
be right-exact.

A covariant or contravariant functor is exact if it is both left-exact and right-
exact.

1.6.E. EXERCISE. Suppose Fis an exact functor. Show that applying F to an exact se-
quence preserves exactness. For example, if Fis covariant,and A’ — A — A" is ex-
act, then FA’ — FA — FA” is exact. (This will be generalized in Exercise 1.6.H(c).)

1.6.FE. EXERCISE. Suppose A is aring, S C A is a multiplicative subset, and M is
an A-module.

(a) Show that localization of A-modules Moda — Mods 1 5 is an exact covariant
functor.

(b) Show that (-) ®a M is a right-exact covariant functor Mods — Moda. (Thisis a
repeat of Exercise 1.3.H.)

(c) Show that Hom(M, -) is a left-exact covariant functor Moda — Moda. If € is
any abelian category, and C € ¢, show that Hom(C, ) is a left-exact covariant
functor ¥ — Ab.

(d) Show that Hom(-, M) is a left-exact contravariant functor Modx — Moda. If €
is any abelian category, and C € ¢, show that Hom(+, C) is a left-exact contravari-
ant functor ¥ — Ab.

1.6.G. EXERCISE. Suppose M is a finitely presented A-module: M has a finite
number of generators, and with these generators it has a finite number of relations;
or usefully equivalently, fits in an exact sequence

(1.6.7.1) APd 5 AP S M —0
Use (1.6.7.1) and the left-exactness of Hom to describe an isomorphism
S~ THoma (M, N) = Homg 14(S7'M, STTN).

(You might be able to interpret this in light of a variant of Exercise 1.6.H below, for
left-exact contravariant functors rather than right-exact covariant functors.)

1.6.8. Example: Hom doesn’t always commute with localization. In the language of
Exercise 1.6.G, take A=N=Z, M =Q,and S = Z \ {0}.

1.6.9. x Two usefu