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Preface
These are our course notes for Honors Algebra (I) (MATH 25700) taught at the University
of Chicago by Prof. George Boxer in the Fall quarter of 2018.
Please do let us know at gomezp@uchicago.edu or rmehtany@uchicago.edu if you find any!
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1 Mon. 01/10/18 – basic number theory

1.1 Remainders
Theorem 1.1. ∀a, b ∈ Z where b > 0, ∃! q, r ∈ Z such that 0 ≤ r < b and

a = q · b+ r

Existence Proof. Consider the largest q ∈ Z such that

a− q · b ≥ 0

We know such a largest q exists by the discreteness of the integers. Moreover, this implies
that

a− (q + 1) · b < 0 → a− q · b < b

If we define r = a−q · b, we have shown the existence of q, r with the appropriate conditions.

Uniqueness Proof. Suppose there existed two distinct q, q′ ∈ Z such that there were distinct
r, r′ ∈ Z where 0 ≤ r, r′ < b and

a = q · b+ r

a = q′ · b+ r′

Then,
r − r′ = b · (q − q′)

This implies that r − r′ is a multiple of b, which is a contradiction as r, r′ range from 0 to
b− 1.

Definition 1.2. If a, b ∈ Z, we call b a multiple of a if ∃m ∈ Z such that

b = a ·m

This can also be denoted as a|b.

Definition 1.3. d is a common divisor of a and b if d|a and d|b

Definition 1.4. The greatest common divisor of a and b, notated as gcd(a, b), is the
largest common divisor of a, b.

Lemma 1.5. If a = q · b+ r where q, r ∈ Z, then

gcd(a, b) = gcd(b, r)

Proof. If d|a and d|b, then
d|a− q · b→ d|r

If d|b and d|r, then
d|q · b+ r → d|a

Since this is true for all divisors d, it must be true for the greatest common divisor.
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This lemma motivates the Euclidean Algorithm, which uses the lemma to find the gcd
relatively quickly.

We do so by rewriting a = q · b + r as r = a − q · b, and then creating a sequence of
remainders rn as follows:

r0 = a− q0 · b
rn = rn−2 − qn−1 · rn−1

Since we know that ∀n rn < rn−1, and by the well ordering of the naturals, this algorithm
always converges to 0: the last non-zero rn is the gcd.

Theorem 1.6. – Bézout’s Identity
∀a, b ∈ Z, ∃x, y ∈ Z such that

x · a+ y · b = gcd(a, b)

The proof of this theorem requires inverting the Euclidean algorithm.

1.2 Modular Arithmetic
Definition 1.7. ∀a, b, n ∈ Z, n > 0, a and b are considered to be congruent modulo n if
n|a− b. This can be written as

a ≡ b mod n

Theorem 1.8. The congruence relation is an equivalence relation.

Proof.

1. Reflexive:
n|a− a→ n|0

which is true regardless of n.
2. Symmetric: If n|a− b, then

∃m ∈ Z n ·m = a− b

Hence,
n · (−m) = b− a→ n|b− a

3. Transitive: If n|a− b and n|b− c, n is a divisor of their sum, namely a− c.

Because the congruence relation is an equivalence relation, we know that it separates
Z into equivalence classes. So, we write ā to denote the equivalence class of Z in which a
belongs. We denote Z/nZ as the set of all equivalence classes of Z modulo n.

It’s trivial to show (a good exercise) that |Z/nZ| = n, and that

Z/nZ = {ā | 0 ≤ a < n}

We seek to definitione two binary operations (i.e., Z/nZ × Z/nZ → Z/nZ) on our new
equivalence classes. We choose the following definitions
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Definition 1.9. 5 We define addition on our equivalence classes, denoted by the operator
+, as

a+ b = a+ b

Definition 1.10. We define multiplication on our equivalence classes, denoted by the
operator ·, as

a · b = a · b

We need to be careful about these definitions, since we seek to ensure they are well definitioned,
which means that the result of addition or multiplication doesn’t change based on the choice
of member of the given equivalence class I choose.

Theorem 1.11. The definitions presented in definitions 5 and 6 are well defined.

Proof. Let us choose two arbitrary members of Z/nZ, i.e., r1, r2 such that 0 ≤ r1, r2 < n,
and two integers a, b such that a ∈ r1 and b ∈ r2. So, ∃p, q ∈ Z such that

a = p · n+ r1

b = q · n+ r2

So,
a+ b = (p+ q) · n+ (r1 + r2) → a+ b ∈ r1 + r2

Since r1, r2 are not dependent on our choice of a, b, we have proved addition is well defined.
Likewise,

a · b = n · (pqn+ p · r2 + q · r1) + r1 · r2 → a · b ∈ r1 · r2
which by the same logic proves multiplication is well defined.

Example. We take the example of n = 3, and look at the results of multiplying and adding
different classes of Z/nZ
.

Multiplication Addition

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Definition 1.12. 7 We say that x ∈ Z/nZ is a unit or is invertible if it has a multiplicative
inverse, i.e., ∃y ∈ Z/nZ such that

x · y = 1

We denote the subset of invertible elements of Z/nZ as (Z/nZ)× (pronounced crossed).
A neat observation we make is the following:
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Theorem 1.13. 5 If a, n ∈ Z, n > 0 and gcd(a, n) = 1, then a ∈ Z/nZ is a unit.

Proof. By Bézout’s Identity,
x · a+ y · n = 1

Hence,
x · a = 1

This means that for arbitrary prime p,

Z/pZ = (Z/pZ)×
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2 Wed. 03/10/18 – symmetries

2.1 Symmetries of an equilateral triangle
An equilateral triangle with 3 vertices has two types of symmetries: reflections (S1, S2, S3)
and rotations (R1, R2). We can compose two symmetries to get a third, but in general this
operation does not commute: CCW rotation before vertical reflection is not equivalent to
vertical reflection before CCW rotation, i.e. S2 ◦R1 6= R1 ◦ S2

We can form a table of all possible symmetry compositions:

id R1 R2 S1 S2 S3

id id R1 R2 S1 S2 S3

R1 R1 R2 id S3 · · ·
R2 R2 id R1

S1 S1 S2

S2 S2 · · ·
S3 S3

This example encapsulates the intuition behind the general idea of a group.

Definition 2.1. A group is a set G together with a binary operation ? : G×G → G such
that the following properties hold:

1. (Identity) There is some e ∈ G such that e ? g = g ? e = e.
2. (Inverses) For each g ∈ G there is some h ∈ G such that g ? h = h ? g = e.
3. (Associativity) For all g, h, k ∈ G we have (g ? h) ? k = g ? (h ? k).

Note that in general, we do not require commutativity.

Definition 2.2. A group (G, ?) is Abelian (or commutative) if its group operation ? is
commutative.

Examples;

• (Z,+), (Q,+), (Z/nZ,+).
• The counter-example (Q, ·), for 0 has no inverse.
• (Q× = Q \ {0}, ·).
• ((Z/nZ)×, ·).
• The general linear group GLn(R) := {n×n invertible matrices with coefficients in R}.
• The special linear group SLn(R) := {n×n matrices with determinant 1 and coefficients

in R}.
• Dihedral groups D2n := { symmetries of the regular n-gon }.
• Symmetric groups (aka permutation groups). For any given set X, form SX = {f :
X → X a bijection}. If |X| = n, we write SX = Sn. Note that |Sn| = n!.
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Definition 2.3. The order of a group (G, ?) is the cardinality of G as a set, i.e. |G|. We
write ord(G).

Definition 2.4. An isomorphism between two groups (G, ?G) and (H, ?H) is a bijection
f : G→ H compatible with group structure, i.e. for which

f(g1 ?G g2) = f(g1) ?H f(g2).

For example, (Z/2Z,+) and ((Z/3Z)×, ·) are isomorphic. In fact, any group of order 2
is isomorphic to Z/2Z.
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3 Fri. 05/10/18 – order and subgroups
Theorem 3.1. The identity element of a group (G, ·) is always unique.

Proof. Suppose not. Let i, j ∈ G be distinct identity elements. Then, by nature of the
identity,

i · j = i = j

This is a contradiction.

Theorem 3.2. For any given element a ∈ G, the inverse of a is unique.

Proof. Suppose not. Let i, j ∈ G be distinct inverses to a ∈ G. Then, by properties of the
inverse,

(i · a) · j = j = i · (a · j) = i

This is a contradiction.

3.1 Notation
In order to make certain group operations more intuitive, we will usually adapt notation
from a common group operand, multiplication, to apply to many groups.

1. The group operator applied to elements a, b will be denoted as a · b or simply ab
2. The identity of the group will be denoted 1

3. The inverse element of a will be denoted a−1

4. For n ∈ N, we will use an as shorthand for a · a · ...a with n a’s, while a−n will be used
as shorthand for a−1 · a−1 · ... · a−1.

For many groups, this notation is quite handy, since many group properties mimic those
of multiplication, i.e.,

an+m = an · am

(an)m = anm

However, it’s important to be careful, as not all properties of multiplication necessarily
carry over to group operations. For example, unless the group is Abelian, the following
equality does NOT always hold:

(ab)n = anbn

Occasionally, addition serves as a better parallel to the group operator than multiplica-
tion. This is true in groups like Z/nZ. In these cases, we adopt a slightly different set of
notation.

1. The group operator applied to elements a, b will be denoted as a+ b

2. The identity of the group will be denoted 0

3. The inverse element of a will be denoted −a
4. For n ∈ N, we will use n · a as shorthand for a+ a+ ...a with n a’s, while (−n) · a will

be used as shorthand for −a+−a+ ...− a.
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3.2 Order and Subgroups
Definition 3.3. The order of an element of a group a ∈ G is defined as

min{n | an = 1}

When the above set is empty, we consider the order of the element to be ∞. We will notate
the order of element a as ord(a)

Examples 3.4. In our equilateral triangle group, ord(R1) = 3 since it takes three unit
rotations to return to the original triangle orientation.

Theorem 3.5. Given a group G, ∀a ∈ G, ord(a) ≤ |G|

Proof. Suppose ∃a ∈ G such that ord(a) > |G|. Then by the pigeonhole principle, ∃n,m ∈ N
such that 0 ≤ n,m < |G|, n 6= m and an = am. This means that a|m−n| = 1, and
0 < |m− n| < |G|. This implies that ord(a) < |G|, a contradiction.

Theorem 3.6. If gcd(a, n) = 1, and ϕ(x) represents |Z/xZ|, then

aϕ(n) ≡ 1 mod n

Proof. This is shown in homework 1.

Theorem 3.7. In an arbitrary group G and a ∈ G

ord(a)|n⇐⇒ an = 1

Proof.
(=⇒): an = (aord(a))k = 1k = 1
(⇐=): n = ord(a) · k + r → an = (aord(a))k · ar = ar.

Hence, ar = 1, which implies r = 0.

Definition 3.8. For a group (G, ?), a set H ⊂ G is a subgroup denoted by (H, ?) if and
only if

1. 1 ∈ H

2. ∀a ∈ H, a−1 ∈ H

3. ∀a, b ∈ H, a ? b ∈ H

The following examples are of subgroups in groups we have already seen in the course
1. The rotations and the identity operation in the equilateral triangle group explored in

section 2.1 is a subgroup.
2. The even integers in the group (Z,+) is a subgroup.

Theorem 3.9.

(H, ?) is a subgroup of (G, ?) ⇐⇒ ∀a, b ∈ H, a ? b−1 ∈ H
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Proof.
(=⇒) : This is true by properties 2 and 3 of subgroups.
(⇐=) :

1. If a = b, we know that a ? a−1 = 1 ∈ H.
2. Since 1 ∈ H, ∀b ∈ H, 1 ? b−1 = b−1 ∈ H.
3. ∀a, b ∈ H, we know that b−1 ∈ H, so a ? (b−1)−1 = a ? b ∈ H.

Definition 3.10. Given two groups (G1, ?1) and (G2, ?2), the direct product of the groups,
denoted by (G1 × G2, ?12), is defined as the cartesian product of the sets G1, G2, and the
operation

(a1, b1) ?12 (a2, b2) = (a1 ?1 b1, a2 ?2 b2)

As an exercise, try to prove that this definition guarantees that the direct product of two
groups will be a group.
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4 Mon. 08/10/18 – homomorphisms and the cyclic
groups

Helpful homework tip; given a group G and arbitrary a, b ∈ G,

• ax = b has a unique solution, namely x = a−1b ∈ G; and
• xa = b has a unique solution, namely x = ba−1 ∈ G.

Think of fixing an element a in the column of the group multiplication table; every single
b ∈ G can be obtained by a unique expression ax for some x ∈ G. In other words, every
row in the multiplication table must be a permutation of G. The same argument applies for
columns. This is referred to as the Sudoku rule.

Another argument to see why; if we had two distinct elements x, y ∈ G for which ax = ay,
this would immediately imply a−1ax = a−1ay and so x = y.

4.1 Homomorphisms, kernels
Definition 4.1. Given groups G,H, a function f : G → H is a homomorphism if for all
a, b ∈ G we have

f(ab) = f(a)f(b).

(Hence, an isomorphism is a bijective homomorphism.)
Examples;

• The map Z → Z/nZ sending a ∈ Z to its equivalence class a modulo n.
• The map GLn(R) → R× sending a matrix A to its determinant det(A).

Proposition 4.2. If f : G→ H is a homomorphism, then f(1) = 1 and f(x−1) = f(x)−1.

Proof. First, we have f(1) = f(1 · 1) = f(1)f(1), so 1 = f(1).
Furthermore, 1 = f(1) = f(xx−1) = f(x)f(x−1), so f(x)−1 = f(x−1).

Proposition 4.3. Let f : G→ H be a homomorphism, and fix a ∈ G. If a has finite order,
then so does f(a), in particular it holds that

ord(f(a)) | ord(a).

Proof. We have aord(a) = 1, so f(aord(a)) = 1 and so f(a)ord(a) = 1, which by (??) implies
that ord(f(a)) | ord(a).

Definition 4.4. If f : G→ H is a homomorphism, we define its kernel by

ker(f) = {a ∈ G | f(a) = 1}.

Proposition 4.5. ker(f) is a subgroup of G, and im(f) is a subgroup of H.
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Proof. Let a, b ∈ ker(f). Then f(ab−1) = f(a)f(b)−1 = 1, so ab−1 ∈ ker(f). By the subgroup
criterion, we get that ker(f) is a subgroup of G.

Let x, y ∈ im(f). Then there exist a, b ∈ G such that f(a) = x and f(b) = y. It is clear
that ab ∈ G, and furthermore f(ab) = f(a)f(b) = xy, so xy ∈ im(f). Again by the subgroup
criterion, we conclude that im(f) is a subgroup of H.

Proposition 4.6. Let f : G → H be a homomorphism; f is injective ⇐⇒ f has trivial
kernel.

Proof. (⇐=) With ker(f) = {1}, assume there exists a pair a, b ∈ G such that f(a) = f(b).
Then f(a)f(b)−1 = 1, so f(ab−1) = 1, that is, ab−1 ∈ ker(f), but necessarily ab−1 = 1 so
a = b.

(=⇒) Let a ∈ ker(f). We have f(a) = 1 = f(1), but f is injective, so a = 1.

4.2 Cyclic groups
Definition 4.7. A group G is cyclic with generator a ∈ G if every element of G is of the
form an for some n ∈ Z.

(Note that cyclic groups are automatically Abelian, for anam = an+m = am+n = aman.)
Examples;

• Z/nZ with generator 1;
• Z with generator 1.

Theorem 4.8. Let G be a cyclic group with generator g ∈ G. The following statements
hold:

1. If g has infinite order, then the map f : Z → G given by n 7→ gn is an isomorphism;
and

2. If g has order k < ∞, then the map f : Z/kZ → G given by n 7→ gn is a well-defined
isomorphism.

Proof. 1. First of all, f is indeed a homomorphism, for f(n + m) = gn+m = gngm =
f(n)f(m). Furthermore, its kernel is trivial, for if there is some n 6= 0 in the kernel,
WLOG n > 0 (we can just take the inverse and it must lie in the kernel still), then
gn = e but this contradicts the infite order of g. Finally, f is surjective, since

im(f) = {gn | n ∈ Z} = G,

by G being cyclic with generator g.
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5 Wed. 10/10/18 – Cyclic and Modulo Groups

5.1 Generators
Definition 5.1. Let (G, ?) be a group, and g ∈ G. The cyclic subgroup generated by g,
denoted by 〈g〉, is

〈g〉 = {gn | n ∈ Z}

Theorem 5.2.
|〈g〉| = ord(g)

Proof. This is left as an exercise to the reader.

We note that if ord(g) is finite,

〈g〉 = {1, g, g2, ..., gn−1}

If ord g = |G|, it’s pretty obvious that 〈g〉 = G and G is a cyclic group generated by g.
We call g the generator of G.

Theorem 5.3. Let G be a cyclic group with generator g.
1. All subgroups of G are cyclic.
2. If |G| = ∞, all subgroups of G are of the form 〈gk〉, k > 0.
3. If k ∈ Z, |〈gk〉| = |〈ggcd(k,n)〉|
4. If |G| = n ∈ N, all subgroups of G can be expressed as 〈gd〉, d|n. |〈gd〉| = n

d
.

Proof.

1. Let G = 〈g〉. Let H be a subgroup of G. Define k ∈ N as

k = inf{i > 0 | gi ∈ H}

We now seek to show that H = 〈gk〉.
If gm ∈ H, then we can decompose m = q · k + r where 0 ≤ r < k. This implies that

gm = (gk)q · gr → gr = gm · (gk)−q

We know by the properties of group operations that gm ·(gk)−q ∈ H, so gr ∈ H. By the
properties of infimum, r = 0. Hence, gm ∈ 〈gk〉. On the other hand, ∀gm ∈ 〈gk〉, gm ∈
H since the subgroup has to be closed over the operation.
This implies H = 〈gk〉, so H is cyclic.

2. This follows directly from the result in 1 since for all subgroups H of G, H must be
generated by an element, and every element of G is of the form gk for some k > 0.

3. Since gcd(n, k) | k, 〈gk〉 ⊆ 〈ggcd(n,k)〉. By Beźout’s Identity, ∃x, y ∈ Z

gcd(n, k) = xn+ yk

Hence,
ggcd(n,k) = (gn)x · (gk)y = (gk)y ∈ 〈gk〉
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4. We know that (gd)n/d = gn = 1, and if 0 < k < n/d, (gd)k 6= 1 since then, gdk = 1 →
|G| < n.

Theorem 5.4. If g is a generator for cyclic group G such that |G| = ∞, g−1 is also a
generator for G, and there are no other generators. If |G| = n, the generators of G are
elements of the form gk where gcd(n, k) = 1.

Proof. If |G| = ∞, we know that 〈g〉 = 〈g−1〉 since ∀m ∈ Z, gm = (g−1)−m. There are no
other generators, since we know that if 〈a〉 = 〈b〉, ∃n,m ∈ Z such that a = bn, b = am. So,
a = anm → nm = 1. This means that a and b are inverses, so we are done.

If |G| = n, this is obvious by Beźout’s.

Theorem 5.5. If G is cyclic with generator g, and |G| = n,

ord(gk) = n

gcd(n, k)

Proof.
ord(gk) = |〈gk〉| = |〈ggcd(n,k)〉| = n

gcd(n, k)

Theorem 5.5 directly implies that for prime p, (Z/pZ)× is cyclic of order p− 1.

5.2 Chinese Remainder Theorem
If n,m > 0, and n | m, we can define a homomorphism

φ : Z/mZ → Z/nZ
k (mod m) 7→ k (mod n)

Proving that this homomorphism is well-defined is left as an exercise to the reader.

Theorem 5.6. If n,m ∈ N, gcd(n,m) = 1, the mapping

φ : Z/mnZ → (Z/mZ)× (Z/nZ)
k (mod mn) 7→ (k (mod m), k (mod n))

is an isomorphism.

Proof. It’s trivial to show that this mapping is a well-defined homomorphism, and that

|Z/mnZ| = |(Z/mZ)× (Z/nZ)|

So, we need to show that this mapping is either injective or surjective. We will show that
the mapping is surjective.

17



Let (a (mod m), b (mod n)) be an arbitrary element of (Z/mZ)× (Z/nZ). By Beźout’s
Identity, we can find x, y ∈ Z such that

mx+ ny = 1

So,

ny ≡ 1 (mod m)

mx ≡ 1 (mod n)

Let k = any + bmx. We’ve shown that f(k) = (a (mod m), b (mod n)).

18



6 Fri. 12/10/18 – symmetric groups
Recall that for any given set X we form the symmetric group SX := {f : X → X bijection
} under function composition.

Proposition 6.1. If g : X → Y is a bijection of sets, then the map φ : SX → SY given by
f 7→ g ◦ f ◦ g−1 is an isomorphism of groups.

Proof. Consider the following diagram:

X Y

X Y

g

f ?

g

.

We claim that f 7→ g ◦ f ◦ g−1 is an isomorphism when Sx and Sy (trace the path on the
diagram with your finger).

First, take two bijections f, f ′ : X → X, and we have

(g ◦ f ◦ g−1) ◦ (g ◦ f ′ ◦ g−1) = g ◦ f ◦ f ′ ◦ g−1 = g ◦ (f ◦ f ′) ◦ g−1.

Hence φ does define a homomorphism. It is furthermore bijective, since the map h 7→
g−1 ◦ h ◦ g is its inverse.

It follows that when |X| = n, we write SX ' Sn = S{1,2,...,n}. In general, we consider the
latter canonical.

6.1 Cycles
We write permutations σ ∈ Sn as(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
.

This form is, however, not super useful for understanding permutations. Consider the
permutation (

1 2 3 4 5 6
3 6 4 1 5 2

)
.

Starting at 1 and repeatedly applying our permutation, we discover a loop 1 → 3 → 4 → 1
of length 3, starting at 2 we get 2 → 6 → 2 of length 2, and starting at 5 we simply get
5 → 5. Note that these loops cover all elements of our permutation. We can readily argue
what the order of σ is: applying it a multiple of 3 times we get 1 back to 1; we also need
to get 2 back to 2, which only happens when we apply the permutation an even number of
times. Hence, we see that ord(σ) = 3 · 2 · 1 = 6.
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Definition 6.2. An m-cycle (a1a2 · · · am) ∈ Sn, where ai ∈ {1, 2, . . . , n} are distinct, is the
permutation

σ(x) =


x if x /∈ {a1, . . . , am}
ai+1 if x = ai, 1 ≤ i < m

a1 if x = am.

It is clear that an m-cycle has order m, for it defines a loop a1 → a2 → · · · → am → a1.
We say two cycles σ = (a1a2 · · · am) and τ = (b1b2 · · · bk are disjoint if {a1, . . . , am} ∩

{b1, . . . , bk} = ∅. Then στ = τσ, i.e. disjoint cycles commute.
An expression of σ ∈ Sn of the form σ = τ1 · · · τk, with τi pairwise disjoint cycles, is

called a cycle decomposition of σ.
Under the two following identifications, we will show that cycle decompositions exist for

all σ ∈ Sn, and that furthermore they are unique.

• The cycles (a1a2 · · · am), (a2a3 · · · ama1), and in general (ak · · · ama1 · · · ak−1) are con-
sidered to be equivalent;

• We do not write 1-cycles (a 1-cycle is just the identity).

Theorem 6.3 (Cycle decomposition). If σ ∈ Sn, then σ admits a cycle decomposition, which
is moreover unique up to reordering and removing 1-cycles.

The following concept will be extremely useful:

Definition 6.4. Let X be a set, and fix σ ∈ SX . We say that x, y ∈ X are in the same
orbit if x = σi(y) for some i ∈ Z.

The orbits of a permutation define an equivalence relation on X; equivalence classes are
orbits.

Proof of Existence. Let C1, . . . , Ck be the orbits of σ on {1, 2, . . . , n}. Pick an element
xi,1 ∈ Ci for each i = 1, . . . , k, i.e. an element of each orbit. Let mi be the smallest positive
integer for which σm(xi,1) = xi,1, and let xi,j = σj−1(xi,1) for i = 1, . . . , k, j = 1, . . . ,mi.
Then

σ = (x1,1x1,2 · · ·x1,m1) · · · (xk,1xk,2 · · ·xk,mk
).

Proof of Uniqueness. If σ = (x1,1x1,2 · · ·x1,m1) · · · (xk,1xk,2 · · ·xk,mk
) is a product of disjoint

cycles, its orbits are exactly C1 = {x1,1, x1,2 . . . , x1,m1}, . . . , Ck = {xk,1, xk,2 . . . , xk,mk
}. Any

other product of disjoint cycles corresponding to these orbits are equivalent by our previous
two considerations.

6.2 Transpositions
Definition 6.5. A 2-cycle is called a transposition.

(However, not all permutations of order 2 are transpositions.)
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Theorem 6.6. The group Sn is generated by transpositions.

This is fundamentally the same as, given a list of indexed cards in a random order,
claiming that we can bring the cards back to their original order by repeatedly swapping pairs
with our hands, which better be true.

Proof. It suffices to show that any m-cycle (a1 · · · am) is a product of transpositions, by our
cycle decomposition theorem. For this, note that

(a1 · · · am) = (a1am)(a1am−1) · · · (a1a3)(a1a2),

giving a total of m− 1 transpositions (** some note on how to remember this which i can’t
read from my notes **).

Theorem 6.7. Given σ ∈ Sn, if we write σ = s1 · · · sk = t1 · · · tl with si and ti transpositions,
then k ≡ l (mod 2).

Proof. Next time.

Definition 6.8. We say that σ ∈ Sn is an even permutation if it is the product of an
even number of transpositions; else, it is an odd permutation.

Warning! If m is even, an m-cycle is odd; and if m is odd, an m-cycle is even (because
of our previous remark in Theorem 6.6).
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7 Mon. 15/10/18 – Subgroups of the Symmetric Group
Recall Theorem 6.7 (now 7.1) from last class:

Theorem 7.1. Given σ ∈ Sn, if we write σ = s1 · · · sk = t1 · · · tl with si and ti transpositions,
then k ≡ l (mod 2).

We will present a combinatorial proof of this theorem. In order to do so, we define

Definition 7.2. For σ ∈ Sn, we define the length of σ, denoted as l(σ), to be

l(σ) = |{(i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)}|

We now can prove Theorem 7.1

Proof. Notice that the theorem is equivalent to the claim that ∀s transpositions,

l(σ · s) ≡ l(σ) + 1 (mod 2)

Let s = (i j) (WLOG i < j). Then, by definition, σ · s(i) = σ(j), σ · s(j) = σ(i) and for all
other x, σ · s(x) = σ(x).

In pictorial form,

σ =

(
1 2 · · · i · · · j · · · n

σ(1) σ(2) · · · σ(i) · · · σ(j) · · · σ(n)

)
σ · s =

(
1 2 · · · i · · · j · · · n

σ(1) σ(2) · · · σ(j) · · · σ(i) · · · σ(n)

)
Now consider 1 ≤ a < b ≤ n. We seek to see whether (a b) ∈ l(σ), l(σ · s). This is left

as an exercise for the reader.
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8 Wed. 17/10/18 – last word on permutations, general
congruences

8.1 More on the order of permutations
Proposition 8.1. Given σ ∈ Sn, the following statements hold:

1. The order of σ is the least common multiple of the lengths of the cycles of σ.
2. σ is even ⇐⇒ the number of even-length cycles of σ is even.

Proof (1). If σ, τ are disjoint permutations, then 〈σ〉 ∩ 〈τ〉 = {1}. By HW#2, we get
ord(στ) = lcm(ord(σ), ord(τ)). The proposition follows by induction.

Proof (2). Remember that an m-cycle is even ⇐⇒ m is odd.
Hence, if σ = σ1 · · ·σk is the cycle decomposition of σ, we have that σ is even ⇐⇒ it

has an even number of odd cycles ⇐⇒ it has an even number of even-length cycles.

8.2 Congruences on abstract groups
We want to generalize the notion of “congruence” from the integers to abstract groups. The
usual setup is, given a, b ∈ Z and n > 0, we say a ≡ b (mod n), read “a is equivalent to b
modulo n” iff b = a+ kn.

From this, we define the congruence class of any a ∈ Z by a = a+nZ = {a+nk | k ∈ Z}.
The goal is to replace Z with any group G, and nZ with an arbitrary subgroup H ⊂ G.

In fact, we can already do this. We only need be aware that multiplication in a group
is not commutative in general, which gives rise to two distinct equivalence relations (in
principle).

Fix a group G and a subgroup H ⊂ G. We say that a l∼ b, i.e. “a is left-equivalent to b
modulo H” ⇐⇒ a = bh for some h ∈ H, and similarly a r∼ b, i.e. “a is right-equivalent to
b modulo H” ⇐⇒ a = hb for some h ∈ H.

Note; (again) if G is abelian, the two relations coincide.
We also note that, with G = Z and H = nZ, these two notions of congruence reduce to

usual congruence in Z modulo n.

Proposition 8.2. l∼ is an equivalence relation.

Proof. Reflexivity: we have a = a · 1, and 1 ∈ H.
Symmetry: given a l∼ b, we have a = bh, so ah−1 = b with h−1 ∈ H, hence b l∼ a.
Transitivity: given a

l∼ b and b
l∼ c, we have a = bh and b = ch′, so a = c(h′h) with

h′h ∈ H, thus a l∼ c.

From this, we can immediately consider the equivalence class of any a ∈ G: we write it
as

{b ∈ G | b l∼ a} = {b ∈ G | b = ah, h ∈ H} = aH,

where aH = {ah | h ∈ H}. In general,
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Definition 8.3. A left coset for a subgroup H ⊆ G is a set of the form aH = {ah | h ∈ H}
for some a ∈ G.

Similarly for right coset.

We define the congruence classes of G by G/H = {gH | g ∈ G}, read “G modulo H”,
and H \G = {Hg | g ∈ G}, read “H dom G”.1

Definition 8.4.

As an example, we compute the right cosets of H = 〈(12)〉 in S3:

• 1H = H = {1, (12)} = (12)H,
• (13)H = {(13), (13)(12) = (123)} = (123)H,
• (23)H = {(23), (132)} = (132)H.

Similarly, we compute the left cosets:

• H1 = H = H(12),
• H(13) = H(132),
• H(23) = H(123).

Note that, in general right and left cosets are different! However, we can relate them
nicely:

Theorem 8.5. There is a bijection G/H → H \G given by gH 7→ Hg−1.

Proof. We abuse notation and write

(gH)−1 = {(gh)−1 | h ∈ H}
= {h−1g−1 | h ∈ H}
= {hg−1 | h ∈ H} = Hg−1,

the last equality by the fact that inversion is a bijection from G to itself. Hence gH 7→
(gH)−1 = Hg−1 is a bijective map between right and left cosets.

Definition 8.6. Given a subgroup H ⊆ G, we define the index of H in G by [G : H] =
|G/H| = |H \G|.

Theorem 8.7 (Lagrange). Let G be a finite group, H ⊆ G a subgroup. Then

|G| = |H| · [G : H].

Proof. Since G/H splits G into equivalence classes, we have G =
∐

gH∈G/H gH, so

|G| =
∑

gH∈G/H

|gH| =
∑

gH∈G/H

|H| = |H| · [G : H],

the penultimate equality from the bijection H → gH given by h 7→ gh.

1Note that “dom” for H \G is decidedly not standard.
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9 Fri. 19/10/18 – ?
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10 Mon. 22/10/18 – why quotients?

10.1 Simple groups
Some examples of quotient groups:

• Since An ⊆ Sn has index 2, it is normal. Hence Sn/An is a quotient group, and in
particular of the form An/Sn = {An, {odd perms.}}.

• O(2) = group of rotations and reflections in R2 (“orthogonal group”). Similarly,
SO(2) ⊆ O(2), the group of rotations, has index 2, i.e. it is normal. Hence O(2)/ SO(2) '
Z/2Z, it has the same kind of “parity law” as An/Sn.

• G = D8, whose center Z(D8) = {1, Rπ} is of course normal. Hence D8/Z(D8) has 4
elements, and is isomorphic to D4. If s ∈ D8 is a reflection, then (sZ(D8)

2 = Z(D8)
so reflection cosets have order 2, while r ∈ D8 a rotation by π/2 in either direction
gives (r Z(D8))

2 = Rπ Z(D8) = Z(D8) by Rπ being in the center, so rotation cosets
have order 2 as well. Hence necessarily D8/Z(D8) ' D4.

•

Why do we care about quotient groups? If we want to understand G, and have a normal
subgroup H ⊆ G, understanding H itself and G/H can give us a good glimpse into G.

Definition 10.1. We say that a non-trivial group G is simple if the only normal subgroups
it contains are {1} and G itself.

Ex; with p prime, the group Z/pZ is simple. With n ≥ 5, the group An is simple (while
A4 is not); this relates to the insolvability of the quintic.

Simple groups are the “building blocks” of all finite groups.

Proposition 10.2. Sn has no proper normal subgroups of odd index.

Proof. Suppose H ⊆ Sn were a normal subgroup of odd index. For a transposition s ∈ Sn,
we have sH ∈ Sn/H, and (sH)2 = H but |Sn/H| is odd; hence sH has necessarily order 1,
i.e. s ∈ H in the first place. Since transpositions generate Sn, we have Sn ⊆ H and so H is
not a proper subgroup of Sn.

10.2 Quotients and homomorphisms
Proposition 10.3. If f : G→ H is a group homomorphism, ker f is normal in G.

Proof. Fix any g ∈ G, x ∈ ker f . We have

f(gxg−1) = f(g)f(x)f(g)−1 = f(g)f(g−1) = 1,

so gxg−1 ∈ ker f , i.e. ker f is normal.

Definition 10.4. If H ⊆ G is normal, we define the canonical homomorphism f : G→
G/H given by g 7→ gH.
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Note that this is well defined by normality; (why????). Also notice that ker f = H, since
g ∈ H iff gH = H.

We conclude that N ⊆ G is normal ⇐⇒ N is the kernel of some homomorphism.
Remark; the image of a normal subgroup through a homomorphism need not be normal

in the codomain.

10.3 1st Isomorphism Theorem
Theorem 10.5 (1st ISO). Let f : G → H be a group homomorphism. Then there exists a
well-defined isomorphism

f : G/ ker f → im(f)

a ker f 7→ f(a).

Proof well-defined. Take a′ = ax, a ∈ G, x ∈ ker f . Then

f(a′ ker f) = f(a′) = f(ax) = f(a)f(x) = f(a).

Proof homomorphism.

f((a ker f)(b ker f)) = f(ab ker f)
= f(ab) = f(a)f(b) = f(a ker f)f(b ker f).

Proof bijective. If f(a ker f) = 1, then f(a) = 1, only the case if a ∈ ker f so ker f =
1 · ker f . In other words, the kernel of f is trivial.

Note; if ϕ : G→ H is a homomorphism of finite groups, then | imϕ| = |G/ kerϕ| = |G|
| kerϕ| .

Hence | imϕ| · | kerϕ| = |G|, reminiscent of the Rank-Nullity theorem in linear algebra.
The takeaway of the 1st isomorphism theorem is the following: if we want to show

G/N ' H, construct a surjective homomorphism G → H the kernel of which is N . Hence
by the theorem, G/ ker f ' im f , i.e. G/N ' H.
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11 Wed. 24/10/18 – isomorphism theorems
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12 Fri. 26/10/18 – Midterm I
Problem 1. (10 points) True or false. Write one or two sentences justifying your answer:

(a) There exists a permutation σ ∈ S7 such that σ2 = (123)(45)(67).

Answer. True. Consider σ = (1 3 2)(4 6 5 7).

(b) (Z/15Z)× is cyclic.

Answer. False. By the Chinese remainder theorem, we have (Z/15Z)× ' (Z/3Z)××
(Z/5Z)×, with the groups on the right having order 2 and 4 respectively, hence
an element of the product having order 4 at most, less than | (Z/15Z)× | = 8.

(c) Any group of order 9 is cyclic.

Answer. False. Consider Z/3Z × Z/3Z, which has exactly nine elements but is
not cyclic, since any element has order 3 at most.

(d) There exists a permutation σ ∈ A5 of order 6.

Answer. False. Such a permutation must consist of either a 6-cycle or a 3-cycle
and a 2-cycle: 6-cycles do not exist in S5, and a 3-cycle plus a 2-cycle is odd,
hence is not in A5.

(e) If H and K are normal subgroups of a group G then H ∩ K is also a normal
subgroup of G.

Answer. True. Fix x ∈ H ∩ K, and let g ∈ G be arbitrary. Then gxg−1 ∈ H
by r ∈ H and H being normal, and gxg−1 ∈ K for the same reason, so gxg−1 ∈
H ∩K. Thus H ∩K is normal in G.

Problem 2. (10 points)
(a) Using that 3 = 17 · 435− 11 · 672 find an integer n satisfying the congruences

n ≡ 9 (mod 435)

n ≡ 12 (mod 672).

Solution.

(b) Consider the permutation σ ∈ S10 given by

σ =

(
1 2 3 4 5 6 7 8 9 10
7 8 1 9 4 5 3 10 6 2

)
.

Find its cycle decomposition, its order, and whether it is even or odd.

Solution. By evaluating each index manually, we get σ = (1 7 3)(2 8 10)(4 9 6 5).
Its order is ord(σ) = lcm(3, 3, 4) = 12. It contains an odd number of even-length
cycles, so it is an odd permutation.

29



(c) Let G be a cyclic group of order 99 with generator g. How many elements x ∈ G
are there with x22 = g33?

Solution. Note that if x and y are two solutions to the equation, then (xy−1)22 =
1, and conversely if z22 = 1, then (xz)22 is also a solution. Hence counting
solutions to x22 = g33 is equivalent to counting solutions to x22 = 1. Note that
gcd(22, 99) = 11, so x is a solution iff x11 = 1, whence (...).

Problem 3. (5 points) Let G and H be finite groups with (|G|, |H|) = 1. Show that any homomor-
phism f : G→ H must be trivial (i.e. f(g) = 1 for all g ∈ G).

Proof. Fix g ∈ G. We have that ord(g) | |G|, and by homomorphism properties we
also have ord(f(g)) | ord(g), whence ord(f(g)) | |G| and since ord(f(g)) | |H| too, we
have the contradiction (|G|, |H|) > 1, unless f(g) = 1.

Problem 4. (5 points) Prove that no subgroup of S6 is isomorphic to S3 × S4.

Proof. We argue by considering the order of a carefully chosen element in S3 × S4,
namely σ = ((1 2 3), (1 2 3 4)). Note that ord((1 2 3)) = 3 and ord((1 2 3 4)) = 4, so
ord(σ) = lcm(3, 4) = 12. Now, in order for some τ ∈ S6 to have order 12 we need
either a 3-cycle and a 4-cycle (disjoint), or a 12-cycle, neither of which exist in S6.

Problem 5. (10 points)
(a) Let G be a group, and let g ∈ G. The centralizer of g in G is defined to be the

set of elements in G that commute with g:

CG(g) = {h ∈ G | gh = hg}.

Show that CG(g) ⊆ G is a subgroup.

Proof. Fix x, y ∈ CG(g). Then (xy−1)g(xy−1)−1 = x(y−1gy)x−1 = xgx−1 = g, so
by the subgroup criterion, CG(g) ⊆ G is indeed a subgroup.

(b) Find CSn((12 · · ·n)).

Proof. First note that 〈(1 2 · · ·n)〉 ⊆ CSn((1 2 · · ·n)). Furthermore, any σ ∈
CSn((1 2 · · ·n)) must satisfy σ(1 2 · · ·n)σ−1 = (1 2 · · ·n), so (σ(1)σ(2) · · · σ(n)) =
(1 2 . . . n), whence σ ∈ 〈(1 2 · · ·n)〉.
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13 Mon. 29/10/18 – group actions
Definition 13.1. Let G be a group, X a set; a (left) action of G on X is a function
? : G×X → X satisfying
(a) 1 ? x = x for all x ∈ X;
(b) For all a, b ∈ G and x ∈ X, a ? (b ? x) = (ab) ? x.

Examples;

• G = D8, and X either the set of vertices of the square, or edges of the square, or
diagonals of the square; D8 acts naturally on any of these sets.

• With X any set and G = SX , a natural action is given by σ ? x = σ(x) for σ ∈ SX and
x ∈ X.

• With G any group and X = G, we define the left regular action as g ? x = gx;
the right regular action as g ? x = xg−1; and the action by conjugation as
g ? x = gxg−1.

• With G any group and H ⊂ G a subgroup, let X = G/H and define the action
a ? gH = agH. Note that this is well-defined even if H is not normal.

13.1 Actions and permutations
Let G be a group acting on a set X. Fix g ∈ G; this gives a function

σg : X → X

x 7→ g ? x.

Note that for all a, b ∈ G, we have σa ◦ σb = σab by the second property of group actions;
hence for any g ∈ G, we have σg ◦ σg−1 = 1, the identity on X. Thus σg is a bijection with
inverse σg−1 , and we get a homomorphism

G→ SX

g 7→ σg.

Proposition 13.2. Given a group G and a set X, there is a correspondence

{actions of G on X} ⇐⇒ {homomorphisms G→ SX}.

We have shown one direction; the other goes as follows. Given a homomorphism f : G→
SX , we define a left-action by g ? x = f(g)(x); note that f(1) = 1 ∈ SX , so 1 ? x = x, and
a ? (b ? x) = f(a) [f(b)(x)] = [f(a) ◦ f(b)] (x) = f(ab)(x) = (ab) ? x, the penultimate equality
by f being a homomorphism.

Example; we have |S3| = 6, and by HW#1 S3 ' D6. We will use the proposition to
provide an alternative proof of this isomorphism, by finding an action of D6 on a set with 3
elements.

Label the vertices of a triangle by {1, 2, 3}. Our group D6 acts naturally on the labels,
giving a homomorphism D6 → S3. Since |S3| = 6 = |S3|, we only need to show that this
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homomorphism has trivial kernel to get an isomorphism. In fact, any symmetry that fixes
the three vertices has to fix the entire triangle, and thus be the identity on D6. Hence our
map D6 → S3 is indeed an isomorphism.

Theorem 13.3 (Cayley). Let G be any group. Then G is isomorphic to a subgroup of a
symmetric group SX for some set X. In particular, we can take |X| = |G|, so if G is finite,
it is isomorphic to a subgroup of Sn for some n.

Proof. Consider the action of G on itself given by g?x = gx. By our previous correspondence
proposition, we get a homomorphism f : G→ SG, whose kernel is in fact {1}, since g ?1 = 1
in particular implies g = 1. Thus G ' im(f) ⊆ SG.

While interesting, Cayley’s theorem will not prove useful on the long run, since permuta-
tion groups are quite complicated. What we get from it is the certainty that, at some level,
all groups are glorified permutation subgroups.

13.2 More terminology
Let G be a group acting on a set X.

• The kernel of the action is the kernel of G → SX , i.e. the elemnts of G which act
trivially on X.
We say that an action is faithful if its kernel is {1}.

• Given an element x ∈ X, its stabilizer is

StabG(x) = {g ∈ G | g ? x = x},

and is in fact a subgroup of G.
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14 Wed. 31/10/18 – Orbit-Stabilizer theorem
Theorem 14.1 (Orbit-Stabilizer). Let G be a finite set acting on a set X. Then, for any
x ∈ X, we have

|G| = |Gx| · | StabG(x)|.
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15 Fri. 02/10/18 – conjugation
Examples;

• If G is abelian, then [g] = {g}.
• For G = Sn, we have σ(i1 · · · im)σ−1 = (σ(i1) . . . σ(im)), so [τ ] = set of permutations

of the same cycle type.
• For G = GL2(C), two matrices g and g′ are “similar” if they are conjugate, i.e. g′ =
hgh−1 for some h ∈ GL2(C).
The different conjugacy classes are given by the Jordan normal form; any g ∈ GL2(C)
is conjugate to exactly one ofa 0

. . .
0 a

 , a ∈ C× |

a 1
. . .

0 a

 , a ∈ C× |

a 0
. . .

0 b

 , a 6= b, a, b ∈ C×.

The following example illustrates the intuition behind conjugation. Suppose I mail you
a hexagon, and I want you to apply a reflection τ along a line L joining opposing sides.
While the hexagon is in the mail, some arbitrary permutation σ is applied, and you receive
it under this transformation. In order for you to apply exactly the same transformation,
you would have to perform στσ−1: if τ is reflection about L, then στσ−1 is reflection about
σ(L). (more ... unclear ... ???)

There is no way for you to apply exactly τ , but you know what conjugacy class τ is in.
(why?? ... )

Moral of the story: in a group, conjugating τ by σ means “applying σ to the description
of τ”.

Recall, again, that σ(i1 · · · im)σ−1 = (σ(i1) · · ·σ(im)) in Sn.

For another example, consider GL2(C) and fix g =
(
a b
c d

)
. This matrix sends the basis

vectors

e1 7→ ae1 + ce1

e2 7→ be1 + de2.

The conjugate hgh−1, however, sends

he1 7→ ah(e1) + ch(e1)

he2 7→ bh(e1) + dh(e2).

Another example; consider the normal subgroup A5 ⊆ S5. It consists of the identity,
3-cycles (abc), (2, 2)-cycles (ab)(cd) and 5-cycles (abcde). It could happen that τ, τ ′ ∈ A5 were
conjugate in S5 but not in A5. For instance, let τ = (12345), and τ ′ = (45)(12345)(45)−1 =
(12354). If σ ∈ S5 satisfies στσ−1 = τ ′, let ρ = σ−1(45), so that ρτρ−1 = σ−1(45)τ(45)−1σ =
στ ′σ−1 = τ , so ρ ∈ CS5(τ). In fact, we have a bijection

{σ ∈ S5 s.t. στσ−1 = τ ′} ⇐⇒ CS5(τ)

σ 7→ σ−1(45).
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If CS5(τ) ⊆ A5, then every σ ∈ S5 that conjugates τ to τ ′ must not be in A5. Since
CS5(τ) = 〈τ〉 ⊆ A5, we conclude that τ and τ ′ are not conjugate in A5. Furthermore, by the
orbit-stabilizer theorem,

[τ ]S5

[τ ]A5

=
[S5 : 〈τ〉]
[A5 : 〈τ〉]

=
|S5|
|A5|

= 2,

so there are two conjugacy classes of 5-cycles in A5, namely [τ ]A5 ] and [τ ′]A5 . Taking this
principle further:

Proposition 15.1. All 3-cycles in A5 are conjugate.

Proof. We only need to show that any 3-cycle, say (abc), is conjugate to (123). Start with
some σ ∈ S5 with σ(1) = a, σ(2) = b, σ(3) = b and arbitrary values for 4 and 5. If σ ∈ A5,
we are done. Otherwise, let σ′ = σ(45) ∈ A5: note that σ′(123)(σ′)−1 = (abc). This time
CS5((123)) 6⊆ A5, by (45) ∈ CS5((123)).
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16 Mon. 05/11/18 – A5 is simple and groups of order
pq

16.1 A5 is simple
Last time, we found the conjugacy classes that partition A5 E S5. We had

• [(1 2 3 4 5)]S5 = [(1 2 3 4 5)]A5

∐
[(1 2 3 5 4)]A5 ,

• [(1 2 3)]S5 = [(1 2 3)]A5 , and
• [(1 2)(3 4)]S5 = [(1 2)(3 4)]A5 .

Theorem 16.1. A5 is simple. (i.e. if H E A5, then either H = {1} or H = A5.)

Conjugacy classes are useful in proving this because they impose restrictions on normal
subgroups: if you contain an element of a conjugacy class, you contain the entire conjugacy
class.

Proof. Suppose that H 6= {1}, and pick σ ∈ H with σ 6= 1.
Case 1: σ is a 3-cycle. Then H has all 3-cycles, since they are contained in the same

conjugacy class. Furthermore, we know that the 3-cycles generate A5 (HW#?), so H = A5.
Case 2: σ = (a b)(c d), with {a, b, c, d, e} = {1, . . . , 5}. Consider σ′ = (c d e)σ(c d e)−1 =

(a b)(d e) ∈ H by normality. Hence σσ′ = (a b)(c d)(a b)(d e) = (c d e) ∈ H, so we go back to
Case 1.

Case 3: σ = (a b c d e). Let σ′ = (a b c)σ(a b c)−1 = (b c a d e) ∈ H again by normality.
Then σ−1σ′ = (a c e) ∈ H, so we go back to Case 1.

16.2 Groups of order pq, intro
(On the homework, we prove that if |G| = p2, then G ' Z/p2Z or ' (Z/pZ)2.)

Tools we have:

Theorem 16.2. Let G be a finite group, and let H ⊆ G be a subgroup with [G : H] = p
prime, such that p is the smallest prime factor of |G|. Then H E G.

We already know this for p = 2.
For a counterexample showing that we truly need p to be the smallest divisor of |G|, we

consider 〈(1 2)〉 ⊆ S3, which has index 3 but is not normal.

Proof. Consider the left-regular action of G on G/H. It corresponds to a homomorphism
f : G → Sp, and notice that a ∈ ker f implies a(bH) = bH for every coset, so in particular
aH = H, i.e. a ∈ H so ker f ⊆ H.

By the first isomorphism theorem we have | im f | | |G|, and by the properties of homo-
morphisms we have | im f | | |Sp| = p! = p

∏
q q where the rightmost product is over a number

of primes < p. But this implies | im f | = p, since p is the smallest prime dividing |G|, and
so by the first isomorphism theorem again we get |G/ ker f | = [G : ker f ] = p.

Therefore ker f ⊆ H ⊆ G both have index p in G, which implies ker f = H. Hence H is
normal in G, since it is the kernel of a homomorphism.
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Theorem 16.3 (Cauchy). If G is a finite group and p | |G| for some prime p, then G
contains an element of order p.

We do not need the full power of Cauchy’s theorem, so we prove only the abelian case.

Proof. Induction on |G|. Let a ∈ G, with a 6= 1. Then, either

• p | ord(a), in which case a
ord(a)

p is an element of order p.
• p - ord(a), in which case we consider G/〈a〉, which forms a group by G being abelian

and hence every subgroup normal. Then |G/〈a〉| · |〈a〉| = |G|. We have that p divides
the right-hand side, so it must divide the left-hand side: but p - ord(a), so it must
divide |G/〈a〉|. By the inductive hypothesis, we get some coset g〈a〉 ∈ G/〈a〉 of order
p. Now consider the natural homomorphism G → G/〈a〉 sending elements to their
cosets: we immediately get that p | ord(g), and we are back to the first case.

Corollary 16.4. If G is an Abelian group of order |G| = p1 · · · pk, for pair-wise distinct
primes, then G is cyclic.

Proof. We have an element gi ∈ G of order pi for each i. Then g = g1 · · · gk has order
gcd(p1, . . . , pk) = |G|, and so G is cyclic.
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17 Wed. 07/11/18 – class equation, pq, and Sylow’s
first theorem

17.1 Class equation
Let G be a group. Recall that |[gi]|| = 1 iff gi ∈ Z(G). We can write G in terms of its
conjugate classes,

G =
∐

conj. classes
[gi]

[gi] = (Z(G))
∐ ∐

non-central
conj. classes [gi]

[gi]

 ,

which implies
|G| = |Z(G)|+

∑
[gi]

|[gi]| = |Z(G)|+
∑
[gi]

[G : CG(gi)].

Notice that, by Lagrange, each [G : CG(gi)] divides |G|, as well as |Z(G)|, so the right-
hand side is an expression of |G| as a sum of some of its own divisors. This will prove
useful.

For example (this is HW#?), if G is a p-group with |G| = pa, then Z(G) 6= {1}. For
otherwise, (...).

Theorem 17.1. Let G have order pq, both prime, with p > q. Then either

• G is cyclic; or
• G is non-abelian, and p ≡ 1 (mod q).

For example, 15 = 3 · 5, 35 = 7 · 5, 77 = 11 · 7 are all cyclic. For the non-cyclic case,
we will eventually give a group of order pq unique up to isomorphism; this will completely
classify groups of order pq as either cyclic, or that other group.

Proof. Notice that by Lagrange’s, the only subgroups and elements of G have order 1, p, q,
or pq.

It is a useful approach, in general, to quotient out a group by its center. So we ask, what
is |Z(G)|?

Case 1. Z(G) = G, then G is Abelian, and by our last corollary, we conclude that G is
cyclic.

Case 2. If |Z(G)| = p or = q, we show this is impossible. Take the quotient: we have
that |G/Z(G)| = q or = p, so that G/Z(G) is cyclic since it has prime order. Using HW#3,
we conclude that G is in fact Abelian, so |Z(G)| = pq = |G|, a contradiction.

Case 3. If Z(G) = {1}, we are in the non-abelian case. We claim that G contains
elements of order p and q, which is given by Cauchy’s. An alternative proof follows: by the
class equation, if x ∈ G has order p, then

〈x〉 ⊆ CG(x) ( G,
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for if CG(x) = G, then x ∈ Z(G), a contradiction. But then the order of x and CG(x) are
sandwiched between p and < pq, so necessarily 〈x〉 = CG(x). Hence, by the orbit-stabilizer
theorem, |G| = |CG(x)| · |[x]|, whence |[x]| = q. By the same argument, for any y ∈ G of
order q, we have |[y]| = p. We write out the class equation,

pq = 1 + cp · q + cq · p,

where cp = # conj. classes of elements of order p, and similarly for cq. From this, we see
that neither cp = 0 nor cq = 0, so we are done.

So choose x, y ∈ G with orders p, q respectively. By a theorem from last class, we have
that 〈x〉 E G, since 〈x〉 has index q, and q is the smallest prime dividing pq.

Hence yxy−1 ∈ 〈x〉, so yxy−1 = xk for some k ∈ Z, and y2xy−2 = yxky−1 = xk
2 , and

so on and so forth. But y has order q, so x = yqxy−q = xk
q , so kq ≡ 1 (mod p), and

since k 6≡ 1 (mod p), for else yxy−1 = x, then 〈x〉 ( CG(x) ( G, which is impossible (??).
Therefore k ∈ (Z/pZ)× has order q, and so q | p− 1, i.e. p ≡ 1 (mod q).

17.2 Sylow theorem (I)
If n = pa11 · · · pakk , by the Chinese remainder theorem we can write

Z/nZ ' (Z/pa11 Z)× · · · (Z/pakk Z) .

The goal is to factor any given group into “prime factors”, if such thing exists in the first
place.

Q: can we hope to factorize abstract groups into groups of prime power order? No, but
we can get close.

Definition 17.2. Let G be a finite group, with p | |G| prime. Write |G| = pqm, with
(m, p) = 1. A subgroup H ⊆ G is called a Sylow p-subgroup if |H| = pq.

Examples;

• If G = 〈g〉 is of order n, with n = pam, we know that 〈gm〉 has order pa, and it is in
fact the unique Sylow p-subgroup of G.

• If G = S3, we know |S3| = 2 · 3: from this, we conclude that 〈(123)〉 is the unique
Sylow 3-subgroup, and that 〈(12)〉, 〈(23)〉, 〈(13)〉 are all Sylow 2-subgroups.

• If G = S4, we know |S4| = 23 · 3. In this case, we have that 〈(123)〉 is a Sylow
3-subgroup (not unique!), and 〈(1234), (13)〉 is a Sylow 2-subgroups.

Theorem 17.3 (Sylow I). If G is a finite group, with p | |G| prime, then G contains a Sylow
p-subgroup, which is not necessarily unique.

Proof. Induction on |G|. We will consider two different inductive steps, and show that at
least one of them applies.

Step 1: suppose that there is some K ( G with ([G : K], p) = 1, i.e. with index not
divisible by p. If |G| = pam, then |K| = |G|

[G:K]
= pam′, with m′ < m, i.e. |K| < |G|. By the
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inductive hypothesis, we have some H ⊂ K with |H| = pa, which is also a Sylow p-subgroup
of all of G.

Step 2: suppose that there is some K E G with |K| = pb, b > 0. Consider the canonical
quotient map f : G → G/K sending g 7→ gK. By the First Isomorphism theorem, we have
|G/K| = |G|

|K| = pa−bm < |G|, so by the inductive hypothesis we have a subgroup H ⊆ G/K

with |H| = pa−b. Consider the set H = f−1(H) ⊆ G, which is in fact a subgroup. We
have that f(H) = H, and so by the First Isomorphism theorem again, we get H/K ' H.
Therefore |H| = |H| · |K| = pa−bpb = pa, i.e. H is a Sylow p-subgroup of G.

Now we show that one of A or B hold. As usual, we consider the center of G.
Case 1: p | |Z(G)|. Since Z(G) is Abelian, there is some x ∈ Z(G) of order p (by

Cauchy’s). Let K = 〈x〉, so that |K| = p and K E G; we can then use Step 2.
Case 2: p - |Z(G)|. Consider the class equation:

|G| = |Z(G)|+
∑
i

[G : CG(gi)].

Since p | |G| and p - |Z(G)|, there must be some i for which p - [G : CG(gi)]. Hence, with
K = CG(gi), we can apply Step 1.
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18 Fri. 9/11/18 – towards Sylow’s second and third
theorems

We discover the implications of Sylow’s first theorem. In general, given a group G and
letting X = {H ⊆ G subgroup }, we consider the action of G on X by conjugation, i.e.
g ? H = gHg−1.

Note that StabG(H) = NG(H), and we have H E NG(H). The following is a very useful,
though technical, lemma.

Lemma 18.1. Let G be a finite group, p a prime dividing |G|. Given a Sylow p-subgroup
H ⊆ G, and K ⊂ G any p-subgroup, we have

NG(H) ∩K = H ∩K.

(Proof...)
From this lemma follows

Corollary 18.2. With G,H,K as in the lemma, let O = {kHk−1 | k ∈ K} be the orbit of
H under the action of conjugation by elements in K ⊂ G. Then either

• |O| = 1 and K ⊆ H; or
• p | |O| and K 6⊆ H.

It is worth pointing out a few things: first, note that p | |O| is really equivalent to saying
that |O| 6= 1, since by the orbit stabilizer |G| = |O||NG(H)| …(some argument) …so p | |O|.

The notable part of this lemma is the and in the first possibility: if K ⊆ H, it is clear
that the orbit of H under conjugation by K is just H itself. It is however not at all obvious
that |O| = 1 implies K ⊆ H.

Proof. We know that K ⊆ H iff H ∩ K = K, which by the technical lemma happens iff
NG(H) ∩K = K, iff StabK(H) = K, iff |O| = 1 by the Orbit-Stabilizer theorem.

We are ready to tackle the next big theorem.

Theorem 18.3 (Sylow II and III). Let G be a finite group, p | |G| a prime number, and
write |G| = pam with (p,m) = 1.

• (2nd) If H ⊆ G is a Sylow p-subgroup and K ⊆ G is a p-subgroup, then K ⊂ gHg−1

for some g ∈ G.
• (3rd) If np is the number of Sylow p-subgroups in G, then np ≡ 1 (mod p) and np | m.

For the 2nd theorem, by choosing K to be another Sylow p-subgroup we conclude that
K = gHg−1, so Sylow p-subgroups are in some sense “unique” up to conjugation.

For the 3rd theorem, note that the two conditions on np imposes a great deal of re-
strictions on the number of Sylow p-subgroups in a given group. We will use this to our
advantage to show that in some situations, we necessarily have np = 1, which is noteworthy
by the following corollary:
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Corollary 18.4. np = 1 if and only if G has a normal Sylow p-subgroup.

Proof. (=⇒) Given a Sylow p-subgroup H ⊆ G, for all g ∈ G we have that gHg−1 is a Sylow
p-subgroup by the second Sylow theorem, but since H is the only Sylow p-subgroup of G,
we necessarily have gHg−1 = H, so H is normal in G.

(⇐=) Let H E G be a normal Sylow p-subgroup. For any other Sylow p-subgroup
K ⊆ G, by the second Sylow theorem we have that K = gHg−1 for some g ∈ G, but H is
normal in G so gHg−1 = H, i.e. K = H.
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19 Mon. 12/11/18 – proof of Sylow’s, applications

19.1 Sylow theorem (II) and (III)
We now prove the 2nd and 3rd of Sylow’s theorems.

Proof of 2nd theorem. Let X = {gHg−1 | g ∈ G} be the orbit of H under conjugation by
elements in G. We let G act on X by conjugation, i.e. h ? gHg−1 = hgHg−1h−1. We note
that any subgroup of G also acts by this action.

The reasonable thing to do would be to consider the action for K ⊆ G in particular,
because we want to show that K ⊂ gHg−1. Instead, we consider the action of H itself. We
write the decomposition of X into orbits:

X = {H}
∐

O1

∐
· · ·

∐
Or.

Fix some giHg−1
i ∈ Oi, so H 6= giHg

−1
i and thus H ( giHg

−1
i . We use the technical corollary

to get that p | |Oi|, so X ≡ 1 (mod p).
We now consider the action of K on X, and write again

X = O′
1

∐
· · ·

∐
O′
s,

but p - |X|, so there must be some orbit for which p - |O′
i|, so necessarily |O′

i| = 1, and by
the corollary again (using the magical direction this time), we get K ⊂ gHg−1.

Proof of 3rd theorem. Let X be the set of all Sylow p-subgroups, so np = |X| ≡ 1 (mod p)
by an intermediate step in our previous proof.

Furthermore, by the Orbit-Stabilizer theorem, we have |G| = |X||NG(H)| so |X| = [G :
NG(H)]. But since H ⊆ NG(H), we have [G : NG(H)] | [G : H] = m.

We conclude that np ≡ 1 (mod p) and np | m.

We now have an easy re-proof of Cauchy’s. Suppose that p | |G| is prime. By the first
Sylow theorem, we know that G has a Sylow p-subgroup H ⊆ G. Choose any x ∈ H with
x 6= 1. Then by Lagrange’s we necessarily have ord(x) = pb with b > 0, so take xpb−1 , which
has order p.
Corollary 19.1. Let G be a finite group, with p | |G| prime. Then for any x ∈ G, its order
is pb if and only if x ∈ H for some Sylow p-subgroup H ⊆ G.

In particular, ifG has a normal Sylow p-subgroupH, thenH consists uniquely of elements
in G whose order are powers of p.

Proof. (⇐=) Just proved it by Lagrange’s.
(=⇒) Consider the subgroup 〈x〉, which is in particular a p-subgroup of G. By the second

Sylow theorem, 〈x〉 is contained in some Sylow p-subgroup of G, and thus x is as well.
Corollary 19.2. If G has a normal Sylow p-subgroup and a, b ∈ G have order px and py

respectively, then ab has order pz for some integer z.
Proof. Let H be the unique normal Sylow p-subgroup of G. By the previous corollary, both
a and b are in H. By closure under multiplication we have ab ∈ H, but again by the corollary
ab must have order a power of p.
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20 Wed. 14/11/18 – examples and the Structure The-
orem

20.1 Groups of order 1225
We have seen how the case when np = 1 is extremely useful in order to know more about a
given group. For example, suppose that |G| = 1225 = 5272.

From the fact that n5 | 49, we have that n5 = 1, 7, 49, but since n5 ≡ 1 (mod 5), we
reduce the possibilities to n5 ≡ 1, 2, 4 (mod 5) and thus conclude that n5 = 1.

Similarly for n7 | 25, so we have n7 = 1, 5, 25, but by n7 ≡ 1, 5, 4 (mod 7) we conclude
again that n7 = 1.

Hence G has normal subgroups H5 and H7 of order |H5| = 25 and |H7| = 49. What can
we learn about G from this? Turns out that quite a bit.

Lemma 20.1. Let G be a group, and suppose that it has normal subgroups H,K E G such
that H ∩K = {1}. Then hk = kh for all h ∈ H and k ∈ K.

Proof. We know that hk = kh iff hkh−1k−1 = 1. We call this element the commutator of
h and k.

Fix any two elements h ∈ H, k ∈ K. Parenthesizing, we note that (hkh−1)k−1 is in K
and that h(kh−1k−1) is in H, so hkh−1k−1 ∈ H ∩K = {1}, and thus by our observation we
conclude that h and k commute.

Theorem 20.2. Let G be a group and H,K E G normal subgroups with H ∩ K = {1}.
Then the map

f : H ×K → HK

(h, k) 7→ hk

is an isomorphism.

We call HK the internal product and H ×K the external product of subgroups H
and K.

This relates to the linear algebra facts that, given two disjoint subspaces V1, V2 ⊆ V of a
vector space, we have V1 ⊕ V2 ' V1 + V2.

Proof. Showing that the map f is a homomorphism requires using the lemma we have just
proven.

For surjectivity, it is clear that any product hk ∈ HK is mapped to by the pair (h, k) ∈
H ×K.

If f((h, k)) = 1, then hk = 1 so h = k−1, but then k ∈ H so k = 1 and thus h = 1.
Hence f is also injective, and thus an isomorphism.

We now apply this result to our |G| = 1225 case. Note that (|H5|, |H7|) = 1, so these
subgroups have trivial intersection, and so we apply the theorem to get that H5 × H7 '
H5H7 ⊆ G. However, note that |H5 ×H7| = |G|, and so G = H5H7 ' H5 ×H7.
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Furthermore, by Homework #5 we know that |H| = p2 implies thatH is either isomorphic
to Z/p2Z or (Z/pZ)2. Hence, up to isomorphism, G is reduced to one of four possibilities,
which is amazing considering that all we knew about G was its order!

This lends itself to a general result:

Theorem 20.3. Let G be a finite group with |G| = pa11 · · · pakk . Suppose that for each i, we
have a normal Sylow p-subgroup Hpi E G, i.e npi = 1. Then

G ' Hp1 × · · · ×Hpk .

The assumptions of the things we got lucky for |G| = 1225: we ruled out any possibilities
other than n5 = n7 = 1. Furthermore (this is not captured in the theorem), each Hp was
of order prime squared, which made things even easier. The proof is not magical, we use
induction and the previous result.

Proof. We note that if H,K E G are normal, then HK is also normal.
So Hp1 . . . Hpi and Hpi+1

are normal in G, with trivial intersection by their orders being
relatively prime. We apply the previous theorem to get

(Hp1 · · ·Hpi)×Hpi+1
' Hp1 · · ·HpiHpi+1

.

Hence we have shown that

Hp1 × · · · ×Hpk ' Hp1 · · ·Hpk ⊆ G,

but the order of the right-hand side of the equation is equal to the order of G (by the
isomorphism to the external product), and thus must be equal to G.

Hic sunt dracones! Having normal subgroups H1, H2, H3 E G with pair-wise trivial
intersection does not imply H1 ×H2 ×H3 ' H1H2H3, because the intersection H1H2 ∩H3

might not necessarily be trivial anymore. We truly needed the assumption on Hi being Sylow
p-subgroups.

20.2 Structure Theorem
If G is abelian, then np = 1 for all primes dividing |G| because every subgroup is normal,
so our previous theorem always applies to abelian groups. With some more algebra, we get
this result.

Theorem 20.4 (Structure theorem for finite abelian groups). If G is an abelian p-group,
then G ' Z/pa1Z× · · ·Z/palZ for unique exponents up to reordering.

If G is a finite abelian group, then G ' Hp1 ×· · ·×Hpk with Hpi abelian pi-groups unique
up to isomorphism.

45



21 Fri. 16/11/18 – Midterm II
Problem 1. (10 points) True or false. Write one or two sentences justifying your answer:

(a) If a group G acts on a finite set X, then the size of any orbit divides |X|.

Answer. False. By the Orbit-Stabilizer theorem, we have that the size of any
orbit divides |G|, not |X|. For a counterexample, consider the usual action of
〈(1 2)〉 ⊆ S3 on X = {1, 2, 3}, which has an orbit {1, 2} the order of which does
not divide |〈(1 2)〉| = 3.

(b) If G is a simple group of order pn for some prime p, then G ' Z/pZ.

Answer. True. Since G is a p-group, we have some x ∈ Z(G) with ord(x) = p.
Hence 〈x〉 is normal, so necessarily G = 〈x〉 ' Z/pZ.

(c) CS8((1 2)(3 4)(5 6)) contains an element of order 3.

Answer. True. For example, (1 3 5)(2 4 6). As an alternative, notice that |CS8((1 2)(3 4)(5 6))| =
(3!23)2! (by some HW#? formula), so by Cauchy’s this group has an element of
order 3.

(d) If G is a finite group such that there is a prime p2 | |G|, and H a subgroup of
index p, then G is not simple.

Answer. False, but tricky. By the orbit-stabilizer, it is not necessarily true that
m | |G| is G acts faithfully on a set with m elements, so it is reasonable to suspect
that this is false.
For an explicit counterexample, consider G = Z/nZ, and the question becomes
“if m is the smallest integer such that a”.

(e) If H and K are finite subgroups of G, then [K : H ∩K] | [G : H].

Answer. False. For example, H = 〈(1 2)〉, K = 〈(2 3)〉 in G = S3. We have
[G : H] = 3 and [K : H ∩K] = 2.

Problem 2. (5 points) Let n ≥ 2 be an integer. The group Sn acts on the set

X = {1, . . . , n} × {1, . . . , n}

via σ ? (i, j) = (σ(i), σ(j)). Find the orbits for this action, and for each orbit find the
size of the orbit as well as the size of the stabilizer of an element in that orbit.

Proof.

Problem 3. (5 points) Show that (Z× Z/4Z)/〈(2, 2)〉 ' Z/4Z× Z/2Z.

Proof.
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Problem 4. (5 points) Let G be a group and let H ⊆ G be a normal subgroup such that the
quotient group G/H is abelian. Show that [g] ⊆ gH for any g ∈ G, where [g] denotes
the conjugacy class of g in G.

Proof. We have kgk−1H = (kH)(gH)(k−1H) = (kH)(k−1H)(gH) = gH, so kgk ∈
gH.

Problem 5. (5 points) Let G be a finite group and suppose that there is a prime p for which p2 | |G|,
and G contains a subgroup H of index p. Show that G is not simple.

Proof. Consider the action of G on G/H. This gives a homomorphism ϕ : G → Sp.
We want to show that the kernel of this action is not trivial. Since im(f) | p!, then
p2 - im(f) so we must have p | | kerϕ|, giving a nontrivial kernel which is in fact
contained in H. This proves the statement.

Problem 6. (5 points) Suppose that G is finite, and that any two non-identity elements in G are
conjugate. Show that G ' Z/2Z.

Proof. The orbit of any non-identity element has cardinality |G| − 1. Hence, by the
Orbit-Stabilizer theorem, we have |G| = (|G| − 1)| StabG(x)|.
This immediately implies that |G| = 2, so G ' Z/2Z.
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22 Mon. 19/11/18 – The semidirect product

22.1 Motivation
Recall our theorem from the previous class, the backbone of our proof for understanding
|G| = 1225.

Let G be a group, H,K E G with H∩K = {1}. Then H×K ' HK through (h, k) 7→ hk.
The question is: can we relax the requirement that both H and K be normal? The answer

is yes, and we show this by the semidirect product.
Recall that HK ⊆ G is indeed a subgroup; this is also true even if only H is normal in

G, for

hk · h′k′ = h(kh′k−1)kk′ ∈ HK

and

(hk)−1 = k−1h−1 = (k−1h−1k)k−1 ∈ HK.

We want to encode the action of K on H by conjugation. Fixing k ∈ K, we have an
automorphism

ϕ(k) : H → H

h 7→ khk−1.

We quickly check that this is in fact an automorphism:

ϕ(k)(hh′) = khh′k−1 = khk−1kh′k−1

= ϕ(k)(h)ϕ(k)(h′),

and ϕ(k−1) is an inverse to ϕ(k).
Going one level up, we have a homomorphism

ϕ : K → Aut(H)

k 7→ ϕ(k).

Indeed, we have

ϕ(kk′)(h) = (kk′)h(kk′)−1 = k(k′hk′
−1
)k−1

= kϕ(k′)(h)k−1 = ϕ(k) (ϕ(k′)(h))

= (ϕ(k) ◦ ϕ(k′))(h).

In a very concrete sense, as we will see, this homomorphism encodes all the information
about the action of K on H, which in turn characterizes the product HK.
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22.2 Formal definition
Definition 22.1. Given groups H and K, together with a homomorphism ϕ : K → Aut(H),
we define the semidirect product H oϕ K in two steps:

• as a set, H oϕ K is simply H ×K;
• the binary operation on H oϕ K is given by

(h, k)(h′, k′) = (hϕ(k)(h′), kk′).

Proposition 22.2. H oϕ K is a group.

Proof. The identity is (1, 1), for

(1, 1)(h, k) = (1ϕ(1)(h), 1k) = (h, k) and
(h, k)(1, 1) = (hϕ(k)(1), k1) = (h, k).

As for closure of multiplication, we have

(h, k)(h′, k′) = (hϕ(k)(h′), kk′) ∈ H oϕ K.

The inverse of an element (h, k) is (ϕ(k−1)(h−1), k−1), for

(h, k)(ϕ(k−1)(h−1), k−1) =
(
hϕ(k)

(
ϕ(k−1)(h−1)

)
, kk−1

)
= (hϕ(kk−1)(h−1), 1) = (hϕ(1)(h−1), 1) = (hh−1, 1) = (1, 1) and

(ϕ(k−1)(h−1), k−1)(h, k) = (ϕ(k−1)(h−1)ϕ(k−1)(h), k−1k)

= (ϕ(k−1)(h−1h), 1) = (ϕ(k−1)(1), 1) = (1, 1).

Finally, we check that associativity holds.

Common sense says that you shouldn’t
check associativity on the board, but I
don’t like common sense.

George Boxer

((h, k)(h′, k′)) (h′′, k′′) = · · ·

Here’s the punchline: we show that both H and K are embedded in H oϕ K, and we
generalize the theorem we posed at the start of the class.

Proposition 22.3. {(h, 1) | h ∈ H} is a subgroup of H oϕ K isomorphic to H.

Proof. The isomorphic part is clear. As for being a subgroup,

(h, 1)(h′, 1) = (hϕ(1)(h′), 1) = (hh′, 1).
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Proposition 22.4. {(1, k) | k ∈ K} is a subgroup of H oϕ K isomorphic to K.

Proof. Indeed,
(1, k)(1, k′) = (1ϕ(k)(1), kk′) = (1, kk′).

Furthermore, we have a very nice conjugation formula for K on H:

(1, k)(h, 1)(1, k)−1 = (1, k)(h, 1)(1, k−1)

= (1ϕ(k)(h), k)(1, k−1)

= (ϕ(k)(h)ϕ(k)(1), kk−1)

= (ϕ(k)(h), 1),

which somehow generalizes usual conjugation of K on H in our initial example.

Theorem 22.5. Given a group G, subgroups H,K ⊆ G with H E G and H ∩K = {1}, and
a homomorphism ϕ : K → Aut(H) given by ϕ(k)(h) = khk−1, then the map

f : H oϕ K → HK

(h, k) 7→ hk

is an isomorphism.

Proof. We first check that it is a homomorphism:

f((h, k))f((h′, k′)) = hkh′k′

= hkh′k−1kk′

= hϕ(k)(h′)kk′

= f((hϕ(k)(h′), kk′))

= f((h, k)(h′, k′)).

It is clear that surjectivity holds, since for any hk ∈ HK we have f((h, k)) = hk.
Finally, suppose that f((h, k)) = 1, then hk = 1 so h = k−1 ∈ H∩K = {1}, so h = k = 1.

Hence the map is injective.
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23 Wed. 21/11/18 – Examples of the semidirect prod-
uct

Recall that we form the semidirect product from two given groups H and K, by taking a
homomorphism φ : K → Aut(H). The resulting semidirect productHoφK is set-isomorphic
to H ×K, but its group law is given by

(h, k)(h′, k′) = (hφ(k)(h′), kk′).

We proved that HoφK is indeed a group. If H and K are taken to be subgroups of some
larger G, with H normal and H ∩K = {1}, then the resulting semidirect product H oφ K
is isomorphic to HK through the obvious map, with φ denoting conjugation in H by K.

23.1 Dihedral group D2n

Let H be the subgroup of rotations in D2n, which is normal and isomorphic to Z/nZ. Let K
be the subgroup generated by a single reflection in D2n, which is isomorphic to Z/2Z. It is
clear that H∩K = {1}, so we apply the theorem to get (Z/nZ)oφ (Z/2Z) ' HoφK ' HK,
but since |HK| = 2n, we get (Z/nZ)oφ (Z/2Z) ' D2n, with

φ(1)(rk) = rk

φ(s)(rk) = srks−1 = r−k.

With this in mind, we can now work with D2n in terms of Z/nZ and Z/2Z: we write
D2n = {rasb | 0 ≤ a < n, 0 ≤ b ≤ 1}, and

(rasb)(ra
′
sb

′
) = ra(sbra

′
s−b)sbsb

′

= rar(−1)ba′sb+b
′

= ra+(−1)ba′sb+b
′
.

23.2 Alternating group A4

Let G = A4, and let H = {1, (12)(34), (13)(24), (14)(23)} ⊆ A4 be the Klein 4-group, which
is normal and isomorphic to (Z/2Z)2. Also let K = 〈(123)〉 ' Z/3Z.

Since gcd(|H|, |K|) = 1, we have H ∩K = {1} by Lagrange’s, whence A4 ' (Z/2Z)2 oφ

(Z/3Z), with φ usual conjugation, which we will not spend time writing it out explicitly.

23.3 Automorphism group examples
Understanding semidirect products requires understanding automorphism groups in general,
and homomorphisms of the form K → Aut(H).

Example; we know from HW that Aut(Z/nZ) ' (Z/nZ)×, because if φ is an automor-
phism of Z/nZ, it is fully determined by φ(1) = a, whence φ(x) = ax. In order for this map
to be a bijection, we need a to be invertible.
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Example; we have also seen that Aut((Z/nZ)2) ' GL2(Fp). It follows from a similar
argument: an automorphism of (Z/nZ)2 is fully determined by φ(1, 0) = (a, c) and φ(0, 1) =
(b, d), whence φ(x, y) = φ(x(1, 0) + y(0, 1)) = xφ(1, 0) + yφ(0, 1) = (ax + by, cx + dy),
corresponding exactly to multiplication of the vector (x, y) by the matrix(

a b
c d

)
.

This map is invertible iff A is invertible, i.e. det(A) 6= 0, iff A ∈ GL2(Fp).

23.4 Homomorphism examples
If K = 〈y〉 is cyclic of order n, then

{homomorphism φ : K → Aut(H)} ⇐⇒ {ψ ∈ Aut(H) | ψn = 1}.

So H oφ 〈y〉 = {(h, ya) | h ∈ H, 0 ≤ a < n} with group law

(h, ya)(h′, yb) = (hφ(ya)(h′), ya+b)

= (hψa(h′), ya+b),

whence

(1, y)(h, 1) = (ψ(h), y)

= (ψ(h), 1)(1, y),

i.e. (1, y)(h, 1)(1, y)−1 = (ψ(h), 1).
For a very concrete example, let p, q be primes with p > q. If G is non-abelian with

|G| = pq, we know that p ≡ 1 (mod q). Consider G = (Z/pZ) o (Z/qZ) ' 〈x〉 o 〈y〉. We
need ψ ∈ Aut(Z/pZ) to have order q. Since Aut(Z/pZ) = (Z/pZ)×, we want k ∈ (Z/pZ)×

for which kq ≡ 1 (mod q), and k 6≡ 1.
Hence we denote every such automorphism by ψk(x) = xk, so ψk(xa) = xka. Then

〈x〉oψk
〈y〉 = {xayb | 0 ≤ a < p, 0 ≤ b < q},

with group law given by
(xa, yb)(xa

′
, yb

′
) = (xa+k

ba′ , yb+b
′
).
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24 Fri. 23/11/18 – no class, thanksgiving
—

53



25 Mon. 26/11/18 – ??
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26 Wed. 28/11/18 – when Sylow’s is not enough

26.1 Groups of order 30
We now explore arbitrary groups of a given order, for which Sylow’s theorem does not
immediately give the normal subgroup structure.

Example; let G be a group of order 30 = 2 · 3 · 5. Sylow analysis gives

n5 = 1, 6

n3 = 1, 10

n2 = 1, 3, 5, 15.

It turns out that n3 = n5 = 1, but it is not immediately obvious.
Claim: either n3 = 1 or n5 = 1.

Proof. If n5 = 6, there are 6 · (5− 1) = 24 elements of order 5 in G.
If n3 = 10, there are 10 · (3− 1) = 20 elements of order 3 in G.
These two cannot be true at the same time, since 24 + 20 > 30 = |G|.

Now let H3, H5 be Sylow 3− and 5−subgroups of G. At least one of them is normal, so

N = H3H5 ⊆ G

is a subgroup of G, which has order 3 · 5 = 15, whence [G : N ] = 2, so N is in fact normal.
Therefore N ' Z/15Z, by our classification of groups of order pq, given that 5 6≡ 1 (mod 3).

Thus G ' Z/15Z oφ Z/2Z (?? why ??).
Claim; both H3 and H5 are normal in G.
If g ∈ G, then gH3g

−1 ⊆ gNg−1 = N , by N being normal. But N ' Z/15Z has a unique
subgroup of order 3, so in fact we have gH3g

−1 = H3, whence H3 is normal. The same
argument works for H5.

This proves our initial claim. In fact, we have in general that if |G| = 2m with m odd,
then there is some N ⊆ G such that [G : N ] = 2 (see midterm 2 review and HW#8).

26.2 Automorphisms and characteristic subgroups
Let G be a group. For all g ∈ G, we have φg ∈ Aut(G) given by φg(h) = ghg−1, and a
homomorphism

f : G→ Aut(G)
g 7→ φg,

whose kernel is Z(G). Hence, by the first isomorphism theorem, we have G/Z(G) ' im f .

Definition 26.1. We say that an automorphism of the form φg is inner. Otherwise, we call
it outer.
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We denote by Inn(G) ⊆ Aut(G) the subgroup of inner automorphism. In fact, we have
Inn(G) E Aut(G), as we shall see in HW#9. Let Out(G) = Aut(G) \ Inn(G).

Example; if G is abelian, then Inn(G) = {1}, so Out(G) = Aut(G).
If G = Sn for n 6= 6, then Aut(G) = Inn(G) ' Sn, so Out(G) = {1}.
When n = 6, we have [Aut(S6) : Inn(S6)] = 2, whence Out(S6) ' Z/2Z, as we shall see

in the final review sheet.

Definition 26.2. A subgroup H ⊆ G is called characteristic if φ(H) = H for all φ ∈
Aut(G).

In particular, φg(H) = gHg−1 = H, so H being characteristic implies that it is normal.
Why do we care about characteristic subgroups? Recall that having subgroups K E H E

G does not imply that K be normal in G, but

Proposition 26.3. Suppose that K ⊆ H ⊆ G are subgroups, and that K is characteristic
in H. Then

(1) H E G implies K E G; and
(2) H ⊆ G characteristic implies K ⊆ G characteristic.

Proof of (1). For any g ∈ G we have gHg−1 = H, so φg restricts to an automorphism of H,
not necessarily inner. Then φg(K) = K by K being characteristic in K, so gKg−1 = K, i.e.
K is normal in G.

Example; 〈(1, 0)〉 ⊆ (Z/pZ)2. For A ∈ GL2(Fp), which is equivalent to an automorphism
of (Z/pZ)2, we have A〈(1, 0)〉 = 〈A(1, 0)〉, which is not usually equal to 〈(1, 0)〉, for example(

0 1
1 0

)
〈
(
1
0

)
〉 = 〈

(
0
1

)
〉.

If we letH be the unique subgroup of G of a given order |H|, thenH ⊆ G is characteristic.
From this we get

• A normal Sylow subgroup is characteristic; and
• Any subgroup of a cyclic group is characteristic.

26.3 Our “normal subgroup” program
Problem; how do we show that a group G of some order n has a normal subgroup when we
can’t necessarily find a normal Sylow subgroup? Or, equivalently, how can we show that
there are no simple groups of a given order n?

We explore are number of strategies; to begin with, if G is simple and we have a homo-
morphism f : G → H, then either ker f = {1} or ker f = G. If we furthermore assume the
homomorphism to be non-trivial, we must have ker f = {1}, so by the 1st ISO theorem we
get G ' im f ⊆ H.

In general, if we find an action of G on a set of n elements, we get a special non-trivial
homomorphism

f : G→ Sn,
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so if ker f 6= {1}, we have |G| | n!. We can improve this divisibility condition a bit, by
considering the sequence

G→ Sn → Sn/An = Z/2Z.

If G is not isomorphic to Z/2Z, then necessarily im f ⊆ An implies |G| | n!
2
, a slight

improvement.
Example; there are no simple subgroups of order 72 = 23 · 32.
Sylow analysis gives n3 = 1, 4 and n2 = 1, 3, 9, which is not very helpful. But if we assume

that n3 = 4, we can consider the action of G on the 4 Sylow 3-subgroups by conjugation,
giving a non-trivial homomorphism f : G→ S4. But we immediately note that 72 - 4! = |S4|,
whence ker f must be non-trivial, and so a normal subgroup in G. Hence G is not simple.
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27 Fri. 30/11/18 – the “finding simple groups” pro-
gram

27.1 Strategies to prove |G| = n is not simple
(1) Sylow’s theorem might tell you np = 1 for some p | |G|.
(2) Count elements.

This works best when |G| = pm with (p,m) = 1 and Sylow gives a large np = m.
It is harder to use when |G| = pam with a > 1. It can happen that two Sylow
p-subgroups H 6= H ′ exist, with H ∩H ′ 6= {1}.

(3) Look for group actions on small sets.
Lemma: if a simple group G acts non-trivially on a set of size k and G 6' Z/2Z, then
|G| | k!/2.
Proof: we get a homomorphism f : G → Sk, with ker f 6= G because the action
is not trivial, but then ker f = {1}, whence |G| | k!. Now consider the composite
G→ Sk → Sk/Ak ' Z/2Z, whose kernel cannot be {1}, for then G ' Z/2Z. But then
it must be all of G, so f(G) ⊆ Ak, whence |G| | k!/2.

27.2 Groups of order 144

Note 144 = 24 · 32. Sylow analysis gives

• n3 = 1, 4, 16

• n2 = 1, 3, 9.

Now suppose that G is simple and of order 144. Since 144 divides neither 4!
2
nor 3!

2
, from

our previous consideration we can’t have n3 = 4 nor n2 = 3. So we have n3 = 16 and n2 = 9.
Since we have a number of Sylow 3-subgroups, we consider two possible cases:

• For all H 6= H ′ Sylow 3-subgroups, then H ∩H ′ = {1}. So G has 16 · (9− 1) elements
of order 3 or 9, i.e. G has only 16 elements of order distinct from 3 and 9, which must
then form a normal Sylow 2-subgroup, a contradiction.

• There is a pair of Sylow 3-subgroups H 6= H ′ with non-trivial intersection. Then
|H ∩H ′| = 3. Consider N = NG(H ∩H ′). We note that, since H ' H ′ ' Z/3Z, they
are abelian, so H ∩H ′ E H,H ′, whence H,H ′ ⊆ N , i.e. N 6= {1}. Then either
Subcase (a): N = G, so H ∩H ′ is normal in G, a contradiction.
Subcase (b): N 6= G, but N 6= {1}, so [G : N ] = 2 or 4. We let G act on the cosets
G/N , which by our lemma gives |G| | 4!, a contradiction.

27.3 Groups of order 60
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28 Mon. 03/12/18 – finding more simple groups

28.1 Groups of order 60 (cont’d)

28.2 But where are simple groups?
Here is the list of simple groups we know so far:

• Z/pZ, for p prime (the only abelian simple groups); and
• An for n ≥ 5.

:(
Simple groups seem sparse, since |An| = n!

2
grows very fast. For instance, |A5| = 60 and

|A6| = 360, so we might ask: is there any non-abelian simple group in between these two
orders? The answer is Yes.

Theorem 28.1. For n < 168 = 23 ·3 ·7, and n 6= 60, there are no non-abelian simple groups
of order n.

(The punchline is that there is a non-abelian simple group of order 168, as we shall show
next class.)

We better keep track of group orders for which we know for sure there are no simple
groups.

Lemma 28.2. There are no non-abelian simple groups of orders as follows, for p, q, l distinct
primes and m odd;

• pn, for it has non-trivial center; x ∈ Z(G) can be chosen to have order p by Cauchy’s.
• pq, as per our work in class.
• p2q, pql and 2m, by this week’s homework.
• 3pn, 4pn and 8p, as we shall show.
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29 Wed. 05/12/18 – simplicity of PSL2(Fp)
We will add another group to our list of simple groups.

—
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30 Midterm I review
(...)
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31 Midterm II review
Things to know:
(1) Quotient groups and the first isomorphism theorem. (it can’t hurt to be aware of the

2nd and 3rd isomorphism theorems but they are less important than the 1st!)
(2) Group actions:

(a) Giving an action of a grup G on a set X is the same as giving a homomorphism
G→ SX .

(b) Orbits, stabilizers, and the orbit-stabilizer theorem.
(c) Some terminology for group actions: faithful and transitive actions, the kernel of

a group action.
(3) Conjugation:

(a) Conjugacy classes are the orbits, centralizers are the stabilizers.
(b) Conjugacy classes for Sn.

(4) Simple groups, An is simple for n ≥ 5.
Nothing about Sylow’s theorems!
Here are some practice problems:

(1) True or false:
(a) If G is a group with an abelian normal subgroup H ⊆ G such that G/H is abelian,

then G is abelian.

Answer. False. For example, consider the subgroup of rotations in D2n.

(b) If G is a cyclic group, then for any subgroup H ⊂ G, G/H is also cyclic.

Answer. False.

(c) Sn is a simple group for n ≥ 5.

Answer. False.

(d) If φ : G→ H is a homomorphism then im(φ) is a normal subgroup of H.

Answer. False.

(e) If K ⊆ H ⊆ G are subgroups and K is normal in G, then K is normal in H.

Answer. False.

(f) Let G be a group. Then {(g, g) | g ∈ G} ⊂ G×G is a normal subgroup.

Answer. False.

(g) Any two reflections in the Dihedral group D2n for n ≥ 3 are conjugate.

Answer. False.
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(h) If G1 and G2 are groups then Z(G1 ×G2) = Z(G1)× Z(G2).

Answer. False.

(i) There are only finitely many groups up to isomorphism which can act transitively
on a set with 7 elements.

Answer. False.

(j) There are only finitely many groups up to isomorphism which can act faithfully
on a set with 7 elements.

Answer. False.

(2) Prove that
(Z/6Z× Z/4Z) /〈(3, 2)〉 ' Z/3Z× Z/4Z.

Proof. Consider the map

ϕ : (Z/6Z× Z/4Z) → Z/3Z× Z/4Z
(x, y) 7→ (x, 2x+ y).

This is clearly a homomorphism, since it’s a linear combination of terms in the domain.
Furthermore, it is surjective: it is clear on the first coordinate, and for the second
coordinate fixing x = 0 we have 0 7→ 0, 1 7→ 1, 2 7→ 2, 3 7→ 3, so it is surjective.
Finally, (x, y) ∈ ker(ϕ) iff x ≡ 0 (mod 3), i.e. x = 0, 3, whence y = 0 and y = 2, so
ker(ϕ) = 〈(3, 2)〉.
Hence by the first isomorphism theorem, we get the result.

(3) Prove that any finite group is isomorphic to a subgroup of An for some n.

Proof. Let G be a finite group. By Cayley’s theorem, we have that G is isomorphic to
a subgroup of Sn for some n. Now consider the injection

φ : Sn → An+2

σ 7→

{
(n+ 1n+ 2)σ if σ is odd
σ if σ is even

.

Hence Sn is isomorphic to some subgroup of An+2, and in particular G as well.

(4) Write out the class equation for A4 and D8.
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Solution. We recall that, since An is simple and the center of a group is always normal,
necessarily Z(An) = {1}. Thus

A4 = [(1)]A5

∐
[(1 2 3)]A4

∐
[(1 3 2)]A4

∐
[(1 2)(3 4)]A4

|A4| = 1 + 4 + 4 + 3.

For D8, we have Z(D8) = {1, Rπ}.

(5) Let G be a finite group and let H be a proper subgroup. Show that G 6=
⋃
g∈G gHg

−1.

(6) Let G be a group of order pa for p prime. Prove that G has a subgroup of order pb for
all b < a. (hint: try to prove this by induction on a.)

Proof. By Cauchy’s, we have an element x ∈ G of order p. Then G/NG(〈x〉) has order
pa−1; we use the inductive hypothesis to get a subgroup K of order pb.
Let K be the preimage of K under the quotient homomorphism; it corresponds to
(…)

(7) Let G be a group and suppose that the center Z(G) has index n in G. Show that every
conjugacy class in G has size at most n.

(8) Let G be a group, and let H ⊆ G be a subgroup. Consider the action of G on G/H
given by g ? aH = gaH.
(a) Show that the stabilizer of the coset aH for this action is aHa−1.
(b) Now suppose that H has index n in G. Show that

⋂
g∈G gHg

−1 is a normal
subgroup of G of index dividing n!.

(9) (a) Show that if a group G acts faithfully and transitively on a finite set X with n
elements then n | |G| and |G| | n!.

(b) Show that a group G cannot act faithfully and transitively both on a set of order
10 and a set of order 11.

(10) Let G be a finite simple group and suppose that G has a subgroup of index n. Show
that |G| | n!.

(11) (a) Show that for n ≥ 5, the only normal subgroups of Sn are {1}, An, and Sn.
(b) Show that for n ≥ 5, any subgroup of H ⊂ Sn of index n is isomorphic to Sn−1.

(hint: consider the action of Sn on Sn/H, the set of left cosets of H. Also note
that this is true for all n.)

(c) (just for fun) Remind yourself of Problem 8 on HW#5, and show that PGL2(F5) '
S5.

64



32 Final review

32.1 Things to know
(1) The normalizer NG(H) is the stabilizer of H for the action of G on its subgroups by

conjugation.
(2) Sylow’s theorems, and most importantly what a Sylow subgroup is, Sylow subgroups

exist, any two Sylow p-subgroups are conjugate, and what Sylow’s 3rd theorem tells
you about np.

(3) What to do when you have actually found some normal subgroups: if you have sub-
groups H,K ⊂ G with H ∩K = {1},
(a) If both H,K are normal in G, then H ×K ' HK.
(b) If H is normal in G then H oφ K ' HK, where φ(k)(h) = khk−1.
(c) This will be especially useful if |H||K| = G, because then G = HK.

(4) Semidirect products: know what they are and what they are good for (point (b) above).
In general, problems involving semidirect products can take a long time and require
lots of computation, and so this limits what I can ask about them. Expect only short
conceptual questions!

(5) Terminology about automorphisms: inner and outer automorphisms, and characteristic
subgroups.

(6) Strategies for finding normal subgroups when Sylow’s 3rd theorem alone fails:
(a) Count elements in Sylow subgroups. This works especially well if |G| = pm, with

gcd(p,m) = 1, and Sylow tells you that np = 1 or m.
(b) Find a non-trivial action of G on a small set, for example the Sylow p-subgroups

if Sylow’s theorem forces np to be small. (If a simple group G which is not
isomorphic to Z/2Z acts non-trivially on a set with n elements, then |G| divides
n!/2.)

(7) In general, you shouldn’t feel the need to memorize the various things about classi-
fications of groups of certain orders that we’ve proved in class or on the homework.
However, it’s not a bad idea to remember (or be able to quickly rediscover) these
things:
(a) If G is a group of order p2, then either G ' Z/pZ or (Z/pZ)2; in either case, G is

always abelian.
(b) If G is a group of order pq with p > q primes, and if p 6≡ 1 (mod q), then G

is cyclic. If p ≡ 1 (mod q), then G is isomorphic to a non-abelian semidirect
product (Z/pZ)o (Z/qZ). (In fact, there is only one such semidirect product up
to isomorphism, assuming that (Z/pZ)× is cyclic.)
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32.2 Practice problems
(1) Let G be a finite group.

(a) Let K ⊂ G be a normal subgroup of order |K| = pa for some prime p. Show that
for any Sylow p-subgroup H ⊂ G, we have K ⊂ H.

Proof. K is a p-subgroup ofG, so by Sylow’s second theorem we have gKg−1 ⊂ H.
But K is furthermore normal, whence K ⊂ H.

(b) Show that the intersection of all Sylow p-subgroups of G is normal in G.

Proof. By part (a), we have that K ⊆ H. Suppose there is some h ∈ H with
h /∈ K. Then h is in every Sylow p-subgroup Hi of G, which can be obtained by
conjugating a given Sylow p-subgroup H0.
(…)

(2) Let G be a finite group, let H be a Sylow p-subgroup, and let K be a normal subgroup
of G. Show that H ∩K is a Sylow p-subgroup of K. Give an example showing this is
false in general if K is not normal.

Proof. We have |G| = pam with (p,m) = 1, |H| = pa, and |K| = pbm′ with (p,m′) = 1
and b ≤ a.
From this, we immediately see by Lagrange’s that |H ∩K| = pk, for k ≤ b. Our goal
is to show that k = b, i.e. that H ∩K is a Sylow p-subgroup of K.
We use Sylow’s 2nd theorem to get that H ∩K ⊆ H ′ for some Sylow p-subgroup H ′

of K.
Also, H ′ is a p-subgroup of G, so gH ′g−1 ⊆ H for some g ∈ G. Note that gH ′g−1 ⊆ K
by K being normal. Hence, intersecting both sides by K gives gH ′g−1 ⊆ H ∩K.
From these two inclusions we get that |H ∩K| = |H ′|, i.e H ∩K is a Sylow p-subgroup
of K.
For a counterexample if K is not normal, (…).

(3) How many elements of order 3 are there in S6?

Proof. An element of order 3 in S6 must be either a 3-cycle or a (3,3)-cycle. In the
first case, there are 6·5·4

3
= 40 of them, and in the second case, there are 6!

2!32
= 40 of

them, giving a total of 80 elements of order 3.

(4) Let G and H be groups. Show that Z(G×H) = Z(G)× Z(H).

Proof. An element (g, h) ∈ G × H is in the center iff (g, h)(a, b) = (a, b)(g, h) for all
(a, b) ∈ G ×H iff ga = ag and hb = bh for all a ∈ G and all b ∈ H iff g ∈ Z(G) and
h ∈ Z(H).
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(5) (a) Show that D4n ' D2n × Z/2Z if and only if n is odd.

Proof.

(b) Show that D2pn is not isomorphic to D2n for any n if p is an odd prime.

Proof.

(6) (a) Describe CS5((1 2 3)).

Proof. By the Orbit-Stabilizer theorem, we have

|CS5((1 2 3))| =
|S5|

|orbit of (1 2 3)|
= 3 · 2

but since (1 2 3)k(1 2 3)(1 2 3)−k = (1 2 3), the centralizer of (1 2 3) immediately
contains the three powers of (1 2 3), and the same three powers together with the
transposition (4 5). This exhausts the centralizer.

(b) Describe NS5(〈(1 2 3)〉).

Proof. We claim that NS5(〈(1 2 3)〉) ' NS3(〈(1 2 3)〉)×S2, whence |NS5(〈(1 2 3)〉)| =
(3 · 2) · 2 = 12.
(?? structure of normalizer ??)

(7) Show that if H × {1} and {1} × K are characteristic subgroups of H × K, then
Aut(H×K) ' Aut(H)×Aut(K). Give an example whereH×{1} is not a characteristic
subgroup of H ×K.

Proof. Fix any φ ∈ Aut(H × K). For any (h, k) ∈ H × K, we have φ(h, k) =
φ((h, 1)(1, k)) = φ(h, 1)φ(1, k). Since φ(h, 1) ∈ H×{1} and φ(1, k) ∈ {1}×K by these
two subgroups being characteristic, we can associate automorphisms φH ∈ Aut(H) and
φK ∈ Aut(K) to φ for which φ(h, 1) = (φH(h), 1) and φ(1, k) = (1, φK(k)) for all h ∈ H
and k ∈ K.
This defines a map Aut(H × K) → Aut(H) × Aut(K); furthermore, this map has
an inverse defined as follows. For any φH ∈ Aut(H) and φK ∈ Aut(K), form the
automorphism φ ∈ Aut(H ×K) given by φ(h, k) = (φH(h), φK(k)).

(8) Let G be an abelian group acting faithfully and transitively on a set X. Show that for
any x ∈ X, the stabilizer StabG(x) is trivial.

Proof. Suppose that there exists some x ∈ X for which StabG(x) is not trivial, i.e. for
which there is some g ∈ StabG(x) with g 6= 1. Fix y 6= x ∈ X; since the action is
transitive, we have some h ∈ G such that hx = y. Then gy = (gh)x = (hg)x = hx = y,
i.e g ∈ StabG(y). Since y was arbitrary, we have that gx = x for all x ∈ X, i.e. the
kernel of the homomorphism given by this action is not trivial, which contradicts the
assumption that the action was faithful.
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(9) Recall that PSL2(F5) ' A5. Show that there is no isomorphism PSL2(Fp) ' An for
p > 5 prime and n > 5.

Proof.

(10) Let G be a group and let g ∈ G be such that 〈g〉 is normal in G. Show that 〈gn〉 is
also normal in G for any n.

Proof. Recall that if H E G and K ⊆ H is characteristic in H, then K E G.
For this particular case, any automorphism φ of G is determined on 〈g〉 by φ(g) = gk.
Then, for any grn ∈ 〈gn〉, we have φ(grn) = gkrn ∈ 〈gn〉, whence 〈gn〉 is characteristic
in 〈g〉. The claim follows.
Or, alternatively: since 〈gn〉 is the unique subgroup of a particular order of 〈g〉, then
φ(〈gn〉) = 〈gn〉.

(11) Let G be a group of order 231 = 3 ·7 ·11. Show that Z(G) contains an element of order
11.

Proof. Sylow analysis gives n11 = 1. Consider the action of G on the unique Sylow
11-subgroup H11 by conjugation, i.e. ghg−1 = h′ for all g ∈ G, h ∈ H11. This gives a
homomorphism f : G→ Aut(H11) ' (Z/11Z)×.

By the 1st isomorphism theorem, we have that |G|
| ker f | divides | (Z/11Z)× | = 10, but

this is impossible unless [G : ker f ] = 1, i.e. ker f = G, whence ghg−1 = h for all g ∈ G
and h ∈ H11. In particular, this implies that h ∈ Z(G), and since H11 is cyclic of order
11 it contains an element of order 11, which as noted is also in Z(G).

(12) Show that there are no simple groups of the following orders:
(a) 9045 = 32 · 5 · 67.

Proof. Sylow analysis gives n67 = 1.

(b) 1960 = 23 · 5 · 72.

Proof. Sylow analysis gives n7 = 1 or 8. Suppose that n7 = 8, and consider the
action of G on the Sylow 7-subgroups of G. We have a homomorphism G → S8,
forcing |G| | 8!/2, i.e. 23 · 5 · 72 | 8 · 7 · 6 · 5 · 4 · 3, which is impossible.

(c) 380 = 22 · 5 · 19.

Proof. Sylow analysis gives n19 = 1 or 20 and n5 = 1 or 76. Assuming that
neither of them is one, we count 76 · (5− 1) + 20 · (19− 1) = 664 elements in G
of order either 5 or 19, but |G| = 380, giving a contradiction.

(d) 100000 = 24 · 54.
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Proof. Sylow analysis gives n5 = 1 or 16. Suppose that n5 = 16; let G act on
the Sylow 5-subgroups by conjugation, giving a homomorphism G→ S16, whence
|G| | 16!/2. However, notice that |G| contains 4 factors of 5, while the right side
contains only 3 (corresponding to 15, 10 and 5); this is a contradiction.

(13) Show that a group of order 63 must contain an element of order 21.

Proof. Write 63 = 32 ·7. Sylow analysis gives n7 = 1 and n3 = 1 or 7. Hence we have a
normal Sylow 7-subgoup H7 and a number of Sylow 3-subgroups, for instance H3. By
our semidirect product master theorem, we get that H7 oφ H3 ' H7H3 = G. Writing
H7 = 〈x〉, we are looking for an element y ∈ H3 of order 3 which commutes with x,
because then ord(xy) = ord(x) ord(y) = 21.
More explicitly, we want some y ∈ H3 for which yxy−1 = x. This is equivalent to asking
that φ(y) ∈ Aut(H7) be the identity. But Aut(H7) ' Z/6Z, so our automorphism map
is f : H3 → Z/6Z, which gives | ker f | = 3 or 9 (and not 1 because |H3| > 6).
In either case, we can choose y ∈ ker f of order 3, which gives yxy−1 = x and thus
ord(xy) = 21.

(14) Let G be a finite simple group containing an element of order 21. Show that any proper
subgroup of G has index at least 10.

Proof.

(15) (a) Let G be a finite group, and let p be the largest prime dividing the order of G.
Prove that G does not act faithfully on a set with less than p elements.

Proof. Write |G| = pkm, with p the largest prime factor of the order ofG. Suppose
thatG acts on a setX with |X| = n < p. This gives a homomorphism f : G→ Sn.
By Sylow’s theorem, we have a Sylow p-subgroup Hp ⊆ G. Then |f(Hp)| | pk
and |f(Hp)| | n < p, which is impossible unless Hp ⊆ ker f , i.e. the action is not
faithful.

(b) Let G be a finite simple group, and suppose that G has a subgroup H of index
p. Show that p must be the largest prime dividing the order of G.

Proof. Let G be a finite simple group with a subgroup H of index p, and suppose
that there is a prime q > p dividing G.
Consider the action of G on the p cosets of G/H. Since q > p, we apply (a)
and get that this action cannot be faithful, i.e. its associated homomorphism has
non-trivial kernel ⊆ G, which implies that G is not normal, a contradiction.

(c) With the notation as in the last part, show that the set of conjugates of H in G,
i.e. {gHg−1 | g ∈ G}, has size p.

Proof.
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(16) Let G be a group with Z(G) = {1}. Show that Z(Aut(G)) = {1}.

Proof. Suppose that some φ ∈ Aut(G) commutes with all automorphisms. In partic-
ular, it commutes with all ψg ∈ Inn(G), i.e. ψg ◦ f(h) = f ◦ ψg(h) for all h ∈ G,
so

gφ(h)g−1 = φ(g)φ(h)φ(g)−1

φ(g)−1gφ(h)g−1φ(g) = φ(h).

Since f is an automorphism, the equality above can be rewritten as(
φ(g)−1g

)
x
(
g−1φ(g)

)
= x

for all x ∈ G, i.e. φ(g)−1g ∈ Z(G), a contradiction.

(17) Let H be a subgroup of Sn generated by two 3-cycles. Show that H is isomorphic to
one of Z/3Z, (Z/3Z)2, A4, or A5.

Proof. Let H = 〈(a b c)(d e f)〉. We consider the multiple possible cases:

• Disjoint cycles, or same cycle: then |H| = 3, i.e. H ' Z/3Z.
(…)

(18) Show that S20 has a subgroup isomorphic to (Z/2Z)10, and that Sn has no subgroup
isomorphic to (Z/2Z)10 for n < 20.

Proof. Consider H = 〈(1 2)(3 4) · · · (19 20)〉.

(19) View Sn as the subgroup of Sn+1 of permutations fixing n+1. Show that if Sn ⊆ H ⊆
Sn+1 is a subgroup, then either H = Sn or H = Sn+1.

Proof.

(20) (a) LetH be a group. Show that f : H → H given by f(h) = h−1 is an automorphism
of H if and only if H is abelian.

Proof. (=⇒) Since f is an automorphism, we have f(g−1h−1) = f(g−1)f(h−1),
whence (g−1h−1)−1 = (g−1)−1(h−1)−1, i.e. hg = gh. Hence H is abelian.
(⇐=) We have f(gh) = (gh)−1 = (hg)−1 = g−1h−1 = f(g)f(h), so f is a homo-
morphism. Furthermore, given h ∈ H, we have f(h−1) = h, so f is surjective.
Since f maps onto itself, we immediately get that f is an automorphism.
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(b) Suppose that H is abelian. Let K = 〈x〉 be a cyclic group of order 2. Let
φ : K → Aut(H) be defined by φ(x) = f . Show that for any h ∈ H, the element
(h, x) ∈ H oφ K has order 2.

Proof. We have

(h, x)(h, x) = (hφ(x)(h), x2) = (hf(h), 1) = (hh−1, 1) = (1, 1).
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