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Abstract. This paper is a brief introduction to the Galois Correspondence

in topology. First, Galois theory is developed over finite extensions and over

covers of topological spaces. Then, using Grothendieck’s construction of Ga-
lois Theory, a correlation is established between the fundamental group and

absolute Galois groups.
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1. Introduction

There is a long tradition of parallels between Galois theory and covering spaces,
from Hilbert’s ideas on the connections between number fields and Riemann sur-
faces [1] to Grothendieck’s Galois theory, aimed at studying the fundamental group
in the setting of algebraic geometry [2]. In this paper, we develop the language and
tools necessary to understand Galois Theory and its relationship with the funda-
mental group. In sections 2 and 3, we develop Galois Theory on finite dimensional
extensions, and explore corresponding tools on covers over topological spaces. In
sections 4 and 5, we consider more general extensions through Grothendieck’s Ga-
lois Theory, and use it to show a direct relationship between the absolute Galois
group and the fundamental group.
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Some familiarity with groups and fields, including the notions of algebraic and
separable extensions/closures as presented in [4] is assumed of the reader. Famil-
iarity with basic concepts of topology as defined in chapter 0 of [5] is also assumed.

Sections 4 and 5 require basic familiarity with categories. Here, chapters 1 and
4 of [6] present a concise summary of the tools used in this paper.

2. Finite Galois Extensions

Given a field extension L/k, we denote by Aut(L/k) the group of automorphisms
of L that fix all elements of k. There is a natural left action of this group on the
extension, given by (φ, l) 7→ φ(l).

Since the automorphism group Aut(L/k) must preserve the field structure of L,
the set of all elements fixed by the action must be a field extension of k.

Definition 2.1. An algebraic extension L/k is called a Galois extension over k
if the field of all elements fixed by Aut(L/k) is k. We denote Aut(L/k) as Gal(L/k)
for these extensions.

This notion of a Galois extension has several desirable properties, which we will
explore in the following theorems.

Theorem 2.2. A Galois extension L/k is separable, and for each l ∈ L, the min-
imal polynomial over k of l splits into linear factors in L.

Proof. Let α ∈ L, and let mα(x) ∈ k[x] be the minimal polynomial of α. Consider
f to be the product

∏
(x− φ(α)), where φ(α) ranges over all distinct values it can

take with φ ∈ Gal(L/k).
f ∈ k[x] since there are only a finite number of distinct φ(α) as each φ(α) is a

root of mα (we can see this by noticing that mα(φ(α)) = φ(mα(α)) = φ(0) = 0.)
We also know that since mα is the minimal polynomial for α, mα|f . But, for

all φ ∈ Gal(L/k), we showed that φ(α) is a root of mα. As such, mα = f . By
construction, f has no multiple roots, is a product of linear factors, and mα is
irreducible. �

The converse of this theorem also happens to be true, but is not necessary for
this paper. However, in order to discuss various Galois extensions of a given field, it
is convenient to have a maximal Galois extension to embed other Galois extensions
in.

Lemma 2.3 ([4]). Let k be a field.

(1) There exists an algebraic closure k of k, unique up to isomorphism.
(2) Given algebraic extension L/k, there exists an embedding L → k that is

fixed on k.
(3) Given the extension embedding from (2), there exists an isomorphism from

L→ k that is the embedding on the domain L.

The separable closure of k, denoted by ksc or K, the smallest sub-field of
the algebraic closure of k that contains all finite separable extensions of k, is both
Galois over k, and is maximal (via the inclusion ordering). We show this result
formally in Theorem 2.4.

Theorem 2.4. Given field k, and K the separable closure of k, K is the maximal
Galois extension of k.



GALOIS COVERS AND THE FUNDAMENTAL GROUP 3

Proof. First, we show that K is maximal via inclusion for Galois extensions. Sup-
pose there existed a Galois extension L/k such that there exists an α ∈ L that is
not in K. This implies that α is not separable in k (if it was, k(α) would be a finite
separable extension of k.) and hence L/k is not separable. By Theorem 2.2, this is
a contradiction.

Next, we show that it is Galois over k. To do this, we must show that for all
α ∈ K that are not in k, there exists φ ∈ Aut(K/k) such that φ(α) 6= α.

Since α /∈ k, its minimal polynomial mα must have degree 2 or higher. Since mα

factors into linear factors in K, it has another root in K. Let α′ be another root
of mα. Since mα is irreducible, there exists a natural isomorphism between k(α)
and k(α′) that fixes k and maps α→ α′. By (3) in Lemma 2.3, we can extend this
map to k → k. We conclude by noting that separable elements must map to other
separable elements (because of their minimal polynomials) which implies that the
above map, limited to K, is in fact the desired φ. �

We refer to Gal(K/k) as the absolute Galois group of k. It is worth noting
that the separable closure is unique within a given algebraic closure. However, as
algebraic closures are unique only up to isomorphism, so are separable closures.

The next theorem provides us a very useful way to prove that extensions are
Galois.

Theorem 2.5. Let L/k be a separable field extension. L/k is Galois if for all
φ ∈ Gal(K/k), φ(L) ⊆ L.

Proof. We showed in Theorem 2.4 that for any element α ∈ K with minimal poly-
nomial mα over k, and for any φ ∈ Gal(K/k), mα(φ(α)) = 0. Hence, φ(α) is a root
of mα regardless of the choice of φ. By Theorem 2.2, if α ∈ L, then mα splits into
linear factors in L, implying that all of its roots are in L, as desired.

In the other direction, consider α ∈ L that is not in k. Since K is Galois over
k, there exists φ ∈ Gal(K/k) such that φ(α) 6= α. By assumption, we know that
φ(α) ∈ L, so φ limited to L is an automorphism of L that does not fix α. �

With these results, we can finally state the central result of Galois theory for
finite extensions, known as the Galois correspondence. This theorem is loosely
based on Theorem 10.2 in [3].

Theorem 2.6. Let L/k be a finite Galois extension, G = Gal(L/k). There exists
an inclusion-reversing bijection between subgroups H ⊆ G and sub-field extensions
k ⊆ F ⊆ L via the maps

F → Aut(L/F )

H → LH

where LH is the field of elements fixed by H. Moreover, L/F is Galois, and F/k is
Galois if H E G, in which case Gal(F/k) ∼= G/H.

Proof. First, let F be a field such that k ⊆ F ⊆ L. L/F being Galois is a direct
consequence of Theorem 2.5. Designating H = Gal(L/F ), we note that LH = F ,
since the elements fixed by H are exactly F .

Next, let H ⊆ G. L is Galois over LH by virtue of L being a field; moreover,
Gal(L/LH) = H as only automorphisms in H preserve LH , and those automor-
phisms only preserve LH .
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If H E G, consider the action of G/H on F = LH . The natural action is well
defined since H fixes F . Since L/k is Galois, we have

G/H = Gal(F/FG/H) = Gal(F/LG) = Gal(F/k)

as desired.
Finally, if F/k is Galois, note that every φ ∈ G maps F to itself (See Lemma 2.3

and Theorem 2.4), so consider the map G → Gal(F/k) which simply restricts the
automorphisms to F . The kernel of this map is a subgroup of G that fixes F . If
we call the kernel H, we have H E G, and G/H = Gal(F/k) as desired. �

This result gives us a way of associating groups, which act to permute generators
of extensions over base fields, with field extensions in which the generators live. [2]
does an excellent job in demonstrating the power that this relationship provides,
but these exercises are outside of the scope of this paper. Instead, we are interested
in developing a similar tool set for topology, and understanding its implications.

Before we leave the study of finite Galois theory, here are a few examples of
Galois and not-Galois extensions, and their corresponding groups.

Example 2.7. Given n ∈ N, n > 1, let ω be a primitive nth root of unity. Q(ω)/Q
is Galois since all of roots of the minimal polynomial of ω, the nth cyclotomic
polynomial, are in Q(ω). (We know roots must map to other roots, so by Theorem
2.5, the extension is Galois). The roots of the cyclotomic polynomial are generated
by coprime powers to n of ω, meaning that the Galois group is isomorphic to
(Z/nZ)×.

Example 2.8. Let a ∈ Q such that it does not have a cube root in Q. The
extension Q( 3

√
a)/Q is not Galois, since all automorphisms of the extension must

fix 3
√
a ∈ R+ (since the other roots of the minimal polynomial x3− a are complex.)

Example 2.9. Let a ∈ Q have an irrational square root. Q(
√
a)/Q is clearly Galois

(the extension contains all roots of x2 − a, and Q( 4
√
a)/Q(

√
a) is also Galois (the

extension contains all roots of x2 −
√
a). However, Q( 4

√
a)/Q is not Galois, since

there is no automorphism that is not the identity on
√
a.

3. Galois Covers of Topological Spaces

We saw in the last section that Galois theory is the theory of the correspondence
between field extensions and the symmetry groups that act on them. We will be able
to analyze covers, continuous surjections with locally discrete fibers, in a similar
fashion and develop a similar bijection between groups and topological spaces.

3.1. Covering Spaces and Morphisms.

Definition 3.1. Given topological spaces X,Y , Y is a cover of X if there exists a
continuous map ρ : Y → X such that for all x ∈ X, there exists open neighborhood
V ⊆ X where ρ−1(V ) =

∐
i∈I Ui is the disjoint union of open Ui ⊆ Y such that ρ

restricted to any of the Ui induces a homeomorphism between Ui and V .

These maps can be more easily seen in the commutative diagram in Figure 1.

Example 3.2. If Y is a cover such that we could choose V = X for every point
in X, the cover is known as a trivial cover. Given some indexing set I with a
discrete topology, Y is homeomorphic to X × I.
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ρ−1(V ) V × I

V

ρ

f

Figure 1. Cover Commutative Diagram. For each point in X,
we find an open V such that this diagram commutes (and f is the
forgetful map ignoring I, the index set)

Example 3.3. Let X,Y both be the unit circle in C and let ρ : z → zn for some
n ∈ N. The indexing set I in this case is Z/nZ. This map is shown visually in
Figure 2.

Figure 2. Covering map. This graph plots the result of z → zn

on the x − y plane against arg z on the z-axis. The map sends a
circle to a circle wrapped n times.

Given the notion of covers, we now want to think about morphisms over covers

Definition 3.4. Given covers Y,Z of X via maps ρY , ρZ , a cover morphism is
a continuous function f : Y → Z that satisfies the commutative diagram in Figure
3.

Y Z

X

ρY

f

ρZ

Figure 3. Cover Morphism Diagram. We want the morphism to
respect the covering maps of the covers.

With the notion of a morphism over covers, we also can define Aut(Y/X) for Y
a cover of X.

3.2. Group Actions on Covers.

Definition 3.5. Let G be a group acting on topological space Y . Define the
topological space G\Y to be the set of orbits of the action, with the finest topology
that makes the natural map Y → G \ Y continuous.

We would like group actions to induce covering morphisms. In order to ensure
they do so, we need to place a restriction on the types of morphisms we consider.
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Definition 3.6. Let G be a topological group, and Y a topological space upon
which G acts continuously from the left. The action is properly discontinuous
if for all y ∈ Y , there is an open set V containing y such that for all g1, g2 ∈ G,
g1V ∩ g2V = ∅.

Theorem 3.7. If G is a group with a properly discontinuous action on connected
space Y , the natural map ρ : Y → G \ Y makes Y a cover of G \ Y .

Proof. By Definition 3.6, for every y ∈ Y , we can find V such that the action of G on
V is pairwise disjoint. Clearly, V is open in G\Y , and its preimage in Y is a union
of disjoint open sets from the action. The natural map induces a homeomorphism
between each open set and V since every element of g has a continuous inverse. So,
Y covers G \ Y . �

This method of constructing covering maps allows us to produce many interesting
examples, including the following.

Example 3.8 ([5]). Z acts on R via translation (x→ x+ z). This gives us a cover
R over R/Z, where R/Z is homeomorphic to [0, 1) ⊂ R.

Example 3.9. Let G be the group of the nth roots of unity. G acts on C \ {0} by
multiplication, and the action is properly discontinuous, as for any reiθ in C \ {0},
we can consider V = {seiφ | s ∈ R+, θ − iπ

n < φ < θ + iπ
n }. Clearly, since V is a

open sector with an angle of 2iπ
n , and all actions rotate the sector by multiples of

2iπ
n , we have a properly discontinuous action.

3.3. Galois Covers.

Let X be our base topological space that is locally connected – every neigh-
borhood of a point has a connected open neighborhood of the point as a subset.

Theorem 3.10. Let ρ : Y → X be a cover, and Z be a connected space. If
f, g : Z → Y are continuous maps such that ρ ◦ f = ρ ◦ g, and if there exists z ∈ Z
such that f(z) = g(z), then f = g.

Proof. Let V be a connected open set in X that satisfies the cover criterion for
ρ(f(z)) ∈ X (possible since X is locally connected.) Let U be the open set in
the disjoint union of ρ−1(V ) that contains f(z). Hence, there exists some open
neighborhood X of z such that f, g both map X to U . Since ρ−1 is continuous on
V , we have that

ρ−1 ◦ ρ ◦ f = ρ−1 ◦ ρ ◦ g
f = g

on X ⊂ Z. This implies E = {z ∈ Z | f(z) = g(z)} is open.
Suppose there exists z′ ∈ Z such that f(z′) 6= g(z′). Then, by a construction

parallel to that of z, we find that there is an open neighborhood X ′ ⊂ Z such that
f(X ′) ∩ g(X ′) = ∅. This implies E is closed.

Since Z is connected and E is non-empty, we have that E = Z, so f = g on
Z. �

Corollary 3.11. A non-trivial automorphism of cover Y → X must have no fixed
points.

With these theorems in hand, we can show that the action of the automorphism
group on a space induces a covering map.
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Theorem 3.12. If ρ : Y → X is connected, then the action of Aut(Y/X) is properly
discontinuous.

Proof. For y ∈ Y , let V be the connected open set in X that contains ρ(y) and
such that ρ−1(V ) is a disjoint union of open sets. Let Uy be the open set in the
union that contains Y . We seek to show that Uy satisfies Definition 3.6. Given
two automorphisms g1, g2 ∈ Aut(Y/X), we know that g1Uy and g2Uy must map to
U1, U2, open sets that are part of the disjoint union. Hence, they are disjoint. �

We now begin to see the similarity between automorphism groups of coverings
spaces and Galois groups. Galois groups permute roots of polynomials over the
base field, while cover automorphisms permute the fibers of the cover. For a cover
automorphism group to be Galois, we expect that every fiber is permuted by the
group. We will formalize this intuition in Definition 3.13.

Definition 3.13. Let ρ : Y → X be a connected cover. Consider the maps

Y → Aut(Y/X) \ Y → X

where the second map is induced by ρ. Aut(Y/X) is Galois if the induced map is
a homeomorphism. We denote these automorphism groups Gal(Y/X).

This definition needs some explanation. We know that the elements of Aut(Y/X)\
Y are the orbits of Y over the group action. However, each fiber must be a union
of orbits of the covering map. When the induced map is a homeomorphism, each
fiber is its own orbit.

With this intuition, we can formulate the notion of a Galois cover in the following
way.

Theorem 3.14. A connected cover ρ : Y → X is Galois if and only if Aut(Y/X)
acts transitively on each fiber of ρ.

Proof. When Aut(Y/X) acts transitively on the fibers of ρ, the orbits of the action
are equivalent to the fibers of ρ, which implies Aut(Y/X) \ Y → X is a homeo-
morphism. Conversely, if Aut(Y/X) \ Y → X is a homemorphism, then there is a
bijection between the fibers of X and the orbits of Aut(Y/X), implying that each
fiber is permuted by the action. �

Example 3.15. For a properly discontinuous action G on space Y , the cover
Y → G \ Y is Galois with Galois group G.

Proof. Each fiber of the covering map are orbits of the group action G. Hence,
the set of fibers of Y is just G \ Y , which clearly is made into an induced homeo-
morphism with itself by Definition 3.13. The set of automorphisms are those that
send elements of Y to other elements of their fiber (which is also their orbit). The
automorphisms that do this are the elements of G. �

Now, we can state the equivalent of Theorem 2.6 for covering maps in Theorem
3.17.

Lemma 3.16 ([5]). Given connected cover ρ : Y → X and continuous map f :
Z → Y , if ρ ◦ f : Z → X is a cover, so is f : Z → Y .

Theorem 3.17. Let ρY : Y → X have automorphism group G = Gal(Y/X). For
every H ⊂ G, the map induced by ρY , ρ′Y : H \ Y → X turns H \ Y into a cover
of X.
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On the contrary, if there exists a cover morphism f over X from Y → Z, then
f : Y → Z is a Galois cover and Z ∼= Gal(Y/Z) \ Y . The maps

H → H \ Y
Z → Gal(Y/Z)

create an inclusion reversing bijection between the subgroups of the automorphism
group and the intermediate covers of X. ρZ : Z → X is Galois if H E G, in which
case Gal(Z/X) ∼= G/H.

Proof. By the definition of a cover, we know that for any x ∈ X, we can find V , an
open connected neighborhood of x such that ρ−1Y (V ) splits into disjoint open sets

in Y , each homeomorphic to V . In other words, ρ−1Y (V ) ∼= V × I for some indexing
set I. For any H ⊂ G, H has a left action on I as each automorphism maps a
homeomorphic copy of V to another homeomorphic copy of V . Because of this,
ρ′−1Y (V ) ⊂ H \ Y ∼= V ×H \ I, which shows that H \ Y is a cover of X.

Lemma 3.16 shows that for Z a cover ofX that satisfies the commutative diagram
in Figure 3, f : Y → Z is a cover. To show that the cover is Galois, we will show
the condition presented in Theorem 3.3 holds for this cover. Let z ∈ Z, and
consider y1, y2 ∈ f−1(Z) (not necessarily distinct). Hence, y1, y2 ∈ ρ−1Y (ρZ(z)).
As ρY : Y → X is Galois, there exists a φ such that φ(y1) = y2. We want
φ ∈ Aut(Y/Z), which is equivalent to φ preserving the cover map f . So, we want
to show that f(φ(y)) = f(y) for all y ∈ Y . But, by Corollary 3.11, this is true.
Hence, f : Y → Z is Galois and so, Z ∼= Gal(Y/Z) \ Y .

These results show the inclusion reversing nature of the intermediate covers and
subgroups of the Galois group. We conclude by handling the case when H E G.

If H E G, then consider the induced action of G/H on Z = H \ Y . As the
action is induced from G’s action on Y , and ρY = ρZ ◦ f , the induced action must
preserve ρZ . So, we have a group homomorphism from G/H → Aut(Z/X) which is
injective by definition of Z. However, it is surjective since (G/H)\Z ∼= G\Y ∼= X,
so G/H ∼= Aut(Z/X), which proves that ρZ : Z → X is Galois.

If ρZ : Z → X is Galois, then consider φY ∈ G. We want a homomorphism
from G → Gal(Z/X) so that the kernel of the homomorphism will be our H.
Since ρZ : Z → X is Galois, for any y ∈ Y , there exists map φZ such that
φZ(f(y)) = f(φY (y)) (as y, φY (y) are in the same fiber of ρY ). By Theorem 3.10,
we know that φZ is unique (if there were two maps φ1, φ2 with the property above,
consider φ1 ◦φ−12 with the Theorem). Hence, we have a homomorphism as desired,
and the kernel of the map, H, is normal in G. �

4. Grothendieck’s Categorical Galois Theory

So far, we have seen an equivalence between the notions of Galois extensions and
Galois covers. One of Grothendieck’s key insights was to view some base field as a
point, and finite separable field extensions over the base field as finite sets of points
which all map onto the base point [7]. Then, the absolute Galois group of the base
field has a natural action on the set of points, permuting them but keeping the base
point fixed.

In this section, we will be able to explicitly show this relationship via the lan-
guage of categories and functors. Replacing the inclusion reversing bijection will be
a contravariant functor, establishing an anti-equivalence between the category of



GALOIS COVERS AND THE FUNDAMENTAL GROUP 9

finite sets with a continuous and transitive action from the absolute Galois group,
and the category of finite separable sub-extensions of the separable closure.

4.1. Krull Topology.
We begin by expanding our notion of the Galois correspondence to more gen-

eral field extensions. Here, we borrow some definitions and theorems from Krull
summarized in [8].

Definition 4.1. Let E/F be a Galois extension. We define the topology of
Gal(E/F ) to be generated by subgroups of the form Gal(E/K), where K/F is a fi-
nite separable sub-extension of E/F . This topology is known as the Krull Topology.

With the addition of the Krull topology, we can prove some basic relationships
between subgroups of the Galois group and extensions.

Theorem 4.2. For any subextension K/F of E/F , Gal(E/K) is closed in Gal(E/F ).

Proof. Consider φ ∈ Gal(E/F )\Gal(E/K). We seek to show that there is an open
neighborhood of φ which is disjoint from Gal(E/K) to show that the complement
of Gal(E/K) is open. Since φ /∈ Gal(E/K), there exists some a ∈ K such that
φ(a) 6= a. Consider Gal(E/F (a)). The group is open in the Krull Topology, and it
has the property that for any f ∈ Gal(E/F (a)), φ(f(a)) = φ(a) 6= a. This implies
that φ ·Gal(E/F (a)) ∩Gal(E/K) = ∅, so we are done. �

This theorem suggests that for any subextension of a Galois extension, the Galois
group fixing the subextension is closed in the Krull Topology.

We now show the converse to this theorem.

Theorem 4.3. For any closed subgroup H ⊆ Gal(E/F ), H = Gal(E/EH).

Proof. H ⊆ Aut(E/EH) by definition of fixed fields. We also know that G \ H
is an open set in G. Since it is open, for any φ ∈ G \ H, there exists some finite
extension K/F such that φ ·Gal(E/K) ⊆ G\H (since one can always find an open
neighborhood around a point in an open set). Let K ′ be the Galois closure of K
over F (which is still finite). So, φ·Gal(E/K ′) ⊆ G\H as Gal(E/K ′) ⊆ Gal(E/K),
implying that φ /∈ H ·Gal(E/K ′).

Let φK′ be φ limited to the domainK ′. Since Gal(E/K ′) is trivial in this domain,
if we let HK′ be the automorphisms of H restricted to K ′, we have φK′ /∈ HK′ .
So, there is a ∈ EHK′ ⊂ EH such that φK′(a) = φ(a) 6= a. This shows that
H = Aut(E/EH), which also implies that E/EH is Galois. �

These two theorems give us the impression that the closed subgroups of Gal(E/F )
and the intermediate extensions of E/F are in bijection just like in the finite case.
In fact, these theorems are crucial in the proof of the next lemma, a generaliza-
tion of Theorem 2.6. (The proof is not provided in the text due to its length and
similarity to Theorem 2.6.)

Lemma 4.4 ([8]). Let K be a subextension of Galois extension E/F . Then
Gal(E/K) is a closed subgroup of Gal(E/F ). Moreover, the maps

K → Aut(E/K)

H → EH

create an inclusion-reversing bijection between the subextensions of E over F and
the closed subgroups of Gal(E/F ). K/F is Galois if Aut(K/F ) E Gal(E/F ), in
which case Gal(K/F ) ∼= Gal(E/F )/Gal(E/K).
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4.2. The Functor of Points.

Let k be our base field, K the separable closure of k. Let F be a finite separable
extension of k. We know through our work in Section 2 that the number of em-
beddings of F into K preserving k is finite. This implies that Homk(F,K) is finite.
Gal(K/k) has a natural left action on Homk(F,K), given by (g, φ)→ g ◦ φ, where
g ∈ Gal(K/k), φ ∈ Homk(F,K).

Theorem 4.5. The left action above of Gal(K/k) on Homk(F,K) is continuous
and transitive, and Homk(F,K) is isomorphic to the left coset space of an open
subgroup of Gal(K/k). F/k is Galois if and only if the open subgroup is normal.

Proof. We know that any finite separable extension can be generated by a single
element. Let that element by α ∈ F with minimal polynomial mα. For any
φ ∈ Homk(F,K), α must be sent to another root of mα. Since Gal(K/k) permutes
the roots of mα transitively, the action of Gal(K/k) on Homk(F,K) is transitive.

On the other hand, given φ ∈ Homk(F,K), let S ⊆ Gal(K/k) be the stabilizer
of φ. S must fix φ(F ) in order to stabilize the morphism, and as such, by Lemma
4.4, S is open in Gal(K/k). This implies that the action is continuous.

Since the action is transitive and continuous, we have that the map g ◦φ 7→ gS is
an isomorphism from Homk(F,K)→ S \Gal(K/k). By Lemma 4.4, S E Gal(K/k)
if and only if F/k is Galois. �

Now, we want to establish a categorical anti-equivalence between those finite
sets that have a continuous and transitive action from the absolute Galois group
(like Homk(F,K) from Theorem 4.6) and sub-extensions of the separable closure.
We establish this equivalence in Theorem 4.7.

Lemma 4.6 ([6]). Two categories C1, C2 are equivalent if there exists a functor
F : C1 → C2 such that the functor is

(1) Fully Faithful - The map of sets Hom(A,B)→ Hom(F (A), F (B)) is bijec-
tive for all A,B ∈ C1.

(2) Essentially Surjective - Every object of C2 is isomorphic to an object of the
form F (A) for some A.

If L,M are finite separable extensions of k, then any homomorphism φ : L→M
respecting k induces a map from Homk(M,K) → Homk(L,K) by composing φ
with the homology map. This is a contravariant functor known as the Grothendieck
functor, or as the functor of points.

Theorem 4.7. ([7]) The contravariant functor mapping the finite separable exten-
sion L/k to the finite set Homk(L,K) gives an anti-equivalence between the category
of finite separable extensions and the category of finite sets with a continuous and
transitive left Gal(K/k) action. Galois extensions give finite sets isomorphic to a
quotient of Gal(K/k).

Proof. We need to show that the functor of points of form Homk(,K) satisfies the
conditions of Lemma 4.6.

To show that the functor is fully faithful, we need to show that given L,M finite
separable extensions over k, the map from L→M to Homk(M,K)→ Homk(L,K)
is bijective. Note that Gal(K/k) is transitive over both Homk(M,K), Homk(L,K).
Let φ : L → M induce φ′ : Homk(M,K) → Homk(L,K) as discussed before this
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Theorem. Let ρ ∈ Homk(M,K). Hence by the transitivity, we know that any
stabilizer of ρ is also a stabilizer of the induced map ρ ◦ f ∈ Homk(L,K). This
implies that ρ ◦ f(L) ⊆ ρ(M).

We know that φ′ commutes with ρ, which shows that ρ−1 ◦ φ′ ◦ ρ ∼= φ, but the
previous paragraph showed that ρ−1 ◦ φ′ ◦ ρ is in fact the unique map that induces
φ.

To show that the functor is essentially surjective, we show that any finite set S
acted on by Gal(K/k) is isomorphic to some Homk(L,K). We do so by picking
a point s ∈ S, and considering the stabilizer U of s. We know that the action
is continuous, which implies that U is open and the fixed field of U is a finite
separable extension L/k. The isomorphism we define from Homk(L,K) → S is
g ◦ e 7→ gs, where e is the identity embedding, and g is in Gal(K/k). By definition,
the stabilizer of e is U , which implies that both sets are isomorphic to U \Gal(K/k).

The last part of the Theorem comes directly from Theorem 4.5. �

Theorem 4.7 uses the functor of points to show an anti-equivalence between finite
separable extensions of k (which are sub-extensions of its absolute Galois group),
and finite sets which have a left action from the absolute Galois group that is
transitive (permuting all of the points) and continuous under the Krull Topology.

5. The Fundamental Group and Universal Covers

In the Section 4, we developed a more general interpretation of the Galois corre-
spondence in terms of an anti-equivalence between the categories of sub-extensions
of the absolute Galois group of some field and of finite sets acted on continuously
and transitively by the absolute Galois group.

In this Section, we will combine our results from all of the previous section to
find a similar anti-equivalence between the categories of connected covering spaces
of a well-behaved base space and of sets acted on by a group transitively. This, too,
will be done using a functor of points, with the role of the absolute Galois group
and the separable closure played by the fundamental group and universal cover,
respectively.

5.1. The Fundamental Group.

Definition 5.1. A path is a continuous map from [0, 1] to space X.

Definition 5.2. A loop is a path f where f(0) = f(1).

Definition 5.3. Two paths f, g : [0, 1] → X are homotopic if there exists a
continuous map h : [0, 1]2 → X such that h(0, x) = f(x), h(1, x) = g(x).

These definitions are due to [5].

Theorem 5.4. Homotopies of paths are an equivalence relation.

Proof. We check the three necessary conditions.

(1) Reflexivity: h(x, y) = f(x)→ f(x) ∼ f(x).
(2) Symmetry: If h is the homotopy between f, g, define h′(x, y) = h(1− x, y).

This is a homotopy between g, f .
(3) Transitivity: If m,n are the homotopies between f, g and g, h, then

p(x, y) =

{
m(2x, y) x < 1

2

n(2x− 1, y) x ≥ 1
2
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is a homotopy between f, h.

�

Definition 5.5. Given paths f, g : [0, 1]→ X such that f(0) = g(1), the composi-
tion of paths

f ◦ g(x) =

{
g(2x) x < 1

2

f(2x− 1) x ≥ 1
2

In particular, one can compose any two loops with the same starting point.

Definition 5.6. The fundamental group of a space X around a point x ∈ X,
denoted by π1(X,x) or simply π(X,x), is the set of equivalence classes (under
homotopy) of closed loops [f ] with f(0) = f(1) = x, equipped with the binary
operation of composition.

Theorem 5.7. π(Z, z) is a group.

Proof. We check the necessary conditions.

(1) Well-defined: If h1 is a homotopy between f1, f2 and h2 between g1, g2, we
have

h(x, y) =

{
h1(2x, y) x < 1

2

h2(2x− 1, y) x ≥ 1
2

as a homotopy between g1 ◦ f1 and g2 ◦ f2.
(2) Identity: id(x) = z is the identity. Particularly, for any loop g ∈ π(Z, z),

h(x, y) =

{
z y < 1

2x

g( 2y−x
2−x ) y ≥ 1

2x

is a homotopy from g → g ◦ id. Similarly, we can show that there is a
homotopy from g → id ◦ g, showing the property of the identity.

(3) Inverse: The inverse of [g] is [g′] (where g(x) = g′(1 − x)) since there is a
homotopy h between g ◦ g−1 and f , the identity, as follows:

h(x, y) = g ◦ g−1(2xy)

(4) Associativity: The following homotopy h maps from (g1 ◦ g2) ◦ g3 → g1 ◦
(g2 ◦ g3):

h(x, y) =


g1( 4y

1+x ) y < 1+x
4

g2(4y − 1− x) 1+x
4 ≤ y <

2+x
4

g3(2y − 1 + 2x(y − 1)) 2+x
4 ≤ y

�

Example 5.8. The fundamental group of a connected graph G = (V,E) is the free
group of |E| − |V | + 1 elements, since the spanning tree of the graph has |V | − 1
edges, and edge contracting each of these edges doesn’t change the fundamental
group. The remaining graph is a single node with all of the remaining edges as
loops of the node.

The fundamental group is defined in terms of a base point, but for spaces that
are path-connected (every two points have a path connecting them), π(Z, x) ∼=
π(Z, y) for all x, y ∈ Z. For these spaces, the fundamental group is sometimes
denoted as π(Z).
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Definition 5.9. A path connected space X is simply connected if π(X) is trivial.

Remark 5.10. Given topological spaces X,Y with x ∈ X, and some continuous
map ψ : X → Y , there is a natural map π(X,x)→ π(Y, ψ(x)) given by φ 7→ ψ(φ).
This map respects the homotopy equivalence classes of the fundamental group, and
is a homomorphism since it respects loop composition.

This suggests the existence of a functor from a category of topology spaces to the
category of groups. However, we need to be careful here, since topological spaces
are not equipped with a base point, and as such, the above map can not be directly
seen as a functor. There are two standard resolutions to this.

Certain texts, such as [9], choose to define pointed spaces, topological spaces
with a base point, and define morphisms between pointed spaces as morphisms of
the underlying spaces that send the base point to the other base point. We then
can define a functor from (X,x) → π(X,x), and define the morphism lift from
Hom((X,x), (Y, y))→ Hom(π(X,x), π(Y, y)) as above.

Other texts, such as [10], choose to still consider the category of topological
spaces, but instead of considering the fundamental group, they consider the fun-
damental groupoid, a set with homotopy equivalence classes of all loops in a given
space, equipped with the binary operation of composition if the two loops have a
common base point. As such, the functor maps the category of topological spaces
to a category of groupoids.

In this paper, we will stay closer to the approach presented in [9] and deal with
pointed spaces. As such, we will now require that covering maps and morphisms
send base points to other base points. Pointed spaces will either be denoted as
(X,x) to represent x ∈ X as the base point of X, or simply as X if the base point
is not of relevance.

5.2. The Monodromy Action.

We want to show that the fundamental group of a base pointed space (X,x) has
a left action on fibers of a pointed covering space. In order to do so, we first show
that given a cover ρ : (Y, y) → (X,x), the fundamental group π(X,x) has a left
action on the fiber ρ−1(x).

Theorem 5.11. Let ρ : (Y, y)→ (X,x) be a cover. Given path f : [0, 1]→ X with
f(0) = x, there exists a unique f ′ : [0, 1]→ Y such that f ′(0) = y and ρ ◦ f ′ = f .

Proof. Uniqueness is directly implied by Theorem 3.10 (let X,Y, Z in the Theorem
be X, [0, 1], Y .) In the case of a trivial cover, existence is obvious (let y = (x, i) ∈
X × I, then f ′(x) = (f(x), i)).

For a non-trivial cover, for each t ∈ f([0, 1]), choose an open neighborhood Vt
that satisfies the definition of a cover. (f−1(Vt))t∈f([0,1]) is hence an open cover of
[0, 1], so by compactness, pick a finite subcover. Since the subcover is finite, one can
pick {t1, ..., tn} ∈ [0, 1] such that each interval [ti, ti+1] is fully contained in one of
the open sets covering [0, 1]. Hence, the cover is trivial over each f([ti, ti+1]). Then,
induct over i by finding the unique f ′ with f(ti) equal to the ending point of the
previous path. Composing these f ′s piece-wise will produce the desired map. �

Corollary 5.12 ([5]). Let ρ : Y → X be a cover, and let f, g : [0, 1] → X be
homotopic. There exists a unique g′ : [0, 1] → Y such that g′(0) = f ′(0) and
ρ ◦ g′ = g (where f ′ is defined in Theorem 5.11). Moreover, g′(1) = f ′(1).
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Theorem 5.11 and its corollary are known as the lifting lemmas, and ensure that
the following construction of a fundamental group action on the fibers of a cover is
well defined.

Construction 5.13. Given cover ρ : Y → X and a point x ∈ X, we can construct
an action of π(X,x) on ρ−1(x). Let y ∈ ρ−1(x), φ ∈ π(X,x). Let f ′ : [0, 1] → Y
be the lifted path defined in Theorem 5.11 of φ with f ′(0) = y. Our group action
is

π(X,x)× ρ−1(x)→ ρ−1(x)

(φ, y) 7→ f ′(1)

Corollary 5.12 ensure that the representative for the homotopy class of π(X,x) does
not affect the action, making the action well-defined. This action is known as the
monodromy action [9].

Note that the monodromy action of the fundamental group mirrors the action
of the absolute Galois group on homomorphisms in Theorem 4.7.

With the monodromy action at hand, we can define our functor of points, which
we will call Fiberx (x being the base point of our connected and locally simply
connected space X). Fiberx sends a cover ρ : (Y, y) → (X,x) to ρ−1(x). Con-
struction 5.13 defines the left action of π(X,x) on ρ−1(x) (our set of points), and
sends a cover morphism f : Y → Z to a map from the unique lift from X to Y
of a loop going through x ∈ X starting at some y ∈ Y to the unique lift of the
same loop from X to Z starting at f(y) ∈ Z. (The unique lifts are guaranteed by
Theorem 5.11). This indeed defines a functor since cover morphisms respect the
fibers of covering maps.

5.3. The Universal Cover.

Note the similarities between the monodromy action and the action of the abso-
lute Galois group from Section 4. This similarity suggests a similar construction of
functor between a category of covers and sets acted on by the fundamental group.
In order to establish such an equivalence, we would like to have an object to embed
covers in, a topological analogue to the separable closure.

Definition 5.14. The universal cover Y of a connected topological space X is
a simply connected space that is a cover of X.

Ideally, we would like to embed all of the connected covers of a given space in
its universal cover. However, in order to guarantee the existence of the universal
cover, we need a few properties to ensure that the base space is well-behaved [5].

Definition 5.15. A space X is locally path connected if for any x ∈ X, there
exists an open neighborhood U of x such that it is path-connected.

Definition 5.16. A space X is locally simply connected if any open set con-
taining point x ∈ X contains a open subset also containing x ∈ X that is simply
connected.

From this point onwards, we assume that our base space X is connected and
locally simply connected. Under these conditions, we can construct a universal
cover of X.
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Remark 5.17. Local simply connectedness is in fact not a necessary condition for
the existence of a universal cover, as semi-local simply connectedness along with
local path connectedness also guarantees its existence. See [5] for a construction of
the cover with this assumption.

Construction 5.18. Let X̃x be a space whose underlying set is the set of homotopy
classes of paths of X starting at x ∈ X.

We define ρ : (X̃x, id) → (X,x) as follows. Let [y] ∈ X̃x ([y] is the homotopy
class of y). Let ρ([y]) = y(1). Note that this map is well-defined on the homotopy

classes of X̃x since homotopic maps share endpoints. Moreover, since X is locally
path-connected, the subset of X that is mapped to by ρ is open, as is its complement
in X. Since X is connected, ρ must be surjective.

We will define the topology on this set by defining the basis of open neighbor-

hoods of a given point [ỹ] ∈ X̃x. Let y = ỹ(1). Since X is locally simply connected,
let U be a simply connected open neighborhood of y. Finally, we take some path
z : [0, 1] → X such that z(0) = y and z([0, 1]) ⊆ U , and compose it with ỹ. The
set of all such compositions under homotopy equivalence classes forms the desired
open set. For a given [ỹ], the basis of the open neighborhoods is generated by
forming an open set as above for each possible choice of an open simply connected
neighborhood of y.

We know that this basis is independent of the representative of [ỹ] chosen, since
the endpoints of all representatives must be the same, ensuring that the choices of
the simply connected open neighborhoods and the paths within them will also my
the same. This ensures that the topology is well-defined.

We now show that this construction is, in fact, a universal cover of X.
First, we show that the topology is in fact, a topology. Here, we refer to the

properties of a local basis of open neighborhoods [9], and find that the only non-

trivial condition that we must show is that given any Ũ , Ṽ in the basis of open

neighborhoods of ỹ ∈ X̃x, there exists some W̃ in the basis such that W̃ ⊆ Ũ ∩
Ṽ . However, we note that for both Ũ , Ṽ , there are corresponding open simply
connected sets U, V in X that contain y. So, U ∩ V is open and also contains y,
so since X is locally simply connected, there exists W ⊆ U ∩V open neighborhood

containing y. Let W̃ be the open set in the basis of X̃x around [ỹ] that is generated
by choosing W as the simply connected open set. Then, by construction, we have

that W̃ ⊆ Ũ ∩ Ṽ . This shows that we have defined a topology.
Next, we show that ρ is continuous. Consider open set U in X that contains

y ∈ X. ∀w ∈ X, let Uw ⊆ U be a simply connected open set containing w (possible

by local simply connectedness). Note that by construction, ρ−1(Uw) is open in X̃x.
Finally, we know that ρ−1(U) =

⋃
w∈U

ρ−1(Uw), and we know that arbitrary union

of open sets is open.
We now show that ρ is a covering map. Let y ∈ X, and U be a simply connected

open set containing Y . Note that for any [ỹ] ∈ ρ−1(y), and z ∈ U , since U is
path-connected, there exists path g such that g(0) = y, g(1) = z, g([0, 1]) ⊆ U .
So, ρ([ỹ◦g]) = z. g is unique up to homotopy since U is simply connected. So, for a

given [ỹ] ∈ ρ−1(y), there exists an open set in X̃x that is mapped homemorphically
onto U via ρ. So all we must show is that the sets generated by each element
of ρ−1(y) are disjoint. However, this is true simply because given distinct classes
[ỹ], [ỹ2] ∈ ρ−1(y), and some g with g(0) = y, g([0, 1]) ⊆ U , ỹ ◦ g � ỹ2 ◦ g since
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ỹ � ỹ2 and U is simply connected in X. This shows that ρ is a cover, since for any
y ∈ X, there is a simply connected set containing it in X.

Finally, we show that X̃x is simply connected. It is path connected since any
path γ : [0, 1]→ X has a path to the constant path via the map f : [0, 1]× [0, 1]→
X, f(t1, t2) = γ((1 − t1) · t2). This map is continuous by construction of X̃x’s

topology. Given any loop in X̃x, we can likewise apply the map above to send it
continuously to the constant path, implying that all loops are homotopic, and the
fundamental group is trivial.

Example 5.19. The universal cover of the unit circle (embedded in C) is R via
the covering z 7→ eiz. The automorphism group of the cover is Z (we can imagine
bending R into an infinite helix, which then is projected onto the unit circle).

In the next few theorems/constructions, we will prove properties of the universal
cover that allow other covers to be embedded in it.

Construction 5.20. Let ψ : Y → X be a cover with X having base point x. For

all y ∈ ψ−1(x), we define the covering morphism fy : X̃x → Y as follows.

We let fy map [φ] ∈ X̃x to φ̃(1), where φ̃ is the unique lift of the path φ to Y

with φ̃(0) = y via Theorem 5.11. Corollary 5.12 ensures that fy is well defined on

the homotopy classes of X̃x, and it is a cover morphism since ψ(φ̃) = ψ(y) = x.

Consider the case of Y = X̃x. In this case, the covering morphisms are endo-

morphisms over X̃x, and there is a natural bijection induced by the construction

above between ψ−1(x) and Aut(X̃x/X). The identity is one of these morphisms, so

we define the universal element of X to be the element e ∈ X̃x such that fe = id
as constructed above.

Theorem 5.21. Given space (X,x) with universal cover ρ : X̃x → X, Fiberx is
represented by ρ – Fiberx is isomorphic to HomX(ρ, ).

Proof. We seek to find a natural isomorphism between the two functors. Con-
cretely, for some cover ψ : Y → X, every point y of ψ−1(x) should correspond

to a cover morphism fy : X̃x → Y . Construction 5.20 gives us a map from

ψ−1(x)→ HomX(X̃x, Y ). By construction, this map is injective. Conversely, given

some cover morphism g : X̃x → Y , notice that g(e), the image of the universal
element of X, is a member of ψ−1(x), and that g = fg(e) as defined in Construction
5.20. This defines a left inverse of the map, and it naturally also is injective. This
shows us that the original map is a bijection. To show that this map is a natural
isomorphism, we simply need to show that it is a natural transformation. The cover
morphism Y → Z over X that maps some y ∈ Y to some z ∈ Z induces the map

HomX(X̃x, Y ) → HomX(X̃x, Z) by sending fy → fz, since fy sends e → y and fz
sends e→ z. �

Theorem 5.21 is crucial since it, along with Lemma 3.16, implies that for any

cover of X, X̃x is a cover of it with a surjective covering map. Like we did with the
separable closure in Section 4, we will be able to use this embedding to consider

the action of the group Aut(X̃x/X) on covers of X. We will associate this action
with the monodromy action later in this Section.

Finally, we want to show that, like the separable closure, the universal cover is
Galois.
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Lemma 5.22. ([5]) Covers of simply connected and locally path connected spaces
are trivial.

Lemma 5.23. ([5]) Let X be locally simply connected. If Y,Z are spaces such that
ρ1 : Y → X, ρ2 : Z → Y are both covers, ρ1 ◦ ρ2 : Z → X is also a cover.

Theorem 5.24. ρ : X̃x → X is Galois.

Proof. By Theorem 3.3, we simply need to show that Aut(X̃x/X) is transitive over
ρ−1(x). For each y ∈ ρ−1(x), Theorem 5.21 tells us that there is an endomorphism

ψy : X̃x → X̃x that sends the universal element e to y. If ψy ∈ Aut(X̃x/X), we are
done.

Since X̃x is connected, by Lemma 3.16 we have that ψy is a covering map for X̃x

over itself. Consider some z ∈ ψ−1y (e). By Lemma 5.23, we know that ρ ◦ψy is also

a self cover of X̃x, so we can apply Theorem 5.21 to get a map ψz : X̃x → X̃x with
ψz(e) = z and ρ ◦ ψy ◦ ψz = ρ. That implies that ψy ◦ ψz(e) = e, so by Corollary

3.11, this map is the identity on X̃x. As ψy, ψz are surjective by Theorem 5.21, ψy
is also injective, so we are done. �

5.4. The Galois Correspondence of the Fundamental Group.

Now that we have our topological analogues of the separable closure and absolute
Galois group, we can establish a link between the Galois correspondence on covers
in Theorem 3.17 and the fundamental group monodromy action via the functor of
points, an analogue of Theorem 4.7.

Let (X,x) be a connected and locally simply connected pointed space and let
ρ : Y → X be a cover of X. Consider first the functor Fiberx, which sends Y of
X to Fiberx(Y ) = ρ−1(x), a fiber of the covering map. ρ−1(x) is imparted with a
left action from the fundamental group as the monodromy action.

The functor HomX(X̃x, ) sends Y to the set of covering morphisms HomX(X̃x, Y ).

Given some φ ∈ Gal(X̃x/X), and some ψ ∈ HomX(X̃x, Y ), we note that ψ ◦ φ ∈
HomX(X̃x, Y ), and it is not hard to see that this forms a right action of Gal(X̃x/X)

on HomX(X̃x, Y ).

Theorem 5.21 showed us that Fiberx(Y ) ∼= HomX(X̃x, Y ), leading us attempt
to establish some relationship between the groups acting on each of these sets.

In order to do so, we want both actions to act from the same direction. Hence,
we introduce the following notation.

Definition 5.25. Given some group G, let Gop be the underlying set of G equipped
with the operation x · y = yx.

So, Gal(X̃x/X)op has a left action on HomX(X̃x, Y ), which prompts the next
theorem.

Theorem 5.26. Given space (X,x), Gal(X̃x/X)op ∼= π(X,x)

Proof. Let [α] ∈ π(X,x). Note that for any [y] ∈ X̃x, [y ◦ α] ∈ X̃x. Note that this

defines a right action of π(X,x) on X̃x, as composition respects homotopy classes,

and is a continuous action. Let φα be an endomorphism of X̃x that applies the

right action of [α] onto X̃x. Note that φα ∈ Gal(X̃x/X)op since the composition of
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paths respects the covering map. So, define the following map

π(X,x)→ Gal(X̃x/X)

[α] 7→ φα

This map is a group homomorphism since composition of paths is associative.
It is injective since for any [α] 6= [id] ∈ π(X,x), φα sends the constant path to α,
which by assumption is not homotopic with the constant path, implying that the
kernel is trivial.

Let φ ∈ Gal(X̃x/X)op, and [y] ∈ X̃x. We know that φ(y)(1) = y(1) since
automorphisms preserve the covering map. Hence, α = [y−1 ◦ φ(y)] ∈ π(X,x) and

y◦y−1◦φ(y) = φ(y). So, φ−1◦φα fixes [y], so since X̃x is connected, so by Corollary
3.11, φ−1 ◦ φα is the identity. Hence, φ = φα, and hence, the homomorphism is
surjective. So, we have an isomorphism. �

This Theorem, along with Theorem 3.17, shows that the automorphism group
of the universal cover is isomorphic to the fundamental group, and that there is a
bijection between subgroups of the fundamental group, and covers of the base field
where the automorphism groups of the covers are precisely those subgroups.

The next theorem is a summary of these insights.

Theorem 5.27. The cover ρ : X̃x → X is a connected Galois cover with auto-
morphism group isomorphic to π(X,x). For any cover Y → X, the left action of

Gal(X̃x/X)op on Fiberx(Y ) is the monodromy action.

Proof. The first part of this Theorem is just a restatement of other theorems in this
section. By Theorem 5.21, every point y ∈ ρ−1(x) induced a covering morphism

fy : X̃x → Y , and that a path [g] ∈ X̃x is mapped to g′(1), where g′ is the lift of
g to the space Y with g′(0) = y (via Theorem 5.11). In particular, fy(id) is the

constant path at y. In Theorem 5.26, we showed that [α] ∈ π(X,x) acts on id ∈ X̃x

by sending it to [α]. So, the action of α on the fiber ρ−1(x) will map y to α′(1),
where α′ is the lift (via Theorem 5.11) of α to Y where α′(0) = y. This is the
monodromy action. �

What this shows is not only that the automorphism group is isomorphic to the
fundamental group, but their actions also are identical.

Our final theorem establishes the Galois correspondence between covers of (X,x)
and sets with π(X,x) actions. Fiberx is our functor of points: it maps covers to
sets with points that all map to the base point.

Theorem 5.28. Let (X,x) be a connected and locally simply connected topological
space. Fiberx induces an equivalence between the category of connected covers
of X and sets with left transitive π(X,x) actions. Sets with transitive π(X,x)
actions correspond to connected covers, and Galois covers to coset spaces of normal
subgroups.

Proof. As in Theorem 4.7, we seek to satisfy the conditions of 4.6 with our covariant
functor Fiberx.

To show that Fiberx is fully faithful, consider connected covers ρY : Y →
X, ρZ : Z → X. We want to show that for each map φ : Fiberx(Y )→ Fiberx(Z)
of π(X,x) sets, there is exactly one f : Y → Z respecting the commutative diagram
in Figure 3 that is sent to φ. Let y ∈ Fiberx(Y ) = ρ−1Y (x). From Construction
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5.20, we have a map gy : X̃x → Y that sends [id] 7→ y. We can now apply Theorem

3.17 to show that Gal(X̃x/Y ) stabilizes y, and that Y ∼= Gal(X̃x/Y ) \ X̃x. Let

ψY : Y → Gal(X̃x/Y ) \ X̃x.

We also know that φ(Gal(X̃x/Y )) is a subset of the stabilizer of φ(y), so hence,

if we consider the map gφ(y) : X̃x → Z that sends [id] 7→ φ(y), we can let ψZ :

Gal(X̃x/Y )\ X̃x → Z be the induced map. Hence, ψZ ◦ψY is the unique map from
Y → Z.

To show that Fiberx is essentially surjective, we must show that any set S with
transitive left action from π(X,x) is isomorphic to a fiber of some cover of X. Let

s ∈ S, and Us be its stabilizer in Gal(X̃x/X). Let ρ : Us \ X̃x → X be the induced

covering map from the universal cover. Note that the space Us \ X̃x is connected
as it is the quotient space of a connected space by a stabilizing set. And, ρ−1(x) is
isomorphic to S by construction. �

Note the parallels to Theorem 4.7. The fundamental group and universal cover
functioned analogously in this Theorem to how the absolute Galois group and the
separable closure functioned in Section 4. We conclude with an example.

Example 5.29. In Example 5.19, we noted that the fundamental group of the
universal cover R of the unit circle is Z, which we visualized by ”twisting” R into
an infinite helix. Note that subgroups of Z are of the form Z/nZ for n > 1, and
they correspond to finite helices with n turns (see Example 3.3).
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