\ie\cf
\newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}}  \newcommand{\R} % real numbers  \newcommand{\N}} % natural numbers  \newcommand{\Z} % integers  \newcommand{\F} % a field  \newcommand{\Q} % the rationals  \newcommand{\C}{\mathbb{C}} % the complexes  \newcommand{\poly}}  \newcommand{\polylog}}  \newcommand{\loglog}}}  \newcommand{\zo}{\{0,1\}}  \newcommand{\suchthat}  \newcommand{\pr}[1]{\Pr\left[#1\right]}  \newcommand{\deffont}{\em}  \newcommand{\getsr}{\mathbin{\stackrel{\mbox{\tiny R}}{\gets}}}  \newcommand{\Exp}{\mathop{\mathrm E}\displaylimits} % expectation  \newcommand{\Var}{\mathop{\mathrm Var}\displaylimits} % variance  \newcommand{\xor}{\oplus}  \newcommand{\GF}{\mathrm{GF}}  \newcommand{\eps}{\varepsilon}  \notag
\no
Next |
Chapter 1

What is a Category?

100%

Definition

A category is a collection of objects, and for any two objects \(A,B\), a collection of morphisms between them. For a category \(\rmC\), its objects are referred by \(\obj(\rmC)\), although most of the time, \(\rmC\) also refers to the collection of objects of the category. The collection of morphisms from \(A\to B\) is named \(\Mor(A,B)\). Moreover, for any object \(A\in\rmC\), there is a distinguished member of \(\Mor(A,A)\), which we call \(\id_A\) or just \(\id\).

Locally Small Categories

In these notes, we only care about locally small categories, i.e., categories such that for any \(A,B\), \(\Mor(A,B)\) is a set. For any locally small category \(\mathfrak C\), for any \(A,B,C\in\mathfrak C\), there exists an associative map \(\circ:\Mor(B,C)\times\Mor(A,B)\to\Mor(A,C)\) (we write \(\circ(f,g)\) as \(f\circ g\)) such that for any \(f\in\Mor(A,B)\), \(\id_B\circ f=f\circ\id_A=f\). For some \(f\in\Mor(A,B)\), there exists \(g\in\Mor(B,A)\) such that \(f\circ g=\id_B\), \(g\circ f=\id_A\), we call \(f\) an isomorphism, and say that \(A,B\) are isomorphic objects.

Top